Homework 8

Due: Monday, October 13

1. Find a basis for and the dimension of the null space of $A = \begin{bmatrix} 2 & -2 & 1 & 7 \\ 1 & -1 & 1 & 4 \\ -3 & 3 & 8 & -1 \\ -2 & 2 & 8 & 2 \end{bmatrix}$.

2. Let
$$A = \begin{bmatrix} 1 & -3 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

- (a) Find all real numbers λ such that $(\lambda I A)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- (b) For each λ from part (a), find a basis for the solution space of $(\lambda I A)\mathbf{x} = \mathbf{0}$.
- 3. Let A be a 3×3 matrix. Find all possible values for the nullity of A if:
 - (a) $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - (b) The RREF of A has 2 nonzero rows and one zero row.
 - (c) A is row equivalent to a matrix B with nullity 2.
 - (d) A is not the zero matrix.
 - (e) $\det(A) \neq 0$

4. The matrix
$$A = \begin{bmatrix} -1 & -2 & -5 & -11 & 5 \\ 3 & 4 & 13 & 29 & -4 \\ 2 & -2 & 4 & 10 & 6 \\ 1 & 1 & 4 & 9 & -2 \end{bmatrix}$$
 has RREF $\begin{bmatrix} 1 & 0 & 3 & 7 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

(a) Find all solutions to $A\mathbf{x} = \mathbf{0}$. Write your answer as a vector.

(b) Let
$$\mathbf{b} = \begin{bmatrix} 7\\ -10\\ 2\\ -4 \end{bmatrix}$$
. Show that $\begin{bmatrix} 1\\ 1\\ -1\\ 0\\ 1 \end{bmatrix}$ is a solution to $A\mathbf{x} = \mathbf{b}$.

(c) Use your answers to the previous 2 parts to find all solutions to $A\mathbf{x} = \mathbf{b}$. Write your answer as a vector.

Γ7]

5. Let $S = \{t^2 - 1, t + 2, 3t\}$ be an ordered basis for P_2 .

(a) Find the coordinate vector of $p(t) = 3t^2 + t + 1$ with respect to S.

(b) Find
$$q(t)$$
 where $q(t)$ has coordinate vector $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$.

6. Let
$$S = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
 and $T = \left\{ \begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} 0\\3 \end{bmatrix} \right\}$ be ordered bases for \mathbb{R}^2 . Let $\mathbf{v} = \begin{bmatrix} 1\\0 \end{bmatrix}$.

- (a) Find the coordinate vectors $[\mathbf{v}]_S$ and $[\mathbf{v}]_T$.
- (b) Find the transition matrix $P_{S\leftarrow T}$ from T to S.
- (c) Find the transition matrix $Q_{T \leftarrow S}$ from S to T.
- (d) Verify that $[\mathbf{v}]_S = P_{S \leftarrow T}[\mathbf{v}]_T$ and $[\mathbf{v}]_T = Q_{T \leftarrow S}[\mathbf{v}]_S$.
- (e) How are $P_{S\leftarrow T}$ and $Q_{T\leftarrow S}$ related?

7. Let $S = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$ be an ordered basis for \mathbb{R}^3 . Suppose T is an ordered basis for \mathbb{R}^3 . Suppose T is an ordered basis for \mathbb{R}^3 such that $P_{S\leftarrow T} = \begin{bmatrix} 1 & 1 & 2\\ 3 & -1 & 2\\ 1 & 0 & 2 \end{bmatrix}$ and \mathbf{v} is a vector in \mathbb{R}^3 with $[\mathbf{v}]_T = \begin{bmatrix} 1\\-1\\4 \end{bmatrix}$.

- (a) Find the coordinate vector $[\mathbf{v}]_S$.
- (b) Find the basis T.
- (c) Find \mathbf{v} .