Review for Exam 2

Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on the exam as it appears in the textbook.

- 1. Determine if the following sets V together with operations \oplus and \odot are vector spaces. Either show that Definition 4.4 is satisfied or determine which properties of Definition 4.4 fail to hold.
 - (a) $V = \mathbb{R}$ with $\mathbf{u} \oplus \mathbf{v} = \mathbf{u}\mathbf{v}$ and $c \odot \mathbf{u} = c + \mathbf{u}$.
 - (b) $V = P_2$ with $p(t) \oplus q(t) = p'(t)q'(t)$ and $c \odot p(t) = cp(t)$.
 - (c) V the set with two elements $\{\mathbf{v}_1, \mathbf{v}_2\}$ where $\mathbf{v}_1 \oplus \mathbf{v}_1 = \mathbf{v}_2 \oplus \mathbf{v}_2 = \mathbf{v}_1$ and $\mathbf{v}_1 \oplus \mathbf{v}_2 = \mathbf{v}_2 \oplus \mathbf{v}_1 = \mathbf{v}_2$ and $c \odot \mathbf{v}_1 = c \odot \mathbf{v}_2 = \mathbf{v}_1$.
 - (d) $V = \mathbb{R}$ with $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} + \mathbf{v} + 2$ and $c \odot \mathbf{u} = c(\mathbf{u} + 2) 2$.
- 2. Let A be a fixed $m \times n$ matrix and let V be the set of all vectors $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ is a consistent linear system. Is V a subspace of \mathbb{R}^m ?
- 3. Determine if W is a subspace of V. If it is, find a basis for W and dim W.
 - (a) $V = \mathbb{R}_4, W = \{ \begin{bmatrix} a & b & c & d \end{bmatrix} | ab = cd \}$
 - (b) $V = P_2$, let W be the set of all polynomials p(t) in P_2 such that p(1) = 0.
 - (c) $V = P_2$, let W be the set of all polynomials p(t) in P_2 such that p(0) = 1.

(d)
$$V = M_{22}$$
, let W be the set of matrices A such that $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A$.

- 4. Let U and W be subspaces of a vector space V. Let U + W be the set of all vectors in V that have the form $\mathbf{u} + \mathbf{w}$ for some \mathbf{u} in U and \mathbf{w} in W.
 - (a) Show that U + W is a subspace of V.
 - (b) Show that $\dim U + W \leq \dim U + \dim W$.
- 5. For each set S, determine if S contains a basis for \mathbb{R}^3 , is contained in a basis for \mathbb{R}^3 , both, or neither.

(a)
$$S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$$

(b) $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$

(c)
$$S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 3\\3\\0 \end{bmatrix} \right\}$$

(d) $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 3\\3\\3 \\ 3 \end{bmatrix} \right\}$
(e) $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\4\\6 \end{bmatrix}, \begin{bmatrix} 3\\2\\3 \end{bmatrix} \right\}$

6. Find a basis for span S where S is the following subset of M_{22} .

$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -5 \\ 1 & 0 \end{bmatrix} \right\}$$

- 7. Determine if the statement is true or false. If it is true, give a proof. If it is false, find a counterexample.
 - (a) If V is a nonzero vector space, then V contains infinitely many vectors.
 - (b) If V has basis S and W is a subspace of V, then there exists a set T contained in S which is a basis for W.
 - (c) If $S = {\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}}$ is a set of linearly independent vectors in a vector space V and **w** is a nonzero vector in V then the set ${\mathbf{v_1}+\mathbf{w}, \mathbf{v_2}+\mathbf{w}, ..., \mathbf{v_k}+\mathbf{w}}$ is also linearly independent.
 - (d) If two matrices have the same RREF, then they have the same row space.
 - (e) If two matrices have the same RREF, then they have the same column space.
- 8. Let W be the following subspace of M_{23} .

$$W = \left\{ \left[\begin{array}{rrr} a & b & b-c \\ a+b & 2c & c \end{array} \right] \right\}$$

Find a basis for W and dim W.

- 9. Let V be a 3-dimensional vector space with bases S and T. Let **v** be a vector such that $[\mathbf{v}]_T = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Find $[\mathbf{v}]_S$ if $P_{S\leftarrow T} = \begin{bmatrix} 1 & 0 & 1\\ 0 & -1 & 1\\ 0 & 2 & 0 \end{bmatrix}$.
- 10. P_2 has basis $S = \{1, t, t^2 + t 2\}$. Find a basis T for P_2 such that the transition matrix from T to S is $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \end{bmatrix}$.

(c) Let
$$\mathbf{v} = \begin{bmatrix} 4\\4\\4\\4 \end{bmatrix}$$
. Find $[\mathbf{v}]_S$ and $[\mathbf{v}]_T$.

(d) Confirm that
$$[\mathbf{v}]_S = P_{S \leftarrow T}[\mathbf{v}]_T$$
 and $[\mathbf{v}]_T = Q_{T \leftarrow S}[\mathbf{v}]_S$

- 12. Let A be an $n \times n$ matrix. Let $S = \{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ be a basis for \mathbb{R}^n and let $T = \{A\mathbf{v_1}, A\mathbf{v_2}, ..., A\mathbf{v_n}\}.$
 - (a) Prove that if A is invertible, then T is linearly independent.
 - (b) Prove that for any \mathbf{v} in \mathbb{R}^n , the *n*-vector $A\mathbf{v}$ is in the column space of A.
 - (c) Prove that if the rank of A is less than n, then T does not span \mathbb{R}^n .
 - (d) Use the previous parts to show that T is a basis for \mathbb{R}^n if and only if A has rank n.
- 13. Let A be a 3×6 matrix.
 - (a) What are the possible values for the rank of A?
 - (b) What can you say about the nullity of A?
 - (c) Suppose that the rank of A is 3. Are the rows of A linearly independent? Are the columns of A linearly independent?

14. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ -2 & -4 & 1 & 1 \end{bmatrix}$$
.

- (a) Find the rank and nullity of A.
- (b) Find a basis for the row space of A.
- (c) Find a basis for the column space of A.
- (d) Find a basis for the null space of A.