Homework 15

- 1. Let $L: P_1 \to P_1$ be the linear operator L(at+b) = (5a-4b)t + (2a-b). Prove that L is diagonalizable. Find a basis S for P_1 such that the representation of L with respect to S is diagonal.
- 2. Determine if each of the following matrices is diagonalizable. Explain why or why not.

(a)
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

(b) $B = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix}$
(c) $C = \begin{bmatrix} 1 & 2 & -4 & 0 \\ 0 & -1 & 1 & 3 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & -3 \end{bmatrix}$

- 3. Let *A* be a 3 × 3 matrix with eigenvalues $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = 4$. Suppose that $\mathbf{v_1} = \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -2\\1\\-5 \end{bmatrix}$, and $\mathbf{v_3} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$ are eigenvectors of *A* such that $\mathbf{v_i}$ is associated with λ_i .
 - (a) Find a diagonal matrix D such that A is similar to D.
 - (b) Find an invertible matrix P such that $D = P^{-1}AP$.
 - (c) Find a formula for A^k for k a positive integer.
 - (d) Find A and A^{50} .
- 4. Suppose A is a diagonalizable matrix. Prove that the following matrices are also diagonalizable.
 - (a) rA for any real number r
 - (b) A^k for any positive integer k
 - (c) A^T
 - (d) A^{-1} (if A is invertible)