Review for Exam 1

- 1. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -4 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$. Compute $D = AB^T + 2C^2$. Which of the following terms describe D: diagonal, scalar, upper triangular, lower triangular, symmetric, skew symmetric, invertible. Circle all (if any) that apply.
- 2. Determine if each statement is true or false. If it is true give a proof. If it is false find a counterexample.
 - (a) If A is a scalar $n \times n$ matrix, then AB = BA for all $n \times n$ matrices B.
 - (b) If A is an $n \times n$ matrix and $A^k = I_n$ for some positive integer k, then A is invertible.
 - (c) If A is an invertible $n \times n$ matrix then $A^k = I_n$ for some positive integer k.
 - (d) An upper triangular matrix A is invertible if and only if all the entries on the diagonal of A are nonzero.
 - (e) If A is an $n \times n$ matrix with det(A) = 3, then $det(A^2 A) = 6$.
- 3. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Determine if A is a linear combination of the matrices B, C, D.

(a)
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 1 & 4 \end{bmatrix}$$

(b) $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, D = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

- 4. Let A and B be $n \times n$ matrices such that $B^T A^2 = I$.
 - (a) Show that A is invertible and find A^{-1} .
 - (b) Determine if $A^T B A^{-1}$ is symmetric, skew symmetric, or neither.
- 5. The product of any two upper triangular $n \times n$ matrices is upper triangular. Prove this fact for 3×3 matrices.
- 6. Let $A^{-1} = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Find all solutions to the linear system $A^2 \mathbf{x} = \mathbf{b}$.

7. Find all a for which the linear system

$$x + y - z = 2$$
$$x + 2y + z = 3$$
$$x + y + (a2 - 5)z = a$$

has no solutions, one solution, and infinitely many solutions.

8. Find the augmented matrix of each system of linear equations. Use Gaussian elimination or Gauss-Jordan reduction to solve the linear system.

(a)
$$y + 3z = -10$$

 $x + 2z = 11$
 $2x - y + 7z = 14$
(b) $x + 3y - z + w = 5$
 $x - 6y + 2z = 1$
 $2x + w = 6$
(c) $2x + 3y + z - w = 1$
 $x - y + w = 2$
 $4x + y + z + w = 4$
 $6x + 3y - 7z - w = 1$

9. Find the inverse of A or show that A is not invertible.

12

(a)
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 3 \\ 3 & 4 & 5 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & 7 & 5 \\ 3 & -1 & 2 \\ 5 & 13 & 12 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 2 & 0 & 0 & 1 \end{bmatrix}$

- 10. Let A be an $n \times n$ matrix such that the *n*-th row is a linear combination of rows 1 through n 1. Prove that A is not invertible.
- 11. For what value or values of k is the matrix $A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & -2 & 1 \\ 2 & 6 & k \end{bmatrix}$ invertible?
- 12. Let A be a 4×4 matrix with det(A) = -4. What is the RREF of A? How many solutions does the homogeneous system $A\mathbf{x} = \mathbf{0}$ have?

- 13. Suppose A is a 3×3 matrix with det(A) = 6. Compute the determinant of the following matrices.
 - (a) A^3
 - (b) 2A
 - (c) $(A^T)^{-1}$
- 14. Suppose A and B are invertible 3×3 matrices and $AB^T = 2B^2$. If det(A) = 5, what is det(B)?
- 15. Compute the determinant of A.

(a)
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 0 & 1 & -2 \\ 5 & 0 & 2 \\ 0 & -1 & 3 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 3 & 4 & 7 \\ 0 & 0 & 5 & 8 \\ 2 & 0 & 0 & 9 \end{bmatrix}$

16. The matrix $A = \begin{bmatrix} 1 & 2 & 6 & 8 \\ 1 & 3 & 0 & 9 \\ 1 & 4 & 0 & 10 \\ 1 & 5 & 7 & 0 \end{bmatrix}$ is invertible. Find all solutions to the follow-

ing linear systems.

(a)
$$A^{-1}\mathbf{x} = \mathbf{b}$$
 where $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}$

(b)
$$A\mathbf{x} = \mathbf{0}$$