
Review for Exam 2 Solutions

Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on
the exam as it appears in the textbook.

1. Determine if the following sets V together with operations ⊕ and � are vector
spaces. Either show that Definition 4.4 is satisfied or determine which properties
of Definition 4.4 fail to hold.

(a) V = R with u⊕ v = uv and c� u = c + u.

V is closed under ⊕ and � and satisfies properties 1-3 of the definition but
fails properties 4-8.

Closed under ⊕ and �: the product of any two real numbers is a real
number and the sum of any two real numbers is a real number.

Properties 1 and 2: These hold because they hold for multiplication of real
numbers.

Property 3: The number 1 plays the role of the zero vector because u⊕1 =
u for all u ∈ V .

Property 4: Because 1 is the zero vector, the negative of a vector u will be
some a ∈ V such that u⊕a = 1 so we would need a = 1/u. This property
fails because 0 is in V but 1/0 is not defined.

Property 5: c � (u ⊕ v) = c � (uv) = c + uv but c � u ⊕ c � v =
(c + u)⊕ (c + v) = (c + u)(c + v) so these are not equal.

Property 6: (c + d) � u = c + d + u and c � u ⊕ d � u = (c + u)(d + u)
which are not equal.

Property 7: c� (d� u) = c + d + u and (cd)� u = cd + u which are not
equal

Property 8: 1� u = 1 + u 6= u

(b) V = P2 with p(t)⊕ q(t) = p′(t)q′(t) and c� p(t) = cp(t).

This is closed under ⊕ and � and satisfied properties 1, 7, and 8 but fails
properties 2-6.

Closed under ⊕ and �: If p(t) and q(t) have degree at most 2, then their
derivatives have degree at most 1 so the product of their derivatives has
degree at most 2 and thus p(t)⊕ q(t) = p′(t)q′(t) is also in P2. Also, if p(t)
has degree at most 2, so does c� p(t) = cp(t).
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Property 1: p(t) ⊕ q(t) = p′(t)q′(t) = q′(t)p′(t) = q(t) ⊕ p(t) so this is
satisfied.

Property 2: p(t) ⊕ (q(t) ⊕ r(t)) = p(t) ⊕ q′(t)r′(t) = p′(t)(q′(t)r′(t))′ =
p′(t)(q′(t)r′′(t) + q′′(t)r′(t)) and (p(t) ⊕ q(t)) ⊕ r(t) = p′(t)q′(t) ⊕ r(t) =
(p′(t)q′′(t) + p′′(t)q′(t))r′(t) so these are not equal.

Property 3: There is no polynomial e(t) such that p(t)⊕ e(t) = p(t) for all
p(t). For example, take p(t) = 1 (the constant function). Then p′(t) = 0
so p(t) ⊕ e(t) = 0 and is never equal to p(t) no matter what we pick for
e(t). So there is no zero element and this condition fails.

Property 4: This condition automatically fails since there is no zero ele-
ment.

Property 5: c� (p(t)⊕ q(t)) = c� p′(t)q′(t) = cp′(t)q′(t) and c� p(t)⊕ c�
q(t) = cp(t)⊕ cq(t) = (cp(t))′(cq(t))′ = c2p′(t)q′(t) so these are not equal.

Property 6: (c+d)�p(t) = (c+d)p(t) and c�p(t)⊕d�p(t) = cp(t)⊕dp(t) =
cd(p′(t))2 so these are not equal.

Property 7: c�(d�p(t)) = c�dp(t) = cdp(t) = (cd)�p(t) so this condition
is satisfied.

Property 8: 1� p(t) = p(t) so this condition is satisfied.

(c) V the set with two elements {v1,v2} where v1 ⊕ v1 = v2 ⊕ v2 = v1 and
v1 ⊕ v2 = v2 ⊕ v1 = v2 and c� v1 = c� v2 = v1.

This is closed under ⊕ and � and satisfies properties 1-7 of the definition
but fails property 8.

Closed under ⊕ and �: the sum of any two elements of the set is also an
element of the set and the scalar multiple is always v1 which is in the set.

Property 1: ⊕ is defined to have v1 ⊕ v2 = v2 ⊕ v1 so this holds.

Property 2: Clearly this holds if all three vectors are the same, so we need
to consider the cases where the three vectors are not all the same. If you
add two v1’s and one v2 you always get v2, for example (v1 ⊕ v1)⊕ v2 =
v1 ⊕ v2 = v2 and v1 ⊕ (v1 ⊕ v2) = v1 ⊕ v2 = v2. If you add one v1 and
two v2’s you always get v1, for example (v1 ⊕ v2) ⊕ v2 = v2 ⊕ v2 = v1

and v1 ⊕ (v2 ⊕ v2) = v1 ⊕ v1 = v1. This property always holds.

Property 3: The vector v1 is the zero vector.

Property 4: Each element is its own negative since when you add either
one to itself you get v1 which is the zero vector.

Property 5: Scalar multiplication by c always gives you v1 so for any
vectors u,v, c� (u⊕ v) = v1 and c� u⊕ c� v = v1 ⊕ v1 = v1 so these
are equal.
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Property 6: (c + d)� u = v1 and c� u⊕ d� u = v1 ⊕ v1 = v1 which are
equal.

Property 7: c� (d� u) = c� v1 = v1 and (cd)� u = v1 which are equal

Property 8: 1� u = v1 which is not equal to u if u = v2.

(d) V = R with u⊕ v = u + v + 2 and c� u = c(u + 2)− 2.

This is a vector space.

Closed under ⊕ and �: The result of either of these operations is a real
number.

Property 1: u⊕ v = u + v + 2 = v + u + 2 = v ⊕ u so this is satisfied.

Property 2: u⊕(v⊕w) = u⊕(v+w+2) = u+(v+w+2)+2 = u+v+w+4
and (u⊕v)⊕w = (u+v+ 2)⊕w = (u+v+ 2) +w+ 2 = u+v+w+ 4
so this is satisfied.

Property 3: The zero vector is −2 since u⊕−2 = u+ (−2) + 2 = u for all
u.

Property 4: The negative of a vector u is (−1)(u+4) since u⊕(−1)(u+4) =
u + (−1)(u + 4) + 2 = −2 and −2 is the zero vector.

Property 5: c�(u⊕v) = c�(u+v+2) = c(u+v+2+2)−2 = cu+cv+4c−2
and c � u ⊕ c � v = (c(u + 2) − 2) ⊕ (c(v + 2) − 2) = (c(u + 2) − 2) +
(c(v + 2)− 2) + 2 = cu + cv + 4c− 2 so these are equal.

Property 6: (c+d)�u = (c+d)(u+2)−2 and c�u⊕d�u = (c(u+2)−
2)⊕ (d(u+ 2)−2) = (c(u+ 2)−2) + (d(u+ 2)−2) + 2 = (c+d)(u+ 2)−2
so these are equal.

Property 7: c� (d� u) = c� (d(u + 2)− 2) = c(d(u + 2)− 2 + 2)− 2 =
cd(u + 2)− 2 = (cd)⊕ u

Property 8: 1� u = 1(u + 2)− 2 = u.

2. Let A be a fixed m× n matrix and let V be the set of all vectors b ∈ Rm such
that Ax = b is a consistent linear system. Is V a subspace of Rm?

This is a subspace of Rm. It is nonempty as 0 is in the set because Ax = 0
is consistent (it has at least the trivial solution). If b1,b2 are in this set then
the systems Ax = b1 and Ax = b2 both have solutions. Let x1 and x2 be
solutions to these systems respectively, so Ax1 = b1 and Ax2 = b2. We need
to check if Ax = b1 + b2 is a consistent linear system. It will be consistent as
A(x1 + x2) = Ax1 + Ax2 = b1 + b2 so x1 + x2 is a solution. Similarly, for any
real number r the system Ax = rb1 will have solution rx1 so rb1 will also be
in the set.

3. Determine if W is a subspace of V . If it is, find a basis for W and dimW .
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(a) V = R4, W = {
[
a b c d

]
|ab = cd}

This is not a subspace. It is closed under multiplication but it is not closed
under addition. For example,

[
1 0 0 1

]
and

[
0 1 0 1

]
are both in V

but their sum
[
1 1 0 2

]
is not in V .

(b) V = P2, let W be the set of all polynomials p(t) in P2 such that p(1) = 0.

This is a subspace. It is nonempty - it contains the constant zero poly-
nomial. It is closed under addition since if p(1) = 0 and q(1) = 0 then
(p + q)(1) = p(1) + q(1) = 0 and it is closed under scalar multiplication
because if p(1) = 0 and r is a real number then (rp)(1) = rp(1) = 0.

If p(t) is in W , then it looks like p(t) = at2 + bt + c and 0 = p(1) =
a + b + c. Solving for c, we get that W is all polynomials of the form
at2 + bt− (a+ b) = a(t2− 1) + b(t− 1). The set {t2− 1, t− 1} is therefore
a spanning set for W and it is a linearly independent set so it is a basis.
The dimension of the space is 2.

Note: Some other correct bases for this subspace are {−t2 + t,−t2 + 1}
and {t2− t,−t+ 1}. These are the bases you’d get by solving a+ b+ c = 0
for a or b.

(c) V = P2, let W be the set of all polynomials p(t) in P2 such that p(0) = 1.

This is not a subspace. These are polynomials with constant term 1. This
set is not closed under addition since the sum of any two polynomials
with constant term 1 has constant term 2 and it is not closed under scalar
multiplication because if p(0) = 1 then (rp)(0) = rp(0) = r.

(d) V = M22, let W be the set of matrices A such that A

[
1 1
1 1

]
=

[
1 1
1 1

]
A.

This is a subspace. Denote the all ones matrix as J =

[
1 1
1 1

]
. The set

W is nonempty as it contains the identity matrix and the zero matrix
and J itself. If A1, A2 are in W then A1J = JA1 and A2J = JA2 so
(A1 + A2)J = A1J + A2J = JA1 + JA2 = J(A1 + A2) so A1 + A2 is also
in W (this shows W is closed under addition). If A is in W and r is a real
number then (rA)J = rAJ = rJA = J(rA) so rA is also in W (this shows
W is closed under scalar multiplication).

Suppose A =

[
a b
c d

]
is a 2 × 2 matrix. Then JA =

[
1 1
1 1

] [
a b
c d

]
=[

a + c b + d
a + c b + d

]
and AJ =

[
a b
c d

] [
1 1
1 1

]
=

[
a + b a + b
c + d c + d

]
. The matrix A
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is in W if and only if AJ = JA which happens if and only if a = d and

b = c. The set W is therefore all 2 × 2 matrices of the form

[
a b
b a

]
=

a

[
1 0
0 1

]
+ b

[
0 1
1 0

]
. The set

{[
1 0
0 1

]
,

[
0 1
1 0

]}
spans W and is linearly

independent so it is a basis for W . The dimension of W is 2.

4. Let U and W be subspaces of a vector space V . Let U + W be the set of all
vectors in V that have the form u + w for some u in U and w in W .

(a) Show that U + W is a subspace of V .

The set U + W is nonempty - in fact it contains both U and W since
both spaces contain 0. To check if U + W is closed under addition, take
v1,v2 to be any vectors in U + W . They can be written as v1 = u1 + w1

and v2 = u2 + w2 for some u1,u2 in U and w1,w2 in W . Their sum
is equal to v1 + v2 = u1 + w1 + u2 + w2 = (u1 + u2) + (w1 + w2).
U and W are subspaces so they are closed under addition so u1 + u2 is
in U and w1 + w2 is in W . We have therefore written v1 + v2 as the
sum of a vector in U and a vector in W so v1 + v2 is in U + W . This
shows that U + W is closed under addition. Next check that U + W is
closed under scalar multiplication. If v is in U + W then v = u + w for
some u in U and w in W . If r is a real number, then rv = ru + rw. U
and W are closed under scalar multiplication so ru is in U and rw is in
W . We have therefore written rv as the sum of a vector in U and a vec-
tor in W so rv is in U+W and U+W is closed under scalar multiplication.

(b) Show that dimU + W ≤ dimU + dimW .

Suppose dimU = n and dimW = m. Let S = {u1,u2, ...,un} be a
basis for U and let T = {w1,w2, ...,wm}. Take R to be the set R =
{u1,u2, ...,un,w1,w2, ...,wm}. We will show that R is a spanning set for
U+W . Any vector in U+W can be written in the from u+w for some u in
U and w in W . As S is a basis for U , we can write u as a linear combination
of the ui and similarly we can write w as a linear combination of the wi so
any vector in U +W can be written as a linear combination of the vectors
in R. It follows that R is a spanning set for U + W so R contains a basis
for U+W . The size of R is n+m so dimU+W ≤ n+m = dimU+dimW .

Note: The above proof assumes that U and W have finite bases, but the
statement is true even if the spaces are the zero vector space or infinite
dimensional. If one of the spaces was the zero vector space, say U , then
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U+W would be equal to W and the statement dimU+W ≤ dimU+dimW
would become dimW ≤ 0 + dimW which is clearly true. If one or both
of the spaces was infinite dimensional, then U + W would also have to
be infinite dimensional since U and W are both subspaces of U + W .
(Recall that the subspaces of finite dimensional vector spaces are all finite
dimensional of dimension less than or equal to the original space, see hw
7).

5. For each set S, determine if S contains a basis for R3, is contained in a basis
for R3, both, or neither.

(a) S =


1

2
3

 ,

4
5
6


Contained in a basis. It is linearly independent so it must be contained in
a basis and it is too small to contain a basis.

(b) S =


1

2
3

 ,

4
5
6

 ,

0
0
1

 ,

1
0
0


Contains a basis. This set spans R3 so it contains a basis but it is too big
to be contained in a basis.

(c) S =


1

2
3

 ,

4
5
6

 ,

3
3
0


Both. This set is both linearly independent and spans R3 so it is a basis
and therefore both contains and is contained in a basis.

(d) S =


1

2
3

 ,

4
5
6

 ,

3
3
3


Neither. This set is not linearly independent (the last vector is the second
minus the first) and its span has dimension 2 so is not all of R3. Since it is
not linearly independent it cannot be contained in a basis and it does not
span so it cannot contain a basis.

(e) S =


1

2
3

 ,

1
0
0

 ,

0
4
6

 ,

3
2
3


Neither. This set is not linearly independent and does not span R3.
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6. Find a basis for span S where S is the following subset of M22.

S =

{[
1 1
0 −1

]
,

[
0 1
2 1

]
,

[
1 2
2 0

]
,

[
1 0
1 −1

]
,

[
−1 −5
1 0

]}
We take a linear combination and set it equal to 0 as follows:

a

[
1 1
0 −1

]
+ b

[
0 1
2 1

]
+ c

[
1 2
2 0

]
+ d

[
1 0
1 −1

]
+ e

[
−1 −5
1 0

]
=

[
0 0
0 0

]
This is the same as

[
a + c + d− e a + b + 2c− 5e

2b + 2c + d + e −a + b− d

]
=

[
0 0
0 0

]
which gives us

the linear system a + c + d − e = 0, a + b + 2c − 5e = 0, 2b + 2c + d + e =

0,−a+b−d = 0. This has coefficient matrix


1 0 1 1 −1
1 1 2 0 −5
0 2 2 1 1
−1 1 0 −1 0

. Doing row

operations gets REF of


1 0 1 1 −1
0 1 1 −1 −4
0 0 0 1 3
0 0 0 0 0

. The leading ones are in columns

1,2, and 4 so we can take the basis to be the first, second, and fourth elements

of S. The basis we get is

{[
1 1
0 −1

]
,

[
0 1
2 1

]
,

[
1 0
1 −1

]}
.

7. Determine if the statement is true or false. If it is true, give a proof. If it is
false, find a counterexample.

(a) If V is a nonzero vector space, then V contains infinitely many vectors.

True. If V is nonzero, it contains a vector v 6= 0. V must be closed under
scalar multiplication so V also contains all scalar multiples rv where r is a
real number. If any two scalar multiples rv and sv are equal, then rv = sv
so (r− s)v = 0 and as v 6= 0, this forces r = s. This shows that the scalar
multiples of v are all distinct. There are infinitely many real numbers, so
there are also infinitely many scalar multiples of v and V must contain
infinitely vectors. Note that V may have a finite basis, but V itself must
contain infinitely many vectors.

(b) If V has basis S and W is a subspace of V , then there exists a set T con-
tained in S which is a basis for W .

False. For example take V = R2, S =

{[
1
0

]
,

[
0
1

]}
and W =

{[
x
x

]}
.

Then S is a basis for V and W is a subspace of V . Note that W is 1-
dimensional so any basis for W consists of exactly one vector. However S
cannot contain a basis for W since the vectors in S are not in W .
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(c) If S = {v1,v2, ...,vk} is a set of linearly independent vectors in a vec-
tor space V and w is a nonzero vector in V then the set {v1 + w,v2 +
w, ...,vk + w} is also linearly independent.

False. For example, we could take w = −v1. This is nonzero since v1 is in
S which is linearly independent, but the new set will contain 0 so it will
be linearly dependent.

(d) If two matrices have the same RREF, then they have the same row space.

True. Any two matrices with the same RREF must be row equivalent and
any two row equivalent matrices have the same row space (see section 4.9).

(e) If two matrices have the same RREF, then they have the same column
space.

False. For example, the matrices

[
1 1
1 1

]
and

[
1 1
2 2

]
both have RREF[

1 1
0 0

]
but their column spaces are span

{[
1
1

]}
and span

{[
1
2

]}
which

are not the same.

8. Let W be the following subspace of M23.

W =

{[
a b b− c

a + b 2c c

]}
Find a basis for W and dimW .

We can rewrite W as W =

{
a

[
1 0 0
1 0 0

]
+ b

[
0 1 1
1 0 0

]
+ c

[
0 0 −1
0 2 1

]}
=

span

{[
1 0 0
1 0 0

]
,

[
0 1 1
1 0 0

]
,

[
0 0 −1
0 2 1

]}
. These three elements span W . They

are also linearly independent, so we get that

{[
1 0 0
1 0 0

]
,

[
0 1 1
1 0 0

]
,

[
0 0 −1
0 2 1

]}
is a basis for W . This set has size 3, so dimW = 3.

9. Let V be a 3-dimensional vector space with bases S and T . Let v be a vector

such that [v]T =

 1
2
3

. Find [v]S if PS←T =

 1 0 1
0 −1 1
0 2 0

.

Using the formula that [v]S = PS←T [v]T we get that [v]S =

1 0 1
0 −1 1
0 2 0

1
2
3

 =
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4
1
4

.

10. P2 has basis S = {1, t, t2 + t−2}. Find a basis T for P2 such that the transition

matrix from T to S is

 1 2 0
0 1 0
1 3 −1

.

Let T = {w1,w2,w3}. The transition matrix has i-th column equal to [wi]S.

Hence [w1]S =

1
0
1

 so w1 = 1(1) + 0(t) + 1(t2 + t − 2) = t2 + t − 1. Similarly

w2 = 2(1)+1(t)+3(t2+t−2) = 3t2+4t−4 and w3 = 0(1)+0(t)−1(t2+t−2) =
−t2 − t + 2 so T = {t2 + t− 1, 3t2 + 4t− 4,−t2 − t + 2}.

11. Let V = R4 and let S and T be the bases S =




1
0
0
0

 ,


0
2
0
0

 ,


0
0
3
0

 ,


0
0
0
4




and T =




1
0
0
0

 ,


1
2
0
0

 ,


1
2
3
0

 ,


1
2
3
4


.

(a) Find QT←S and PS←T .

Let S = {v1,v2,v3,v4} and T = {w1,w2,w3,w4}. We can find PS←T by
taking the matrix [v1v2v3v4 : w1w2w3w4] and doing row operations to get

the identity on the left. So we have


1 0 0 0 1 1 1 1
0 2 0 0 0 2 2 2
0 0 3 0 0 0 3 3
0 0 0 4 0 0 0 4

. The row

operations (1/2)r2 → r2, (1/3)r3 → r3, (1/4)r4 → r4 give us the matrix
1 0 0 0 1 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1

 so PS←T =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

.

We do a similar process to get QT←S. Start with


1 1 1 1 1 0 0 0
0 2 2 2 0 2 0 0
0 0 3 3 0 0 3 0
0 0 0 4 0 0 0 4

.

Do the row operations (1/2)r2 → r2, (1/3)r3 → r3, (1/4)r4 → r4 then r1 −
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r2 → r1, r2−r3 → r2, r3−r4 → r4 to get


1 0 0 0 1 −1 0 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 0 1


so QT←S =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

.

(b) Compute QT←SPS←T .

These are inverses, so their product is I4, the 4× 4 identity.

(c) Let v =


4
4
4
4

. Find [v]S and [v]T .

The vector [v]S will be the solution to the system


1 0 0 0 4
0 2 0 0 4
0 0 3 0 4
0 0 0 4 4

 so

[v]S =


4
2

4/3
1

.

The vector [v]T will be the solution to the system


1 1 1 1 4
0 2 2 2 4
0 0 3 3 4
0 0 0 4 4

 so

[v]T =


2

2/3
1/3
1

.

(d) Confirm that [v]S = PS←T [v]T and [v]T = QT←S[v]S.

PS←T [v]T =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




2
2/3
1/3
1

 =


4
2

4/3
1

 = [v]S

QT←S[v]S =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1




4
2

4/3
1

 =


2

2/3
1/3
1

 = [v]T
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12. Let A be an n × n matrix. Let S = {v1,v2, ...,vn} be a basis for Rn and let
T = {Av1, Av2, ..., Avn}.

(a) Prove that if A is invertible, then T is linearly independent.

To show that T is linearly independent, take a linear combination of the
vectors in T and set it equal to 0. This gives us the equation a1Av1 +
a2Av2 + ... + anAvn = 0 which is the same as A(a1v1) + A(a2v2) + ... +
A(anvn) = 0. We need to prove that all the ai must equal 0. As A is in-
vertible, we can multiply both sides of this equation by A−1 on the left to
get A−1A(a1v1)+A−1A(a2v2)+ ...+A−1A(anvn) = A−10 which simplifies
to a1v1 + a2v2 + ... + anvn = 0. By the linear independence of S, all ai
must equal 0.

(b) Prove that for any v in Rn, the n-vector Av is in the column space of A.

Let v =


a1
a2
...
an

 and denote the columns of A as c1, c2, ..., cn. Then Av =

A


a1
a2
...
an

 = a1c1 +a2c2 + ...+ancn. We see that Av is a linear combination

of the columns of A so it is in the column space of A.

(c) Prove that if the rank of A is less than n, then T does not span Rn.

By part (b), all the vectors in T are contained in the column space of A
and hence span T is contained in the column space of A. If the rank of
A is less than n, then the dimension of the column space of A is less than
n. As span T is contained in the column space of A, it also has dimension
less than n so span T cannot be all of Rn.

(d) Use the previous parts to show that T is a basis for Rn if and only if A
has rank n.

If A has rank n, then A is invertible. By part (a), T is linearly independent
and it consists of n vectors in Rn so T must be a basis for Rn. If A does
not have rank n, then it must have rank less than n. By part (b), T would
not span so T would not be a basis.
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13. Let A be a 3× 6 matrix.

(a) What are the possible values for the rank of A?

The rank can be 0, 1, 2, 3. It cannot be any larger because the dimension
of the row space cannot be larger than 3 since there are three rows.

(b) What can you say about the nullity of A?

The nullity is equal to the number of columns, which is 6, minus the rank.
The possible values for rank are 0, 1, 2, 3 so the possible values for the
nullity are 6, 5, 4, 3.

(c) Suppose that the rank of A is 3. Are the rows of A linearly independent?
Are the columns of A linearly independent?

If the rank is 3 then both the row and column spaces have dimension 3.
There are 3 rows and their span (the row space) is dimension 3 so they
must be linearly independent. There are 6 columns and the dimension of
their span is 3 so they are not linearly independent.

14. Let A =

 1 2 0 1
0 0 1 3
−2 −4 1 1

.

(a) Find the rank and nullity of A.

All four parts of this problem can be done by first finding REF or RREF
of A. Doing the row operations r3 + 2r1 → r3, r3 − r2 → r3 gives us the

REF of A which is

1 2 0 1
0 0 1 3
0 0 0 0

. In this case it is also the RREF of A.

There are two columns containing leading ones (1 and 3) so the rank is 2.
There are two columns which do not contain leading ones (2 and 4) so the
nullity is 2.

(b) Find a basis for the row space of A.

The nonzero rows in REF of A are a basis for the row space of A so a basis
is
{[

1 2 0 1
]
,
[
0 0 1 3

]}
.

(c) Find a basis for the column space of A.

The column vectors of A corresponding to the columns of REF with lead-
ing ones (1 and 3) are a basis for the column space so the first and
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third columns of A are a basis for the column space of A. The basis

is


 1

0
−2

 ,

0
1
1

.

(d) Find a basis for the null space of A.

The null space is the set of solutions to Ax = 0. If we use the vari-
ables x, y, z, w then we see from the REF of A that columns 2 and 4
do not contain leading ones so the variables y, w can be any real num-
bers and z = −3w, x = −2y − w so the null space is all vectors of

the form


−2y − w

y
−3w
w

 = y


−2
1
0
0

 + w


−1
0
−3
1

. A basis for this space is



−2
1
0
0

 ,


−1
0
−3
1


.

13


