1. Let $L: P_{1} \rightarrow P_{1}$ be the linear operator $L(a t+b)=(b-a) t+5 b$. Find all eigenvalues of $L$ and all associated eigenvectors.

If $L(a t+b)=\lambda(a t+b)$ then $(b-a) t+5 b=\lambda(a t+b)$ so we get the two equations $b-a=\lambda a$ and $5 b=\lambda b$. From the second equation, either $\lambda=5$ or $b=0$. If $\lambda=5$ then $b-a=5 a$ so $b=6 a$. If $b=0$ then the first equation becomes $-a=\lambda a$ so $a=0$ or $\lambda=-1$. We cannot have both $a$ and $b$ equal to 0 since $\mathbf{0}$ is not an eigenvector, so in the $b=0$ case we must have $\lambda=-1$ and $a$ can be anything.

The eigenvalues of $L$ are $\lambda=5$ and $\lambda=-1$. The eigenvectors associated with $\lambda=5$ are all vectors of the form $a t+6 a$ with $a \neq 0$. The eigenvectors associated with $\lambda=-1$ are all vectors of the form at with $a \neq 0$.
2. Let $A=\left[\begin{array}{ccccc}1 & 5 & 2 & -5 & c \\ 1 & 2 & 3 & 4 & 0 \\ 3 & -6 & 11 & 1 & 1 \\ 2 & 2 & 2 & 1 & 3 \\ 3 & 9 & 6 & -8 & 0\end{array}\right]$. For what value or values of $c$ is $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ an eigenvector of $A$ ? What is the associated eigenvalue?
$A \mathbf{x}=\left[\begin{array}{ccccc}1 & 5 & 2 & -5 & c \\ 1 & 2 & 3 & 4 & 0 \\ 3 & -6 & 11 & 1 & 1 \\ 2 & 2 & 2 & 1 & 3 \\ 3 & 9 & 6 & -8 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}3+c \\ 10 \\ 10 \\ 10 \\ 10\end{array}\right]$. This is a multiple of $\mathbf{x}$ when $c=7$,
in which case it is $10 \mathbf{x}$. Therefore $\mathbf{x}$ is an eigenvector when $c=7$ and the associated eigenvalue is 10 .
3. Find the eigenvalues of $A$. For each eigenvalue, find a basis for the associated eigenspace.
(a) $A=\left[\begin{array}{ccc}0 & -3 & -1 \\ -1 & 2 & 1 \\ 3 & -9 & -4\end{array}\right]$
$\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{ccc}\lambda & 3 & 1 \\ 1 & \lambda-2 & -1 \\ -3 & 9 & \lambda+4\end{array}\right]\right)=\lambda(\lambda-2)(\lambda+4)+9 \lambda=$ $\lambda((\lambda-2)(\lambda-4)+9)=\lambda\left(\lambda^{2}+2 \lambda+1\right)=\lambda(\lambda+1)^{2}$. The eigenvalues are -1 and 0 .

For $\lambda=-1$, the associated eigenspace is solutions to $(-I-A) \mathbf{x}=\mathbf{0}$ which has augmented matrix $\left[\begin{array}{ccc:c}-1 & 3 & 1 & 0 \\ 1 & -3 & -1 & 0 \\ -3 & 9 & 3 & 0\end{array}\right]$. The RREF of this matrix is $\left[\begin{array}{ccc:c}1 & -3 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, so if the vector is $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ then $b, c$ can be anything and $a=3 b+c$. The eigenspace is therefore all vectors of the form $\left[\begin{array}{c}3 b+c \\ b \\ c\end{array}\right]=b\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]+c\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. A basis for this space is $\left\{\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
For $\lambda=0$, the eigenspace is the solutions to the linear system $\left[\begin{array}{ccc:c}0 & 3 & 1 & 0 \\ 1 & -2 & -1 & 0 \\ -3 & 9 & 4 & 0\end{array}\right]$.
The RREF of this matrix is $\left[\begin{array}{ccc:c}1 & 0 & -1 / 3 & 0 \\ 0 & 1 & 1 / 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. The eigenspace is all vectors of the form $\left[\begin{array}{c}1 / 3 c \\ -1 / 3 c \\ c\end{array}\right]$ which has basis $\left\{\left[\begin{array}{c}1 / 3 \\ -1 / 3 \\ 1\end{array}\right]\right\}$, or $\left\{\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]\right\}$.
(b) $A=\left[\begin{array}{llll}1 & 3 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{cccc}\lambda-1 & -3 & 0 & 0 \\ 0 & \lambda-2 & -4 & 0 \\ 0 & 0 & \lambda-2 & -3 \\ 0 & 0 & 0 & \lambda-1\end{array}\right]\right)=(\lambda-1)^{2}(\lambda-2)^{2}$.
The eigenvalues are 1 and 2 .
For $\lambda=1$, the eigenspace is the solutions to $\left[\begin{array}{cccc:c}0 & -3 & 0 & 0 & 0 \\ 0 & -1 & -4 & 0 & 0 \\ 0 & 0 & -1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. This

4. Suppose $A$ is an invertible $n \times n$ matrix and $\lambda$ is an eigenvalue of $A$. Prove that $\lambda \neq 0$ and $1 / \lambda$ is an eigenvalue of $A^{-1}$.

As $\lambda$ is an eigenvalue of $A$, there exists $\mathbf{v} \neq \mathbf{0}$ with $A \mathbf{v}=\lambda \mathbf{v}$. If $\lambda=0$, the equation $A \mathbf{v}=\lambda \mathbf{v}$ becomes $A \mathbf{v}=\mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$. This cannot happen because $A$ is invertible, so $\lambda \neq 0$. Also, if we take the equation $A \mathbf{v}=\lambda \mathbf{v}$ and multiply both sides of the equation by $A^{-1}$ on the right, this equation becomes $\mathbf{v}=\lambda A^{-1} \mathbf{v}$. As $\lambda \neq 0$, we can divide by $\lambda$ to get $A^{-1} \mathbf{v}=\frac{1}{\lambda} \mathbf{v}$. The vector $\mathbf{v}$ is nonzero so this shows that $1 / \lambda$ is an eigenvalue of $A^{-1}$.
5. Let $A$ be a matrix with eigenvalues $\lambda_{1} \neq \lambda_{2}$. Let $W_{1}$ be the eigenspace associated with $\lambda_{1}$ and $W_{2}$ be the eigenspace associated with $\lambda_{2}$. Prove that $W_{1} \cap W_{2}=\{\mathbf{0}\}$ (i.e. that the only vector in both eigenspaces is the zero vector).

Suppose that $\mathbf{w}$ is a vector in both $W_{1}$ and $W_{2}$. As $\mathbf{w}$ is in $W_{1}$, we get that $A \mathbf{w}=\lambda_{1} \mathbf{w}$. Similarly, as $\mathbf{w}$ is in $W_{2}$, we get that $A \mathbf{w}=\lambda_{2} \mathbf{w}$. Then $\lambda_{1} \mathbf{w}=\lambda_{2} \mathbf{w}$ (because these are both equal to $A \mathbf{w}$ ). Then as $\lambda_{1} \neq \lambda_{2}$, the equation $\lambda_{1} \mathbf{w}=\lambda_{2} \mathbf{w}$ forces $\mathbf{w}=\mathbf{0}$. This shows that the zero vector is the only vector which could possibly be in both $W_{1}$ and $W_{2}$. As $\mathbf{0}$ is in every subspace,
it is in both $W_{1}$ and $W_{2}$ so $W_{1} \cap W_{2}=\{\mathbf{0}\}$.
6. Determine if the following statements are true or false. Give a proof or a counterexample.
(a) If -5 is an eigenvalue of $A$, then 25 is an eigenvalue of $A^{2}$.

True. If -5 is an eigenvalue of $A$, then there is some vector $\mathbf{v} \neq \mathbf{0}$ with $A \mathbf{v}=-5 \mathbf{v}$. Then $A^{2} \mathbf{v}=A(A \mathbf{v})=A(-5 \mathbf{v})=-5(A \mathbf{v})=-5(-5 \mathbf{v})=25 \mathbf{v}$ so 25 is an eigenvalue of $A^{2}$.
(b) If $A$ and $B$ are similar matrices and $\mathbf{x}$ is an eigenvector of $A$, then $\mathbf{x}$ is an eigenvector of $B$.

False. Take for example $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 1\end{array}\right]$. These are the matrices from HW 13 problem 5 and they are similar as $B=P^{-1} A P$ with $P=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. The matrix $A$ has eigenvalue 0 with associated eigenvector $\mathbf{x}=\left[\begin{array}{c}-3 \\ -2 \\ 1\end{array}\right]$ as $A \mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. This vector is not an eigenvector of $B$ because $B \mathbf{x}=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 1\end{array}\right]\left[\begin{array}{c}-3 \\ -2 \\ 1\end{array}\right]=\left[\begin{array}{c}-7 \\ 0 \\ -5\end{array}\right]$ which is not a multiple of $\left[\begin{array}{c}-3 \\ -2 \\ 1\end{array}\right]$.

