1. Let $L: P_{1} \rightarrow P_{1}$ be the linear operator $L(a t+b)=(5 a-4 b) t+(2 a-b)$. Prove that L is diagonalizable. Find a basis S for P_{1} such that the representation of L with respect to S is diagonal.
2. Determine if each of the following matrices is diagonalizable. Explain why or why not.
(a) $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$
(b) $B=\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0\end{array}\right]$
(c) $C=\left[\begin{array}{cccc}1 & 2 & -4 & 0 \\ 0 & -1 & 1 & 3 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & -3\end{array}\right]$
3. Let A be a 3×3 matrix with eigenvalues $\lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=4$. Suppose that $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ 1 \\ -5\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ are eigenvectors of A such that $\mathbf{v}_{\mathbf{i}}$ is associated with λ_{i}.
(a) Find a diagonal matrix D such that A is similar to D.
(b) Find an invertible matrix P such that $D=P^{-1} A P$.
(c) Find a formula for A^{k} for k a positive integer.
(d) Find A and A^{50}.
4. Suppose A is a diagonalizable matrix. Prove that the following matrices are also diagonalizable.
(a) $r A$ for any real number r
(b) A^{k} for any positive integer k
(c) A^{T}
(d) A^{-1} (if A is invertible)
