Review for Exam 1

1. Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{ccc}-4 & 1 & 1 \\ 3 & 1 & 1\end{array}\right], C=\left[\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right]$.

Compute $D=A B^{T}+2 C^{2}$. Which of the following terms describe D : diagonal, scalar, upper triangular, lower triangular, symmetric, skew symmetric, invertible.
Circle all (if any) that apply.
2. Determine if each statement is true or false. If it is true give a proof. If it is false find a counterexample.
(a) If A is a scalar $n \times n$ matrix, then $A B=B A$ for all $n \times n$ matrices B.
(b) If A is an $n \times n$ matrix and $A^{k}=I_{n}$ for some positive integer k, then A is invertible.
(c) If A is an invertible $n \times n$ matrix then $A^{k}=I_{n}$ for some positive integer k.
(d) An upper triangular matrix A is invertible if and only if all the entries on the diagonal of A are nonzero.
(e) If A is an $n \times n$ matrix with $\operatorname{det}(A)=3$, then $\operatorname{det}\left(A^{2}-A\right)=6$.
3. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Determine if A is a linear combination of the matrices B, C, D.
(a) $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], C=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right], D=\left[\begin{array}{ll}0 & 0 \\ 1 & 4\end{array}\right]$
(b) $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], D=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
4. Let A and B be $n \times n$ matrices such that $B^{T} A^{2}=I$.
(a) Show that A is invertible and find A^{-1}.
(b) Determine if $A^{T} B-A^{-1}$ is symmetric, skew symmetric, or neither.
5. The product of any two upper triangular $n \times n$ matrices is upper triangular. Prove this fact for 3×3 matrices.
6. Let $A^{-1}=\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Find all solutions to the linear system $A^{2} \mathbf{x}=\mathbf{b}$.
7. Find all a for which the linear system

$$
\begin{gathered}
x+y-z=2 \\
x+2 y+z=3 \\
x+y+\left(a^{2}-5\right) z=a
\end{gathered}
$$

has no solutions, one solution, and infinitely many solutions.
8. Find the augmented matrix of each system of linear equations. Use Gaussian elimination or Gauss-Jordan reduction to solve the linear system.
(a) $y+3 z=-10$
$x+2 z=11$
$2 x-y+7 z=14$
(b) $x+3 y-z+w=5$
$x-6 y+2 z=1$
$2 x+w=6$
(c) $2 x+3 y+z-w=1$
$x-y+w=2$
$4 x+y+z+w=4$
$6 x+3 y-7 z-w=12$
9. Find the inverse of A or show that A is not invertible.
(a) $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 0 & 3 \\ 3 & 4 & 5\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}1 & 7 & 5 \\ 3 & -1 & 2 \\ 5 & 13 & 12\end{array}\right]$
(c) $A=\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 2 & 0 & 0 & 1\end{array}\right]$
10. Let A be an $n \times n$ matrix such that the n-th row is a linear combination of rows 1 through $n-1$. Prove that A is not invertible.
11. For what value or values of k is the matrix $A=\left[\begin{array}{ccc}2 & 1 & 4 \\ 1 & -2 & 1 \\ 2 & 6 & k\end{array}\right]$ invertible?
12. Let A be a 4×4 matrix with $\operatorname{det}(A)=-4$. What is the RREF of A ? How many solutions does the homogeneous system $A \mathrm{x}=\mathbf{0}$ have?
13. Suppose A is a 3×3 matrix with $\operatorname{det}(A)=6$. Compute the determinant of the following matrices.
(a) A^{3}
(b) $2 A$
(c) $\left(A^{T}\right)^{-1}$
14. Suppose A and B are invertible 3×3 matrices and $A B^{T}=2 B^{2}$. If $\operatorname{det}(A)=5$, what is $\operatorname{det}(B)$?
15. Compute the determinant of A.
(a) $A=\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}0 & 1 & -2 \\ 5 & 0 & 2 \\ 0 & -1 & 3\end{array}\right]$
(c) $A=\left[\begin{array}{llll}1 & 0 & 0 & 6 \\ 0 & 3 & 4 & 7 \\ 0 & 0 & 5 & 8 \\ 2 & 0 & 0 & 9\end{array}\right]$
16. The matrix $A=\left[\begin{array}{cccc}1 & 2 & 6 & 8 \\ 1 & 3 & 0 & 9 \\ 1 & 4 & 0 & 10 \\ 1 & 5 & 7 & 0\end{array}\right]$ is invertible. Find all solutions to the following linear systems.
(a) $A^{-1} \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{c}2 \\ 1 \\ -1 \\ 0\end{array}\right]$
(b) $A \mathrm{x}=\mathbf{0}$

