Book Problems:

Section 4.3 \# 4, 5, 14, 17, 30, 32
Section 4.4 \# 2, 4ab, 5, 10, 12

Additional Problems:

Recall that the span of a set of vectors in V is a subspace of V. In some of the following problems, you will be asked to describe the span of sets of vectors in \mathbb{R}^{3}. Give a geometric description (e.g. it is a line) - you do not need to give any formulas.

1. Describe span $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$.
2. Is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in span $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$?
3. Describe span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.
4. Is $\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$ in span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$?
5. Describe span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\right\}$.
6. Is $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ in span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$?
7. Describe span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$.
8. Is $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ in span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$?
9. Describe span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
10. Is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ in span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$?
11. Describe span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.

12 . Which of the previously mentioned sets are spanning sets for \mathbb{R}^{3} ?

