1. Find the reduced row echelon form of the following matrix. Make sure to specify the row operations that you use.
(4 pts)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & -1 & 3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] r_{1} \leftrightarrow r_{2}\left[\begin{array}{cccc}
1 & -1 & 3 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -1 & 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] r_{3}+r_{2} \rightarrow r_{1}\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

2. Find all solutions to each of the following linear systems. Write your answer as a vector.
(a) $\left[\begin{array}{ccc:c}1 & 2 & 0 & -3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 3\end{array}\right]$

This is the system $x+2 y=-3, y-z=2, z=3$. Using backtracking we get $z=3, y=5, x=-13$ so the only solution is $\left[\begin{array}{c}-13 \\ 5 \\ 3\end{array}\right]$.
(b) $\left[\begin{array}{lll:l}1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$

This system has no solutions, the last equation is $0=1$.
(c) $\left[\begin{array}{cccc:c}1 & 4 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Using variables x, y, z, w, there are no leading ones in columns 2 or 4 so the variables y and w can be anything and the others can be solved for in terms of y, w. The system is $x+4 y-2 w=1, z=3$ so we get that $z=3$ and $x=1-4 y+2 w$. The solutions are all vectors of the form $\left[\begin{array}{c}1-4 y+2 w \\ y \\ 3 \\ w\end{array}\right]$ where y, w can be anything.

