Quiz 2

1. Let V be the set of all ordered pairs of real numbers with the operations $(x, y) \oplus (x', y') = (x+x', y+y')$ and $r \odot (x, y) = (0, rxy)$. Check if this satisfies the following property of a vector space: $(c+d) \odot \mathbf{u} = c \odot \mathbf{u} \oplus d \odot \mathbf{v}$ for any \mathbf{u} in V and any real numbers c, d (3 pts)

2. Let A be an $m \times n$ matrix and **b** be a nonzero *m*-vector. Is the set of all solutions to the linear system $A\mathbf{x} = \mathbf{b}$ a subspace of \mathbb{R}^n ? Why or why not? (3 pts)

3. Let
$$S = \left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix} \right\}$$
. Is S a spanning set for \mathbb{R}^3 ? (4 pts)