1. Find a basis for and the dimension of the null space of $A=\left[\begin{array}{cccc}2 & -2 & 1 & 7 \\ 1 & -1 & 1 & 4 \\ -3 & 3 & 8 & -1 \\ -2 & 2 & 8 & 2\end{array}\right]$. The null space of A is the set of all solutions to $A \mathrm{x}=\mathbf{0}$. The RREF of A is $\left[\begin{array}{cccc}1 & -1 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. The solutions are all vectors of the form $\left[\begin{array}{c}y-3 w \\ y \\ -w \\ w\end{array}\right]$ where y, w can be anything. This can be rewritten as $\left[\begin{array}{c}y-3 w \\ y \\ -w \\ w\end{array}\right]=y\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]+w\left[\begin{array}{c}-3 \\ 0 \\ -1 \\ 1\end{array}\right]$ so the null space is spanned by $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ -1 \\ 1\end{array}\right]\right\}$. These vectors are linearly independent, so this is a basis for the null space. The dimension of the null space is 2 .
2. Let $A=\left[\begin{array}{ccc}1 & -3 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
(a) Find all real numbers λ such that $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has a nontrivial solution. $\lambda I-A=\left[\begin{array}{ccc}\lambda-1 & 3 & 0 \\ 1 & \lambda+1 & 0 \\ 0 & 0 & \lambda-2\end{array}\right]$. The homogeneous linear system $(\lambda I-$ A) $\mathbf{x}=\mathbf{0}$ will have a nontrivial solution if and only if $\operatorname{det}(\lambda I-A)=0$. The determinant is $\operatorname{det}(\lambda I-A)=(\lambda-2)((\lambda-1)(\lambda+1)-3)=(\lambda-2)\left(\lambda^{2}-4\right)=$ $(\lambda-2)^{2}(\lambda+2)$. This is 0 when $\lambda= \pm 2$.
(b) For each λ from part (a), find a basis for the solution space of $(\lambda I-A) \mathbf{x}=$ 0.

If $\lambda=2$, then $(\lambda I-A)=\left[\begin{array}{lll}1 & 3 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$ which has RREF $\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. The null space of this matrix is all vectors of the form $\left[\begin{array}{c}-3 y \\ y \\ z\end{array}\right]=y\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right]+z\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
which has basis $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
If $\lambda=-2$, then $(\lambda I-A)=\left[\begin{array}{ccc}-3 & 3 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -4\end{array}\right]$ which has RREF $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. The null space of this matrix is all vectors of the form $\left[\begin{array}{l}y \\ y \\ 0\end{array}\right]=y\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ which has basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$.
3. Let A be a 3×3 matrix. Find all possible values for the nullity of A if:
(a) $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.

The nullity is 1,2 , or 3 . It cannot be 0 , as the solution space of $A \mathbf{x}=\mathbf{0}$ is not the zero vector space.
(b) The RREF of A has 2 nonzero rows and one zero row.

The nullity is 1 . It is the same as the number of columns without leading ones. There are 2 nonzero rows so there are two leading ones and 3 columns and thus the nullity is 1 .
(c) A is row equivalent to a matrix B with nullity 2 .

The nullity is 2 . If two matrices are row equivalent, then they have the same RREF so they have the same nullity.
(d) A is not the zero matrix.

The nullity is 0,1 , or 2 . The nullity cannot be 3 because this would mean the RREF of A had no leading ones so the RREF of A would be the zero matrix. However the zero matrix is only row equivalent to itself so if A is nonzero then the RREF of A is also nonzero.
(e) $\operatorname{det}(A) \neq 0$

The nullity is 0 . If the determinant is nonzero then A is invertible so $A \mathrm{x}=\mathbf{0}$ has only the trivial solution.
4. The matrix $A=\left[\begin{array}{ccccc}-1 & -2 & -5 & -11 & 5 \\ 3 & 4 & 13 & 29 & -4 \\ 2 & -2 & 4 & 10 & 6 \\ 1 & 1 & 4 & 9 & -2\end{array}\right]$ has RREF $\left[\begin{array}{lllll}1 & 0 & 3 & 7 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find all solutions to $A \mathbf{x}=\mathbf{0}$. Write your answer as a vector.

From the RREF, we get that the solutions are all vectors of the form

$$
\left[\begin{array}{c}
-3 r-7 s \\
-r-2 s \\
r \\
s \\
0
\end{array}\right]
$$

(b) Let $\mathbf{b}=\left[\begin{array}{c}7 \\ -10 \\ 2 \\ -4\end{array}\right]$. Show that $\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 0 \\ 1\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{b}$.

Here we just need to multiply A by the vector to check that we get \mathbf{b}.

$$
\left[\begin{array}{ccccc}
-1 & -2 & -5 & -11 & 5 \\
3 & 4 & 13 & 29 & -4 \\
2 & -2 & 4 & 10 & 6 \\
1 & 1 & 4 & 9 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 \\
-10 \\
2 \\
-4
\end{array}\right]
$$

(c) Use your answers to the previous 2 parts to find all solutions to $A \mathbf{x}=\mathbf{b}$.

Write your answer as a vector.
The solutions are all vectors of the form $\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}-3 r-7 s \\ -r-2 s \\ r \\ s \\ 0\end{array}\right]=\left[\begin{array}{c}1-3 r-7 s \\ 1-r-2 s \\ -1+r \\ s \\ 1\end{array}\right]$.
5. Let $S=\left\{t^{2}-1, t+2,3 t\right\}$ be an ordered basis for P_{2}.
(a) Find the coordinate vector of $p(t)=3 t^{2}+t+1$ with respect to S.

Find a, b, c such that $3 t^{2}+t+1=a\left(t^{2}-1\right)+b(t+2)+c(3 t)$. This is equal to $a\left(t^{2}\right)+(b+3 c) t+(-a+2 b)$ so we need $3=a, 1=b+3 c, 1=-a+2 b$. This has solution $a=3, b=2, c=-\frac{1}{3}$ so the coordinate vector is $\left[\begin{array}{c}3 \\ 2 \\ -\frac{1}{3}\end{array}\right]$.
(b) Find $q(t)$ where $q(t)$ has coordinate vector $\left[\begin{array}{c}7 \\ -1 \\ 1\end{array}\right]$.

$$
q(t)=7\left(t^{2}-1\right)-1(t+2)+1(3 t)=7 t^{2}+2 t-9
$$

6. Let $S=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 3\end{array}\right]\right\}$ be ordered bases for \mathbb{R}^{2}. Let $\mathbf{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(a) Find the coordinate vectors $[\mathbf{v}]_{S}$ and $[\mathbf{v}]_{T}$.

To find $[\mathbf{v}]_{S}$ we need to find a, b such that $\left[\begin{array}{l}1 \\ 0\end{array}\right]=a\left[\begin{array}{l}1 \\ 1\end{array}\right]+b\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ so $1=$ $a-b, 0=a+b$. This has solution $a=\frac{1}{2}$ and $b=-\frac{1}{2}$ so $[\mathbf{v}]_{S}=\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2}\end{array}\right]$.
To find $[\mathbf{v}]_{T}$ we need to find a, b such that $\left[\begin{array}{l}1 \\ 0\end{array}\right]=a\left[\begin{array}{c}-1 \\ 2\end{array}\right]+b\left[\begin{array}{l}0 \\ 3\end{array}\right]$ so $1=$ $-a, 0=2 a+3 b$. This has solution $a=-1$ and $b=\frac{2}{3}$ so $[\mathbf{v}]_{T}=\left[\begin{array}{c}-1 \\ \frac{2}{3}\end{array}\right]$.
(b) Find the transition matrix $P_{S \leftarrow T}$ from T to S.

To find this matrix, take the vectors in T and find their coordinate vectors with respect to S. The coordinate vector of $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ with respect to S is $\left[\begin{array}{c}\frac{1}{2} \\ \frac{3}{2}\end{array}\right]$ and the coordinate vector of $\left[\begin{array}{l}0 \\ 3\end{array}\right]$ with respect to S is $\left[\begin{array}{c}\frac{3}{2} \\ \frac{3}{2}\end{array}\right]$. So $P_{S \leftarrow T}=$ $\left[\begin{array}{ll}\frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{3}{2}\end{array}\right]$.
(c) Find the transition matrix $Q_{T \leftarrow S}$ from S to T.

Take the vectors in S and find their coordinate vectors with respect to T. The coordinate vector of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ with respect to T is $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and the coordinate vector of $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ with respect to T is $\left[\begin{array}{c}1 \\ -\frac{1}{3}\end{array}\right]$ so $Q_{T \leftarrow S}=\left[\begin{array}{cc}-1 & 1 \\ 1 & -\frac{1}{3}\end{array}\right]$.
(d) Verify that $[\mathbf{v}]_{S}=P_{S \leftarrow T}[\mathbf{v}]_{T}$ and $[\mathbf{v}]_{T}=Q_{T \leftarrow S}[\mathbf{v}]_{S}$.

$$
\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{c}
-1 \\
\frac{2}{3}
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
\frac{2}{3}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
1 & -\frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right] .
$$

(e) How are $P_{S \leftarrow T}$ and $Q_{T \leftarrow S}$ related?

They are inverses.
7. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ be an ordered basis for \mathbb{R}^{3}. Suppose T is an
ordered basis for \mathbb{R}^{3} such that $P_{S \leftarrow T}=\left[\begin{array}{ccc}1 & 1 & 2 \\ 3 & -1 & 2 \\ 1 & 0 & 2\end{array}\right]$ and \mathbf{v} is a vector in \mathbb{R}^{3} with $[\mathbf{v}]_{T}=\left[\begin{array}{c}1 \\ -1 \\ 4\end{array}\right]$.
(a) Find the coordinate vector $[\mathbf{v}]_{S}$.

$$
[\mathbf{v}]_{S}=P_{S \leftarrow T}[\mathbf{v}]_{T}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
3 & -1 & 2 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{c}
8 \\
12 \\
9
\end{array}\right] .
$$

(b) Find the basis T.

If $T=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$, then column 1 of $P_{S \leftarrow T}$ is $\left[\mathbf{v}_{\mathbf{1}}\right]_{S}$ so $\mathbf{v}_{\mathbf{1}}=1\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+$
$3\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+1\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}5 \\ 4 \\ 1\end{array}\right]$. Similarly, $\mathbf{v}_{\mathbf{2}}=1\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]-1\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+0\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and
$\mathbf{v}_{\mathbf{3}}=2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+2\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+2\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}6 \\ 4 \\ 2\end{array}\right]$. So $T=\left\{\left[\begin{array}{l}5 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}6 \\ 4 \\ 2\end{array}\right]\right\}$.
(c) Find \mathbf{v}.

We can find \mathbf{v} using $[\mathbf{v}]_{T}$ and T as follows: $\mathbf{v}=1\left[\begin{array}{l}5 \\ 4 \\ 1\end{array}\right]-1\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]+4\left[\begin{array}{l}6 \\ 4 \\ 2\end{array}\right]=$ $\left[\begin{array}{c}29 \\ 20 \\ 8\end{array}\right]$.
We could also find it using $[\mathbf{v}]_{S}$ and S as follows: $\mathbf{v}=8\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+12\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+$ $9\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}29 \\ 20 \\ 8\end{array}\right]$.

