Bonus Quiz Solutions

1. Let $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$. Find all eigenvalues of A. For each eigenvalue, find an associated eigenvector.
$\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{cc}\lambda-2 & -1 \\ -3 & \lambda-4\end{array}\right]\right)=(\lambda-2)(\lambda-4)-3=\lambda^{2}-6 \lambda+5=$ $(\lambda-1)(\lambda-5)$. This is 0 when $\lambda=1,5$ so the eigenvalues of A are 1 and 5 .
$\lambda=1$: Here $\lambda I-A=\left[\begin{array}{ll}-1 & -1 \\ -3 & -3\end{array}\right]$ which has RREF $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ so the solutions to $(\lambda I-A) \mathbf{x}=\mathbf{0}$ are all vectors of the form $\left[\begin{array}{c}-b \\ b\end{array}\right]$. The eigenvectors associated with $\lambda=1$ are all vectors of the form $\left[\begin{array}{c}-b \\ b\end{array}\right]$ with $b \neq 0$. For example $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
$\lambda=5$: Here $\lambda I-A=\left[\begin{array}{cc}3 & -1 \\ -3 & 1\end{array}\right]$ so the RREF is $\left[\begin{array}{cc}1 & -1 / 3 \\ 0 & 0\end{array}\right]$. The eigenvectors associated with $\lambda=5$ are all vectors of the form $\left[\begin{array}{c}(1 / 3) b \\ b\end{array}\right]$ with $b \neq 0$. For example, $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
2. Suppose 3 is an eigenvalue of the matrix B and that \mathbf{x} is an eigenvector associated with 3. Prove that \mathbf{x} is also an eigenvector of $B+2 I$. What is the associated eigenvalue?
B has eigenvalue 3 with associated eigenvector \mathbf{x} which means that $\mathbf{x} \neq \mathbf{0}$ and $B \mathbf{x}=3 \mathbf{x}$. Then $(B+2 I) \mathbf{x}=B \mathbf{x}+2 I \mathbf{x}=3 \mathbf{x}+2 \mathbf{x}=5 \mathbf{x}$. As $\mathbf{x} \neq \mathbf{0}$, this shows that \mathbf{x} is an eigenvector of $B+2 I$ with associated eigenvalue 5 .
