Quiz 3

1. Determine if the following set is orthogonal, orthonormal, or neither, where the inner product is the dot product on \mathbb{R}^{3}.

$$
\left\{\left[\begin{array}{c}
0 \tag{3pts}\\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]\right\}
$$

2. Let V be an inner product space and let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ be vectors in V. Suppose that $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)=4,\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)=-2$, and $\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}\right)=1$. Let $\mathbf{w}=\mathbf{v}_{\mathbf{1}}-3 \mathbf{v}_{\mathbf{2}}$. Compute $\|\mathbf{w}\|$. (5 pts)
3. If W is a 1 -dimensional subspace of \mathbb{R}^{4}, what is the dimension of W^{\perp} ?
