Quiz 3 Solutions

1. Determine if the following set is orthogonal, orthonormal, or neither, where the inner product is the dot product on \mathbb{R}^{3}.

$$
\left\{\left[\begin{array}{c}
0 \tag{3pts}\\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]\right\}
$$

This set is neither. The dot product of the first and third vectors is $-1 / \sqrt{3}$ so it is not orthogonal. Note that these vectors are all length 1, but the set is not orthonormal because it is not orthogonal.
2. Let V be an inner product space and let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ be vectors in V. Suppose that $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)=4,\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)=-2$, and $\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}\right)=1$. Let $\mathbf{w}=\mathbf{v}_{\mathbf{1}}-3 \mathbf{v}_{\mathbf{2}}$. Compute $\|\mathbf{w}\|$. (5 pts)
$\|\mathbf{w}\|=\sqrt{(\mathbf{w}, \mathbf{w})}$ so we first compute the inner product of \mathbf{w} with itself. Using the properties of inner products, we get that $(\mathbf{w}, \mathbf{w})=\left(\mathbf{v}_{\mathbf{1}}-3 \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{1}}-3 \mathbf{v}_{\mathbf{2}}\right)=$ $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)-3\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)-3\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{1}}\right)+(-3)^{2}\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}\right)=\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)-6\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)+9\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}\right)=$ $4-6(-2)+9(1)=25$. Then $\|\mathbf{w}\|=\sqrt{25}=5$.
3. If W is a 1-dimensional subspace of \mathbb{R}^{4}, what is the dimension of W^{\perp} ?

Using the formula $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$ we get that $4=1+\operatorname{dim} W^{\perp}$ so $\operatorname{dim} W^{\perp}=3$.

