1. Let $L: P_{1} \rightarrow P_{1}$ be the linear operator $L(a t+b)=(b-a) t+5 b$. Find all eigenvalues of L and all associated eigenvectors.
2. Let $A=\left[\begin{array}{ccccc}1 & 5 & 2 & -5 & c \\ 1 & 2 & 3 & 4 & 0 \\ 3 & -6 & 11 & 1 & 1 \\ 2 & 2 & 2 & 1 & 3 \\ 3 & 9 & 6 & -8 & 0\end{array}\right]$. For what value or values of c is $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ an eigenvector of A ? What is the associated eigenvalue?
3. Find the eigenvalues of A. For each eigenvalue, find a basis for the associated eigenspace.
(a) $A=\left[\begin{array}{ccc}0 & -3 & -1 \\ -1 & 2 & 1 \\ 3 & -9 & -4\end{array}\right]$
(b) $A=\left[\begin{array}{llll}1 & 3 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]$
4. Suppose A is an invertible $n \times n$ matrix and λ is an eigenvalue of A. Prove that $\lambda \neq 0$ and $1 / \lambda$ is an eigenvalue of A^{-1}.
5. Let A be a matrix with eigenvalues $\lambda_{1} \neq \lambda_{2}$. Let W_{1} be the eigenspace associated with λ_{1} and W_{2} be the eigenspace associated with λ_{2}. Prove that $W_{1} \cap W_{2}=\{\mathbf{0}\}$ (i.e. that the only vector in both eigenspaces is the zero vector).
6. Determine if the following statements are true or false. Give a proof or a counterexample.
(a) If -5 is an eigenvalue of A, then 25 is an eigenvalue of A^{2}.
(b) If A and B are similar matrices and \mathbf{x} is an eigenvector of A, then \mathbf{x} is an eigenvector of B.
