
Homework 15 Solutions Due: Friday, December 5

1. Let L : P1 → P1 be the linear operator L(at+ b) = (5a− 4b)t+ (2a− b). Prove
that L is diagonalizable. Find a basis S for P1 such that the representation of
L with respect to S is diagonal.

The linear operator L will be diagonalizable if and only if a representation of
L is a diagonalizable matrix. Let T = {t, 1} be the standard basis for P1 and
let A be the representation of L with respect to T . We will show that A is a
diagonalizable matrix. L(t) = 5t + 2 and L(1) = −4t − 1. The coordinates

of these vectors with respect to T are

[
5
2

]
and

[
−4
−1

]
so A =

[
5 −4
2 −1

]
. Then

det(λI − A) = det

([
λ− 5 4
−2 λ+ 1

])
= (λ − 5)(λ + 1) + 8 = λ2 − 4λ + 3 =

(λ−3)(λ−1) so the eigenvalues of A (and of L) are 1 and 3. A is a 2×2 matrix
with 2 distinct eigenvalues so it must be diagonalizable.

To find S, we will find the eigenvectors of A and use them to find the eigenvectors
of L. For the eigenvalue λ = 1, the eigenspace is the solutions to the homoge-

neous linear system with coefficient matrix

[
−4 4
−2 2

]
. The RREF of this matrix

is

[
1 −1
0 0

]
so the solutions are all vectors of the form

[
b
b

]
. The eigenspace of L

associated with λ = 1 is therefore all vectors of the form bt+ b. For λ = 3, the
eigenspace is the solutions to the homogeneous linear system with coefficient

matrix

[
−2 4
−2 4

]
. The RREF of this matrix is

[
1 −2
0 0

]
so the eigenspace is all

vectors of the form

[
2b
b

]
. The eigenspace of L associated with λ = 3 is all

vectors of the form 2bt + b. To get S, we take a basis for each eigenspace and
put them together to get a basis for P2. The resulting basis is S = {t+1, 2t+1}.

Check: We can check that this works by finding the representation of L with
respect to S and seeing if it is diagonal. L(t+ 1) = t+ 1 which has coordinate[
1
0

]
with respect to S. L(2t + 1) = 6t + 3 = 3(2t + 1) which has coordinate

vector

[
0
3

]
with respect to S. The representation with respect to S is therefore[

1 0
0 3

]
which is diagonal (and the diagonal entries are the eigenvalues).
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2. Determine if each of the following matrices is diagonalizable. Explain why or
why not.

(a) A =

0 1 −1
1 0 1
1 −1 2


This matrix is diagonalizable. det(λI −A) = det

 λ −1 1
−1 λ −1
−1 1 λ− 2

 =

λ2(λ− 2)− 1− 1 + λ+ λ− (λ− 2) = λ2(λ− 2) + λ = λ(λ(λ− 2) + 1) =
λ(λ2 − 2λ+ 1) = λ(λ− 1)2. The eigenvalues are 0 with multiplicity 1 and
1 with multiplicity 2. We need to check that the dimension of the associ-
ated eigenspaces matches the multiplicities. The eigenspaces always have
dimension at least 1 and never had dimension more than the multiplicity,
so the dimension will match the multiplicity for any multiplicity 1 eigen-
values. We therefore just need to check the dimension of the eigenspace
associated with λ = 1. The eigenspace associated with λ = 1 is the solu-

tions to the homogeneous system with coefficient matrix

 1 −1 1
−1 1 −1
−1 1 −1

.

This has RREF

1 −1 1
0 0 0
0 0 0

. There are two columns without leading ones

so the dimension of the eigenspace will be 2, which matches the multiplic-
ity of λ = 1. The matrix is therefore diagonalizable.

(b) B =


0 0 0 −1
0 0 −1 1
−1 1 0 0
−1 1 0 0



This matrix is not diagonalizable. det(λI−B) = det



λ 0 0 1
0 λ 1 −1
1 −1 λ 0
1 −1 0 λ


.

Using cofactor expansion, this is equal to λ det

 λ 1 −1
−1 λ 0
−1 0 λ

−det

0 λ 1
1 −1 λ
1 −1 0

 =

λ(λ3 − λ + λ) − (λ2 − 1 + 1) = λ4 − λ2 = λ2(λ2 − 1) = λ2(λ + 1)(λ − 1).
The eigenvalues are 0 with multiplicity 2 and ±1 each with multiplicity
1. We need to check if the dimension of the eigenspace associated with
λ = 0 is 2. The eigenspace associated with λ = 0 is the solutions to the
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homogenous linear system with coefficient matrix


0 0 0 1
0 0 1 −1
1 −1 0 0
1 −1 0 0

. This

has RREF


1 −1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

. There is only one column without a leading

1 so the dimension of the eigenspace will be 1. This is smaller than the
multiplicity so the matrix is not diagonalizable.

(c) C =


1 2 −4 0
0 −1 1 3
0 0 5 2
0 0 0 −3



This matrix is diagonalizable. det(λI−C) = det



λ− 1 −2 4 0

0 λ+ 1 −1 −3
0 0 λ− 5 −2
0 0 0 λ+ 3


 =

(λ− 1)(λ+ 1)(λ− 5)(λ+ 3). The eigenvalues are 1,−1, 5,−3. C is a 4× 4
matrix with 4 distinct eigenvalues, so it is diagonalizable.

3. Let A be a 3× 3 matrix with eigenvalues λ1 = 1, λ2 = 0, λ3 = 4. Suppose that

v1 =

1
0
3

, v2 =

−2
1
−5

, and v3 =

0
1
2

 are eigenvectors of A such that vi is

associated with λi.

(a) Find a diagonal matrix D such that A is similar to D.

D =

1 0 0
0 0 0
0 0 4

.

Note: The order of the diagonal entries doesn’t matter, so technically there
are 6 possible correct answers to this problem.

(b) Find an invertible matrix P such that D = P−1AP .

The matrix P will have columns equal to the eigenvectors, so P =

1 −2 0
0 1 1
3 −5 2

.
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Note: The order of the columns of P must match the ordering that you
chose for the eigenvalues in D.

(c) Find a formula for Ak for k a positive integer.

D = P−1AP so A = PDP−1. Then Ak = (PDP−1)k = PDkP−1. Note

that Dk =

1k 0 0
0 0k 0
0 0 4k

 =

1 0 0
0 0 0
0 0 4k

. To compute P−1DkP , we need

to find P−1. Start with the matrix [P : I] and do row operations to

get to [I : P−1]. The inverse is P−1 =

 7 4 −2
3 2 −1
−3 −1 1

. Therefore Ak =1 −2 0
0 1 1
3 −5 2

1 0 0
0 0 0
0 0 4k

 7 4 −2
3 2 −1
−3 −1 1

 =

1 0 0
0 0 4k

3 0 2(4k)

 7 4 −2
3 2 −1
−3 −1 1

 = 7 4 −2
−3(4k) −(4k) 4k

21− 6(4k) 12− 2(4k) −6 + 2(4k)

.

(d) Find A and A50.

From the previous part, we can find A by plugging in k = 1. So A = 7 4 −2
−12 −4 4
−3 4 2

. To find A50, plug in k = 50. So

A50 =

 7 4 −2
−3(450) −(450) 450

21− 6(450) 12− 2(450) −6 + 2(450)

 .

4. Suppose A is a diagonalizable matrix. Prove that the following matrices are
also diagonalizable.

Note: A is diagonalizable so it is similar to a diagonal matrix D. We can
therefore write A = B−1DB where B is invertible. We will use this in all four
parts.

(a) rA for any real number r

A = B−1DB so rA = rB−1DB = B−1(rD)B. All scalar multiples of
diagonal matrices are diagonal so rD is also diagonal and this shows that
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rA is similar to a diagonal matrix rD.

(b) Ak for any positive integer k

A = B−1DB so Ak = (B−1DB)k = B−1DkB. All powers of a diagonal
matrix are also diagonal, so Ak is similar to the diagonal matrix Dk.

(c) AT

A = B−1DB so AT = (B−1DB)T = BTDT (B−1)T = BTD(BT )−1. Note
that D is symmetric so DT = D. This proves that AT is also similar to D.

(d) A−1 (if A is invertible)

A = B−1DB. Suppose A is invertible. Then D must be invertible
as well (since similar matrices have the same determinant). The diag-
onal entries of D must all be nonzero and D−1 is the diagonal matrix
whose entries are the reciprocals of the diagonal entries of D. Then
A−1 = (B−1DB)−1 = B−1D−1(B−1)−1 = B−1D−1B. This shows that
A−1 is similar to the diagonal matrix D−1.
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