1. Let $L: P_{1} \rightarrow P_{1}$ be the linear operator $L(a t+b)=(5 a-4 b) t+(2 a-b)$. Prove that L is diagonalizable. Find a basis S for P_{1} such that the representation of L with respect to S is diagonal.

The linear operator L will be diagonalizable if and only if a representation of L is a diagonalizable matrix. Let $T=\{t, 1\}$ be the standard basis for P_{1} and let A be the representation of L with respect to T. We will show that A is a diagonalizable matrix. $L(t)=5 t+2$ and $L(1)=-4 t-1$. The coordinates of these vectors with respect to T are $\left[\begin{array}{l}5 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}-4 \\ -1\end{array}\right]$ so $A=\left[\begin{array}{ll}5 & -4 \\ 2 & -1\end{array}\right]$. Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{cc}\lambda-5 & 4 \\ -2 & \lambda+1\end{array}\right]\right)=(\lambda-5)(\lambda+1)+8=\lambda^{2}-4 \lambda+3=$ $(\lambda-3)(\lambda-1)$ so the eigenvalues of A (and of L) are 1 and 3 . A is a 2×2 matrix with 2 distinct eigenvalues so it must be diagonalizable.

To find S, we will find the eigenvectors of A and use them to find the eigenvectors of L. For the eigenvalue $\lambda=1$, the eigenspace is the solutions to the homogeneous linear system with coefficient matrix $\left[\begin{array}{ll}-4 & 4 \\ -2 & 2\end{array}\right]$. The RREF of this matrix is $\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$ so the solutions are all vectors of the form $\left[\begin{array}{l}b \\ b\end{array}\right]$. The eigenspace of L associated with $\lambda=1$ is therefore all vectors of the form $b t+b$. For $\lambda=3$, the eigenspace is the solutions to the homogeneous linear system with coefficient matrix $\left[\begin{array}{ll}-2 & 4 \\ -2 & 4\end{array}\right]$. The RREF of this matrix is $\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$ so the eigenspace is all vectors of the form $\left[\begin{array}{c}2 b \\ b\end{array}\right]$. The eigenspace of L associated with $\lambda=3$ is all vectors of the form $2 b t+b$. To get S, we take a basis for each eigenspace and put them together to get a basis for P_{2}. The resulting basis is $S=\{t+1,2 t+1\}$.

Check: We can check that this works by finding the representation of L with respect to S and seeing if it is diagonal. $L(t+1)=t+1$ which has coordinate $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ with respect to $S . L(2 t+1)=6 t+3=3(2 t+1)$ which has coordinate vector $\left[\begin{array}{l}0 \\ 3\end{array}\right]$ with respect to S. The representation with respect to S is therefore $\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ which is diagonal (and the diagonal entries are the eigenvalues).
2. Determine if each of the following matrices is diagonalizable. Explain why or why not.
(a) $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$

This matrix is diagonalizable. $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{ccc}\lambda & -1 & 1 \\ -1 & \lambda & -1 \\ -1 & 1 & \lambda-2\end{array}\right]\right)=$ $\lambda^{2}(\lambda-2)-1-1+\lambda+\lambda-(\lambda-2)=\lambda^{2}(\lambda-2)+\lambda=\lambda(\lambda(\lambda-2)+1)=$ $\lambda\left(\lambda^{2}-2 \lambda+1\right)=\lambda(\lambda-1)^{2}$. The eigenvalues are 0 with multiplicity 1 and 1 with multiplicity 2 . We need to check that the dimension of the associated eigenspaces matches the multiplicities. The eigenspaces always have dimension at least 1 and never had dimension more than the multiplicity, so the dimension will match the multiplicity for any multiplicity 1 eigenvalues. We therefore just need to check the dimension of the eigenspace associated with $\lambda=1$. The eigenspace associated with $\lambda=1$ is the solutions to the homogeneous system with coefficient matrix $\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1\end{array}\right]$. This has RREF $\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. There are two columns without leading ones so the dimension of the eigenspace will be 2 , which matches the multiplicity of $\lambda=1$. The matrix is therefore diagonalizable.
(b) $B=\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0\end{array}\right]$

This matrix is not diagonalizable. $\operatorname{det}(\lambda I-B)=\operatorname{det}\left(\left[\begin{array}{cccc}\lambda & 0 & 0 & 1 \\ 0 & \lambda & 1 & -1 \\ 1 & -1 & \lambda & 0 \\ 1 & -1 & 0 & \lambda\end{array}\right]\right)$.
Using cofactor expansion, this is equal to $\lambda \operatorname{det}\left(\left[\begin{array}{ccc}\lambda & 1 & -1 \\ -1 & \lambda & 0 \\ -1 & 0 & \lambda\end{array}\right]\right)-\operatorname{det}\left(\left[\begin{array}{ccc}0 & \lambda & 1 \\ 1 & -1 & \lambda \\ 1 & -1 & 0\end{array}\right]\right)=$
$\lambda\left(\lambda^{3}-\lambda+\lambda\right)-\left(\lambda^{2}-1+1\right)=\lambda^{4}-\lambda^{2}=\lambda^{2}\left(\lambda^{2}-1\right)=\lambda^{2}(\lambda+1)(\lambda-1)$.
The eigenvalues are 0 with multiplicity 2 and ± 1 each with multiplicity 1. We need to check if the dimension of the eigenspace associated with $\lambda=0$ is 2 . The eigenspace associated with $\lambda=0$ is the solutions to the
homogenous linear system with coefficient matrix $\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0\end{array}\right]$. This has RREF $\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. There is only one column without a leading 1 so the dimension of the eigenspace will be 1 . This is smaller than the multiplicity so the matrix is not diagonalizable.
(c) $C=\left[\begin{array}{cccc}1 & 2 & -4 & 0 \\ 0 & -1 & 1 & 3 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & -3\end{array}\right]$

This matrix is diagonalizable. $\operatorname{det}(\lambda I-C)=\operatorname{det}\left(\left[\begin{array}{cccc}\lambda-1 & -2 & 4 & 0 \\ 0 & \lambda+1 & -1 & -3 \\ 0 & 0 & \lambda-5 & -2 \\ 0 & 0 & 0 & \lambda+3\end{array}\right]\right)=$
$(\lambda-1)(\lambda+1)(\lambda-5)(\lambda+3)$. The eigenvalues are $1,-1,5,-3 . C$ is a 4×4 matrix with 4 distinct eigenvalues, so it is diagonalizable.
3. Let A be a 3×3 matrix with eigenvalues $\lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=4$. Suppose that $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ 1 \\ -5\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ are eigenvectors of A such that $\mathbf{v}_{\mathbf{i}}$ is associated with λ_{i}.
(a) Find a diagonal matrix D such that A is similar to D.

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

Note: The order of the diagonal entries doesn't matter, so technically there are 6 possible correct answers to this problem.
(b) Find an invertible matrix P such that $D=P^{-1} A P$.

The matrix P will have columns equal to the eigenvectors, so $P=\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 1 \\ 3 & -5 & 2\end{array}\right]$.

Note: The order of the columns of P must match the ordering that you chose for the eigenvalues in D.
(c) Find a formula for A^{k} for k a positive integer.
$D=P^{-1} A P$ so $A=P D P^{-1}$. Then $A^{k}=\left(P D P^{-1}\right)^{k}=P D^{k} P^{-1}$. Note that $D^{k}=\left[\begin{array}{ccc}1^{k} & 0 & 0 \\ 0 & 0^{k} & 0 \\ 0 & 0 & 4^{k}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4^{k}\end{array}\right]$. To compute $P^{-1} D^{k} P$, we need to find P^{-1}. Start with the matrix $[P: I]$ and do row operations to get to $\left[I: P^{-1}\right]$. The inverse is $P^{-1}=\left[\begin{array}{ccc}7 & 4 & -2 \\ 3 & 2 & -1 \\ -3 & -1 & 1\end{array}\right]$. Therefore $A^{k}=$

(d) Find A and A^{50}.

From the previous part, we can find A by plugging in $k=1$. So $A=$ $\begin{aligned} & {\left[\begin{array}{ccc}7 & 4 & -2 \\ -12 & -4 & 4 \\ -3 & 4 & 2\end{array}\right] . \text { To find } A^{50} \text {, plug in } k=50 . \text { So } } \\ & A^{50}=\left[\begin{array}{ccc}7 & 4 & -2 \\ -3\left(4^{50}\right) & -\left(4^{50}\right) & 4^{50} \\ 21-6\left(4^{50}\right) & 12-2\left(4^{50}\right) & -6+2\left(4^{50}\right)\end{array}\right] .\end{aligned}$
4. Suppose A is a diagonalizable matrix. Prove that the following matrices are also diagonalizable.

Note: A is diagonalizable so it is similar to a diagonal matrix D. We can therefore write $A=B^{-1} D B$ where B is invertible. We will use this in all four parts.
(a) $r A$ for any real number r
$A=B^{-1} D B$ so $r A=r B^{-1} D B=B^{-1}(r D) B$. All scalar multiples of diagonal matrices are diagonal so $r D$ is also diagonal and this shows that
$r A$ is similar to a diagonal matrix $r D$.
(b) A^{k} for any positive integer k
$A=B^{-1} D B$ so $A^{k}=\left(B^{-1} D B\right)^{k}=B^{-1} D^{k} B$. All powers of a diagonal matrix are also diagonal, so A^{k} is similar to the diagonal matrix D^{k}.
(c) A^{T}
$A=B^{-1} D B$ so $A^{T}=\left(B^{-1} D B\right)^{T}=B^{T} D^{T}\left(B^{-1}\right)^{T}=B^{T} D\left(B^{T}\right)^{-1}$. Note that D is symmetric so $D^{T}=D$. This proves that A^{T} is also similar to D.
(d) A^{-1} (if A is invertible)
$A=B^{-1} D B$. Suppose A is invertible. Then D must be invertible as well (since similar matrices have the same determinant). The diagonal entries of D must all be nonzero and D^{-1} is the diagonal matrix whose entries are the reciprocals of the diagonal entries of D. Then $A^{-1}=\left(B^{-1} D B\right)^{-1}=B^{-1} D^{-1}\left(B^{-1}\right)^{-1}=B^{-1} D^{-1} B$. This shows that A^{-1} is similar to the diagonal matrix D^{-1}.

