Quiz 2

1. Let V be the set of all ordered pairs of real numbers with the operations $(x, y) \oplus$ $\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and $r \odot(x, y)=(0, r x y)$. Check if this satisfies the following property of a vector space:
$(c+d) \odot \mathbf{u}=c \odot \mathbf{u} \oplus d \odot \mathbf{v}$ for any \mathbf{u} in V and any real numbers c, d
2. Let A be an $m \times n$ matrix and \mathbf{b} be a nonzero m-vector. Is the set of all solutions to the linear system $A \mathbf{x}=\mathbf{b}$ a subspace of \mathbb{R}^{n} ? Why or why not?
3. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]\right\}$. Is S a spanning set for \mathbb{R}^{3} ?
