1. Let $L: P_{3} \rightarrow M_{22}$ be the linear transformation given by $L\left(a t^{3}+b t^{2}+c t+d\right)=$ $\left[\begin{array}{cc}a+b & c-d \\ 2 c & 3 d\end{array}\right]$. Find the representation of L with respect to the bases S and T where $S=\left\{t^{3}+t^{2}, t^{2}+t, t+1,1\right\}$ and $T=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]\right\}$.
2. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $L\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=\left[\begin{array}{c}2 a+c \\ c-b\end{array}\right]$. Let S be the standard basis for \mathbb{R}^{3} and T be the standard basis for \mathbb{R}^{2}. Let $S^{\prime}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -6 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]\right\}$ and $T^{\prime}=\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ bases for \mathbb{R}^{3} and \mathbb{R}^{2} respectively.
(a) Find the representation of L with respect to S and T.
(b) Find the representation of L with respect to S^{\prime} and T^{\prime} using the methods of Section 6.3.
(c) Find the transition matrices P from S^{\prime} to S and Q from T to T^{\prime}.
(d) Use your answers to parts (a) and (c) to find the representation of L with respect to S^{\prime} and T^{\prime} (as in Section 6.5). Check that this matches your answer to part (b).
3. Let $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be defined by $L\left(\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]\right)=\left[\begin{array}{c}2 c \\ 3 a+b \\ b-d \\ d+a\end{array}\right]$. Let S be the standard basis for \mathbb{R}^{4} and $T=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$.
(a) Find the representation of L with respect to S.
(b) Find the representation of L with respect to T using the methods of Section 6.3.
(c) Find the transitions matrices from S to T and from T to S.
(d) Use your answers to parts (a) and (c) to find the representation of L with respect to T (as in Section 6.5). Check that this matches your answer to part (b).
4. Prove that if A and B are similar matrices then A^{k} and B^{k} are similar matrices for any positive integer k.
5. Let $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ and $P=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. The matrix P is invertible with inverse $P^{-1}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$. Let $B=P^{-1} A P$.
(a) Compute B.
(b) Do A and B have the same rank?
(c) Do A and B have the same nullity?
(d) Do A and B have the same row space?
(e) Do A and B have the same column space?
(f) Do A and B have the same null space?
6. If A and B are similar $n \times n$ matrices, which of the following are the same for A and B : rank, nullity, row space, column space, and null space?
