Quiz 2 Solutions

1. Let V be the set of all ordered pairs of real numbers with the operations $(x, y) \oplus$ $\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and $r \odot(x, y)=(0, r x y)$. Check if this satisfies the following property of a vector space:
$(c+d) \odot \mathbf{u}=c \odot \mathbf{u} \oplus d \odot \mathbf{u}$ for any \mathbf{u} in V and any real numbers c, d
The elements of V look like (x, y) so replace \mathbf{u} with (x, y) in the above property. The left side is $(c+d) \odot(x, y)=(0,(c+d) x y)$ and the right side is $c \odot(x, y) \oplus d \odot(x, y)=$ $(0, c x y) \oplus(0, d x y)=(0, c x y+d x y)=(0,(c+d) x y)$. These are equal so the property is satisfied.
2. Let A be an $m \times n$ matrix and \mathbf{b} be a nonzero m-vector. Is the set of all solutions to the linear system $A \mathbf{x}=\mathbf{b}$ a subspace of \mathbb{R}^{n} ? Why or why not?
(3 pts)

This is not a subspace. The set of solutions to $A \mathbf{x}=\mathbf{b}$ is contained in \mathbb{R}^{n}, but is not closed under addition or scalar multiplication and could be the empty set. To show it's not closed under addition, let $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$ be two solutions to $A \mathbf{x}=\mathbf{b}$. Then $A\left(\mathbf{x}_{\mathbf{1}}+\mathbf{x}_{\mathbf{2}}\right)=\mathbf{b}+\mathbf{b}=2 \mathbf{b} \neq \mathbf{b}$ as \mathbf{b} is nonzero. To show it is not closed under scalar multiplication, if $\mathbf{x}_{\mathbf{1}}$ is a solution and r is real number, then $A\left(r \mathbf{x}_{\mathbf{1}}\right)=r\left(A \mathbf{x}_{\mathbf{1}}\right)=r \mathbf{b}$. Note: You only need to show that it fails one of the two closure properties. Also, another argument that it is not a subspace would be that $\mathbf{0}$ is not in the set.
3. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]\right\}$. Is S a spanning set for \mathbb{R}^{3} ?

This is not a spanning set. If $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is a vector in \mathbb{R}^{3}, then we want to check if there are constants x, y, z such that $x\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+y\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]+z\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. This is the linear system with augmented matrix $\left[\begin{array}{ccc|c}1 & 2 & -1 & a \\ 1 & 1 & 2 & b \\ 2 & 3 & 1 & c\end{array}\right]$. The row operations $r_{2}-r_{1} \rightarrow$ $r_{2}, r_{3}-2 r_{1} \rightarrow r_{3}, r_{3}-r_{2} \rightarrow r_{3}$ give you the matrix $\left[\begin{array}{ccc|c}1 & 2 & -1 & a \\ 0 & -1 & 3 & b-a \\ 0 & 0 & 0 & c-a-b\end{array}\right]$. We see that if $c-a-b \neq 0$ then there will be no solutions, so the span is not all of \mathbb{R}^{3}. In particular, the span is all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ with $c=a+b$.

