Due: Monday, September 8

Homework 3

Book Problems: Section 1.5 # 14, 40, 43 Section 2.3 # 5, 9, 12a, 20

Additional Problems:

1. (a) Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 7 \end{bmatrix}$. Compute AB .

- (b) Let C be an $n \times n$ diagonal matrix with diagonal entries $c_1, c_2, ..., c_n$ and D be an $n \times n$ diagonal matrix with diagonal entries $d_1, d_2, ..., d_n$. Describe the matrix CD.
- (c) Determine if the following statement is true or false. Either explain why it is always true, or present a counterexample to show it is false. If C and D are diagonal $n \times n$ matrices then CD = DC.
- 2. (a) Write down an example of a 3×3 upper triangular matrix which is not diagonal and a 3×3 lower triangular matrix which is not diagonal.
 - (b) Determine if the following statement is true or false. Either explain why it is always true, or present a counterexample to show it is false.
 If A is an upper triangular n × n matrix and B is a lower triangular n × n matrix then AB is a diagonal matrix.
- 3. Determine if each matrix is symmetric, skew symmetric, both, or neither.
 - (a) AA^T where A is an $n \times m$ matrix
 - (b) $A + A^T$ where A is an $n \times n$ matrix
 - (c) $A A^T$ where A is an $n \times n$ matrix
 - (d) AB where A and B are $n \times n$ symmetric matrices
 - (e) A^3 where A is an $n \times n$ skew symmetric matrix
- 4. Suppose A and B are $n \times n$ matrices such that AB = 0. Prove the following statements about A and B.
 - (a) If A is invertible then B = 0.
 - (b) If $B \neq 0$ then A is not invertible.