1. Find a basis for the subspace of P_{3} spanned by

$$
\left\{t^{3}+t, t-1, t^{3}+1, t^{2}+t, t^{3}+t^{2}+t+1\right\} .
$$

2. Let $A=\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 2 & 1 & -1 & 0 \\ 4 & 1 & 1 & 2 \\ -1 & 3 & -3 & 7\end{array}\right]$.
(a) Find a basis for the row space of A which consists of vectors which are row vectors of A.
(b) Find another basis for the row space of A which consists of vectors that are not row vectors of A.
(c) Is the vector $\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ in the row space of A ?
3. Let $A=\left[\begin{array}{ccccc}1 & 1 & 5 & 0 & 1 \\ 0 & 0 & 0 & -1 & 3 \\ 2 & 2 & 7 & 3 & -1 \\ 0 & 0 & 1 & -1 & 1\end{array}\right]$.
(a) Find the rank and nullity of A.
(b) Find a basis for the row space of A.
(c) Find a basis for the column space of A.
(d) Find a basis for the null space of A.
4. Let A be a 4×6 matrix with rank 4 .
(a) Find the nullity of A.
(b) How many solutions does $A \mathbf{x}=\mathbf{0}$ have?
(c) Find the dimension of the row space of A.
(d) Are the rows of A linearly independent?
(e) Find the dimension of the column space of A.
(f) Are the columns of A linearly independent?
5. Let A be a 5×3 matrix with rank 3 . Find the RREF of A.
6. Let A be a 3×4 matrix. Write $\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}$ for the rows of A. Suppose we know the following: $\mathbf{r}_{\mathbf{3}} \neq \mathbf{0}, \mathbf{r}_{\mathbf{2}}$ is not a multiple of $\mathbf{r}_{\mathbf{3}}$, and $\mathbf{r}_{\mathbf{1}}$ is contained in $\operatorname{span}\left\{\mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{3}}\right\}$. Find the rank and nullity of A.
7. Let A be an $m \times n$ matrix with $m \neq n$. Show that either the rows of A are linearly dependent or the columns of A are linearly dependent.
