Solutions to Additional Problems:

1. (a) Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], B=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 7\end{array}\right]$. Compute $A B$.

$$
A B=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & 21
\end{array}\right]
$$

(b) Let C be an $n \times n$ diagonal matrix with diagonal entries $c_{1}, c_{2}, \ldots, c_{n}$ and D be an $n \times n$ diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$. Describe the matrix $C D$.
$C D$ is also $n \times n$ and diagonal. The diagonal entries are $c_{1} d_{1}, c_{2} d_{2}, \ldots, c_{n} d_{n}$.
(c) Determine if the following statement is true or false. Either explain why it is always true, or present a counterexample to show it is false.
If C and D are diagonal $n \times n$ matrices then $C D=D C$.
True. Use part (b). Both $C D$ and $D C$ are diagonal matrices. The entries on the diagonal of $C D$ are $c_{1} d_{1}, c_{2} d_{2}, \ldots, c_{n} d_{n}$ and the entries on the diagonal of $D C$ are $d_{1} c_{1}, d_{2} c_{2}, \ldots, d_{n} c_{n}$. The c_{i} and d_{i} are just numbers so $c_{i} d_{i}=d_{i} c_{i}$ for all i and the entries of $C D$ and $D C$ are all equal.
2. (a) Write down an example of a 3×3 upper triangular matrix which is not diagonal and a 3×3 lower triangular matrix which is not diagonal.
Lots of possible answers. Here's one possible answer, upper triangular and not diagonal: $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3\end{array}\right]$, lower triangular and not diagonal: $\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & -1 & 0\end{array}\right]$
(b) Determine if the following statement is true or false. Either explain why it is always true, or present a counterexample to show it is false.
If A is an upper triangular $n \times n$ matrix and B is a lower triangular $n \times n$ matrix then $A B$ is a diagonal matrix.
False. There is a high likelihood that your example from (a) is a counterexample. If we take A, B as in the solution to (a), the matrix $A B$ is not diagonal because the 1,2 entry is 1 , so this is a counterexample.
3. Determine if each matrix is symmetric, skew symmetric, both, or neither.
(a) $A A^{T}$ where A is an $n \times m$ matrix

Take the transpose of $A A^{T}$ and see if the result is $A A^{T}$ (symmetric), $-A A^{T}$ (skew symmetric), or neither. Here, $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}$ so it is symmetric.
(b) $A+A^{T}$ where A is an $n \times n$ matrix $\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=A+A^{T}$ so this is symmetric.
(c) $A-A^{T}$ where A is an $n \times n$ matrix $\left(A-A^{T}\right)^{T}=A^{T}-\left(A^{T}\right)^{T}=A^{T}-A=-\left(A-A^{T}\right)$ so this is skew symmetric.
(d) $A B$ where A and B are $n \times n$ symmetric matrices $(A B)^{T}=B^{T} A^{T}=B A$. This is neither since $B A$ is not necessarily equal to $A B$ or $-A B$.
(e) A^{3} where A is an $n \times n$ skew symmetric matrix
$\left(A^{3}\right)^{T}=\left(A^{T}\right)^{3}=(-A)^{3}=(-1)^{3} A=-A$ so this is skew symmetric.
4. Suppose A and B are $n \times n$ matrices such that $A B=0$. Prove the following statements about A and B.
(a) If A is invertible then $B=0$.

Assume that A is invertible and show that this forces $B=0 . A$ is invertible so there exists A^{-1} with $A A^{-1}=A^{-1} A=I$. Starting with the equation $A B=0$, multiply both sides by A^{-1} on the left to get $A^{-1} A B=A^{-1} 0$. The left hand side simplifies to $A^{-1} A B=I B=B$. Anything times the zero matrix is the zero matrix so the right hand side is 0 and the equation becomes $B=0$.
(b) If $B \neq 0$ then A is not invertible.

This is the contrapositive of part (a) so it is logically equivalent to (a). We proved that (a) was true so (b) is true as well.

