1. S is a set of vectors in the vector space V. Determine if S is linearly independent. If it is not linearly independent, write one of the vectors in S as a linear combination of the other vectors in S.
(a) $V=\mathbb{R}^{3}, S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]\right\}$
(b) $V=M_{22}, S=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\right\}$
(c) $V=\mathbb{R}^{4}, S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 4\end{array}\right]\right\}$
(d) $V=P_{2}, S=\left\{t^{2}-1, t-1, t+1\right\}$
2. Suppose that $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ is a linearly independent set of vectors in a vector space V. Determine if each of the following sets is linearly independent.
(a) $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$
(b) $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{3}}+2 \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{4}}\right\}$
(c) $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}-\mathbf{v}_{\mathbf{4}}\right\}$
3. Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-1 \\ 2 \\ 6\end{array}\right]$.
(a) The equation $x \mathbf{v}_{\mathbf{1}}+y \mathbf{v}_{\mathbf{2}}+z \mathbf{v}_{\mathbf{3}}=\mathbf{0}$ can be rewritten as a homogeneous linear system in 3 equations and 3 unknowns. Find the coefficient matrix A of this linear system. How does A relate to $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$?
(b) Compute $\operatorname{det}(A)$. What does $\operatorname{det}(A)$ tell us about the number of solutions to the homogeneous linear system?
(c) Use the previous parts to determine if $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a linearly independent set.
4. For each S and V from Problem 1, determine if S is a basis for V.
5. Let $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 3 \\ 3\end{array}\right]\right\}$. Find a basis for the span of S. What is the dimension of span S ?
6. Find a basis for the following spaces. What are the dimensions of these spaces?
(a) All vectors in \mathbb{R}^{3} of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ where $a+c=2 b$.
(b) All 3×3 skew symmetric matrices.
(c) All vectors in \mathbb{R}^{4} of the form $\left[\begin{array}{c}a+b \\ a-c \\ b+c \\ -a-b\end{array}\right]$.
7. Prove that if W is a subspace of a finite dimensional vector space V then $\operatorname{dim} W \leq \operatorname{dim} V$.

Hint: The following theorem from Section 4.6 may be useful.
Theorem 4.11: If S is a linearly independent set of vectors in a finite dimensional vector space V, then there is a basis T for V that contains S.
8. What are the possible dimensions for subspaces of \mathbb{R}^{3} ? Describe what the subspaces of \mathbb{R}^{3} of each dimension look like.

