Book Problems: Section 1.5 \# 14, 40, 43
Section 2.3 \# 5, 9, 12a, 20

Additional Problems:

1. (a) Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], B=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 7\end{array}\right]$. Compute $A B$.
(b) Let C be an $n \times n$ diagonal matrix with diagonal entries $c_{1}, c_{2}, \ldots, c_{n}$ and D be an $n \times n$ diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$. Describe the matrix $C D$.
(c) Determine if the following statement is true or false. Either explain why it is always true, or present a counterexample to show it is false.
If C and D are diagonal $n \times n$ matrices then $C D=D C$.
2. (a) Write down an example of a 3×3 upper triangular matrix which is not diagonal and a 3×3 lower triangular matrix which is not diagonal.
(b) Determine if the following statement is true or false. Either explain why it is always true, or present a counterexample to show it is false.
If A is an upper triangular $n \times n$ matrix and B is a lower triangular $n \times n$ matrix then $A B$ is a diagonal matrix.
3. Determine if each matrix is symmetric, skew symmetric, both, or neither.
(a) $A A^{T}$ where A is an $n \times m$ matrix
(b) $A+A^{T}$ where A is an $n \times n$ matrix
(c) $A-A^{T}$ where A is an $n \times n$ matrix
(d) $A B$ where A and B are $n \times n$ symmetric matrices
(e) A^{3} where A is an $n \times n$ skew symmetric matrix
4. Suppose A and B are $n \times n$ matrices such that $A B=0$. Prove the following statements about A and B.
(a) If A is invertible then $B=0$.
(b) If $B \neq 0$ then A is not invertible.
