Homework 7

1. S is a set of vectors in the vector space V. Determine if S is linearly independent. If it is not linearly independent, write one of the vectors in S as a linear combination of the other vectors in S.

(a)
$$V = \mathbb{R}^3$$
, $S = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$
(b) $V = M_{22}$, $S = \left\{ \begin{bmatrix} 1&1\\0&0 \end{bmatrix}, \begin{bmatrix} 2&0\\2&0 \end{bmatrix}, \begin{bmatrix} 3&0\\0&3 \end{bmatrix} \right\}$
(c) $V = \mathbb{R}^4$, $S = \left\{ \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\4 \end{bmatrix} \right\}$
(d) $V = P_2$, $S = \{t^2 - 1, t - 1, t + 1\}$

- 2. Suppose that $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}}$ is a linearly independent set of vectors in a vector space V. Determine if each of the following sets is linearly independent.
 - (a) $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$
 - (b) $\{\mathbf{v_1}, \mathbf{v_3}, \mathbf{v_3} + 2\mathbf{v_1}, \mathbf{v_4}\}$

(c)
$$\{\mathbf{v_1}, \mathbf{v_1} + \mathbf{v_2}, \mathbf{v_3} - \mathbf{v_4}\}$$

3. Let
$$\mathbf{v_1} = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} -1\\2\\6 \end{bmatrix}$.

- (a) The equation $x\mathbf{v_1} + y\mathbf{v_2} + z\mathbf{v_3} = \mathbf{0}$ can be rewritten as a homogeneous linear system in 3 equations and 3 unknowns. Find the coefficient matrix A of this linear system. How does A relate to $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$?
- (b) Compute det(A). What does det(A) tell us about the number of solutions to the homogeneous linear system?
- (c) Use the previous parts to determine if $\{v_1,v_2,v_3\}$ is a linearly independent set.
- 4. For each S and V from Problem 1, determine if S is a basis for V.

5. Let
$$S = \left\{ \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\6\\3\\3 \end{bmatrix} \right\}$$
. Find a basis for the span of S . What is the dimension of span S ?

6. Find a basis for the following spaces. What are the dimensions of these spaces?

(a) All vectors in
$$\mathbb{R}^3$$
 of the form $\begin{vmatrix} a \\ b \\ c \end{vmatrix}$ where $a + c = 2b$

(b) All 3×3 skew symmetric matrices.

(c) All vectors in
$$\mathbb{R}^4$$
 of the form $\begin{bmatrix} a+b\\a-c\\b+c\\-a-b \end{bmatrix}$.

7. Prove that if W is a subspace of a finite dimensional vector space V then $\dim W \leq \dim V$.

Hint: The following theorem from Section 4.6 may be useful.

Theorem 4.11: If S is a linearly independent set of vectors in a finite dimensional vector space V, then there is a basis T for V that contains S.

8. What are the possible dimensions for subspaces of \mathbb{R}^3 ? Describe what the subspaces of \mathbb{R}^3 of each dimension look like.