Homework 9

1. Find a basis for the subspace of P_3 spanned by

$$\{t^{3} + t, t - 1, t^{3} + 1, t^{2} + t, t^{3} + t^{2} + t + 1\}$$

2. Let
$$A = \begin{bmatrix} 2 & 1 & -1 & 0 \\ 4 & 1 & 1 & 2 \\ -1 & 3 & -3 & 7 \end{bmatrix}$$
.

Γ

- (a) Find a basis for the row space of A which consists of vectors which are row vectors of A.
- (b) Find another basis for the row space of A which consists of vectors that are not row vectors of A.
- (c) Is the vector $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$ in the row space of A?

3. Let
$$A = \begin{bmatrix} 1 & 1 & 5 & 0 & 1 \\ 0 & 0 & 0 & -1 & 3 \\ 2 & 2 & 7 & 3 & -1 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix}$$
.

- (a) Find the rank and nullity of A.
- (b) Find a basis for the row space of A.
- (c) Find a basis for the column space of A.
- (d) Find a basis for the null space of A.
- 4. Let A be a 4×6 matrix with rank 4.
 - (a) Find the nullity of A.
 - (b) How many solutions does $A\mathbf{x} = \mathbf{0}$ have?
 - (c) Find the dimension of the row space of A.
 - (d) Are the rows of A linearly independent?
 - (e) Find the dimension of the column space of A.
 - (f) Are the columns of A linearly independent?
- 5. Let A be a 5×3 matrix with rank 3. Find the RREF of A.
- 6. Let A be a 3×4 matrix. Write $\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}$ for the rows of A. Suppose we know the following: $\mathbf{r_3} \neq \mathbf{0}, \mathbf{r_2}$ is not a multiple of $\mathbf{r_3}$, and $\mathbf{r_1}$ is contained in span $\{\mathbf{r_2}, \mathbf{r_3}\}$. Find the rank and nullity of A.
- 7. Let A be an $m \times n$ matrix with $m \neq n$. Show that either the rows of A are linearly dependent or the columns of A are linearly dependent.