- Quiz 3
 - 1. Determine if the following set is orthogonal, orthonormal, or neither, where the inner product is the dot product on \mathbb{R}^3 . (3 pts)

ſ	$\begin{bmatrix} 0 \end{bmatrix}$		$\left[\begin{array}{c} 1/\sqrt{2} \end{array} \right]$		$\begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$
ſ	1-1	,		,	$ 1/\sqrt{3} $
l			$\left\lfloor -1/\sqrt{2} \right\rfloor$		$\lfloor 1/\sqrt{3} \rfloor$

2. Let V be an inner product space and let $\mathbf{v_1}, \mathbf{v_2}$ be vectors in V. Suppose that $(\mathbf{v_1}, \mathbf{v_1}) = 4, (\mathbf{v_1}, \mathbf{v_2}) = -2$, and $(\mathbf{v_2}, \mathbf{v_2}) = 1$. Let $\mathbf{w} = \mathbf{v_1} - 3\mathbf{v_2}$. Compute $\|\mathbf{w}\|$. (5 pts)

3. If W is a 1-dimensional subspace of \mathbb{R}^4 , what is the dimension of W^{\perp} ? (2 pts)