1. Find a basis for the subspace of P_{3} spanned by

$$
\left\{t^{3}+t, t-1, t^{3}+1, t^{2}+t, t^{3}+t^{2}+t+1\right\}
$$

Take a linear combination of the vectors and set it equal to zero: $a\left(t^{3}+t\right)+$ $b(t-1)+c\left(t^{3}+1\right)+d\left(t^{2}+t\right)+e\left(t^{3}+t^{2}+t+1\right)=0$. This is equal to $(a+c+e) t^{3}+(d+e) t^{2}+(a+b+d+e) t+(-b+c+e)=0$ so we need $a+c+e=0, d+e=0, a+b+d+e=0,-b+c+e=0$. This is a homogeneous linear system with augmented matrix $\left[\begin{array}{ccccc:c}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0\end{array}\right]$. The row operations $r_{3}-r_{1} \rightarrow r_{3}, r_{4}+r_{3} \rightarrow r_{4}, r_{4}-r_{2} \rightarrow r_{4}, r_{2} \leftrightarrow r_{3}$ will get the following matrix in REF: $\left[\begin{array}{ccccc:c}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$. The leading ones are in columns 1,2 , and 4 so the first, second, and fourth vectors in the set form a basis. The basis we get this way is $\left\{t^{3}+t, t-1, t^{2}+t\right\}$.
2. Let $A=\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 2 & 1 & -1 & 0 \\ 4 & 1 & 1 & 2 \\ -1 & 3 & -3 & 7\end{array}\right]$.
(a) Find a basis for the row space of A which consists of vectors which are row vectors of A.

Since we want the vectors to be row vectors, we can do this by forming the linear combination $a\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right]+b\left[\begin{array}{llll}2 & 1 & -1 & 0\end{array}\right]+c\left[\begin{array}{llll}4 & 1 & 1 & 2\end{array}\right]+$ $d\left[\begin{array}{llll}-1 & 3 & -3 & 7\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$. This is the linear system $a+2 b+4 c-$ $d=0, b+c+3 d=0, a-b+c-3 d=0, a+2 c+7 d=0$. This has $\left[\begin{array}{cccc:c}1 & 2 & 4 & -1 & 0 \\ 0 & 1 & 1 & 3 & 0 \\ 1 & -1 & 1 & -3 & 0 \\ 1 & 0 & 2 & 7 & 0\end{array}\right]$. The REF of this matrix is $\left[\begin{array}{cccc:c}1 & 2 & 4 & -1 & 0 \\ 0 & 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
The leading ones are in columns 1,2 , and 4 so we take basis

$$
\left\{\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
2 & 1 & -1 & 0
\end{array}\right],\left[\begin{array}{llll}
-1 & 3 & -3 & 7
\end{array}\right]\right\} .
$$

(b) Find another basis for the row space of A which consists of vectors that are not row vectors of A.

Another way to find a basis for the row space of A is to take the nonzero rows of REF or RREF of A, as the row operations do not change the row space. The RREF of A is $\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$. This gives us the basis

$$
\left\{\left[\begin{array}{llll}
1 & 0 & 0 & -1
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 4
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 2
\end{array}\right]\right\} .
$$

(c) Is the vector $\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ in the row space of A ?

We can check this by seeing if $\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ is a linear combination of the basis vectors for the row space. We can use either basis, but the basis from (b) will be easier to check. If $a\left[\begin{array}{llll}1 & 0 & 0 & -1\end{array}\right]+b\left[\begin{array}{llll}0 & 1 & 0 & 4\end{array}\right]+$ $c\left[\begin{array}{llll}0 & 0 & 1 & 2\end{array}\right]=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ then $a=1, b=2, c=3,-a+4 b+2 c=4$. This has no solutions so $\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ is not in the row space of A.
3. Let $A=\left[\begin{array}{ccccc}1 & 1 & 5 & 0 & 1 \\ 0 & 0 & 0 & -1 & 3 \\ 2 & 2 & 7 & 3 & -1 \\ 0 & 0 & 1 & -1 & 1\end{array}\right]$.
(a) Find the rank and nullity of A.

We can find the rank and nullity by doing row operations to get to REF or RREF. The row operations $r_{3}-2 r_{1} \rightarrow r_{3},-r_{2} \rightarrow r_{2}, r_{3}+3 r_{4} \rightarrow r_{3}, r_{4} \leftrightarrow$ $r_{2}, r_{3} \leftrightarrow r_{4}$ give the following matrix in REF $\left[\begin{array}{ccccc}1 & 1 & 5 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. There are 3 leading ones, so the rank is 3 . The nullity is the number of columns minus the rank so the nullity is 2 .
(b) Find a basis for the row space of A.

One possible basis is the nonzero rows from REF which is

$$
\left\{\left[\begin{array}{lllll}
1 & 1 & 5 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & -3
\end{array}\right]\right\} .
$$

(c) Find a basis for the column space of A.

The leading ones of REF are in columns $1,3,4$ so columns 1,3 , and 4 of A
will be a basis for the column space. The basis we get is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
0 \\
7 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
3 \\
-1
\end{array}\right]\right\}
$$

(d) Find a basis for the null space of A.

The row operations $r_{2}+r_{3} \rightarrow r_{2}, r_{1}-5 r_{2} \rightarrow r_{1}$ will get the REF matrix from (a) into RREF. The RREF of A is $\left[\begin{array}{ccccc}1 & 1 & 0 & 0 & 11 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Using variables a, b, c, d, e, the solutions to $A \mathbf{x}=\mathbf{0}$ will be that b, e are anything and $d=3 e, c=2 e, a=-b-11 e$ so the solutions are all vectors of the form $\left[\begin{array}{c}-b-11 e \\ b \\ 2 e \\ 3 e \\ e\end{array}\right]=b\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+e\left[\begin{array}{c}-11 \\ 0 \\ 2 \\ 3 \\ 1\end{array}\right]$. This has basis

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-11 \\
0 \\
2 \\
3 \\
1
\end{array}\right]\right\}
$$

4. Let A be a 4×6 matrix with rank 4 .
(a) Find the nullity of A.

The nullity is 2 (the number of columns minus the rank).
(b) How many solutions does $A \mathbf{x}=\mathbf{0}$ have?

The nullity is >0 so there are nontrivial solutions and hence $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions.
(c) Find the dimension of the row space of A.

4
(d) Are the rows of A linearly independent?

Yes. The row space has dimension 4 and is spanned by the 4 rows of A so the rows of A must be a basis for the row space and are linearly independent.
(e) Find the dimension of the column space of A.

4
(f) Are the columns of A linearly independent?

No. There are 6 columns but their span only has dimension 4 .
5. Let A be a 5×3 matrix with rank 3 . Find the RREF of A.

The rank is 3 so there must be 3 leading ones in the RREF of A. As there are only 3 columns, the leading ones must be in the $(1,1),(2,2)$, and $(3,3)$ positions. In RREF, the other entries in a column containing a leading one are all zero, so the RREF of A must be $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
6. Let A be a 3×4 matrix. Write $\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}$ for the rows of A. Suppose we know the following: $\mathbf{r}_{\mathbf{3}} \neq \mathbf{0}, \mathbf{r}_{\mathbf{2}}$ is not a multiple of $\mathbf{r}_{\mathbf{3}}$, and $\mathbf{r}_{\mathbf{1}}$ is contained in $\operatorname{span}\left\{\mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}$. Find the rank and nullity of A.

From the given information, we can find the dimension of the row space. The row space is $\operatorname{span}\left\{\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}$. From the statement $\mathbf{r}_{\mathbf{1}}$ is contained in $\operatorname{span}\left\{\mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}$, we know that the first row is a linear combination of the second and third, so $\operatorname{span}\left\{\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}=\operatorname{span}\left\{\mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}$. The statements $\mathbf{r}_{\mathbf{3}} \neq \mathbf{0}$ and $\mathbf{r}_{\mathbf{2}}$ is not a multiple of $\mathbf{r}_{\mathbf{3}}$ tell us that the set $\left\{\mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}$ is linearly independent. It follows that $\left\{\mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}$ is a basis for the row space of A, so the row space has dimension 2 .
The rank of A is equal to the dimension of the row space so the rank is 2 . The nullity is the number of columns minus the rank, so the nullity is also 2 .
7. Let A be an $m \times n$ matrix with $m \neq n$. Show that either the rows of A are linearly dependent or the columns of A are linearly dependent.

If A has more rows than columns $(m>n)$, then the rows must be linearly dependent since it is impossible to have m linearly independent vectors in \mathbb{R}_{n} when $m>n$. If A has more columns than rows $(n>m)$, then the columns must be linearly dependent because you cannot have n linearly vectors in \mathbb{R}^{m} when $n>m$.

