1. Which of the following are linear transformations?
(a) $L: \mathbb{R}_{2} \rightarrow M_{22}$ defined by $L\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)=\left[\begin{array}{cc}a & 0 \\ b & a+b\end{array}\right]$.

This is a linear transformation. If $\left[\begin{array}{ll}a_{1} & b_{1}\end{array}\right]$ and $\left[\begin{array}{ll}a_{2} & b_{2}\end{array}\right]$ are two vectors in \mathbb{R}_{2}, then $L\left(\left[\begin{array}{ll}a_{1} & b_{1}\end{array}\right]+\left[\begin{array}{ll}a_{2} & b_{2}\end{array}\right]\right)=L\left(\left[a_{1}+a_{2} b_{1}+b_{2}\right]\right)$

$$
=\left[\begin{array}{cc}
a_{1}+a_{2} & 0 \\
b_{1}+b_{2} & a_{1}+a_{2}+b_{1}+b_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & 0 \\
b_{1} & a_{1}+b_{1}
\end{array}\right]+\left[\begin{array}{cc}
a_{2} & 0 \\
b_{2} & a_{2}+b_{2}
\end{array}\right]
$$

$=L\left(\left[\begin{array}{ll}a_{1} & b_{1}\end{array}\right]\right)+L\left(\left[\begin{array}{ll}a_{2} & b_{2}\end{array}\right]\right)$. If $\left[\begin{array}{ll}a & b\end{array}\right]$ is a vector in \mathbb{R}_{2} and r is a real number then $\left.L\left(\begin{array}{ll}a & b\end{array}\right]\right)=L\left(\left[\begin{array}{cc}r a & r b\end{array}\right]\right)=\left[\begin{array}{cc}r a & 0 \\ r b & r a+r b\end{array}\right]=r\left[\begin{array}{cc}a & 0 \\ b & a+b\end{array}\right]=$ $r L\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)$.
(b) $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $L\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=\left[\begin{array}{c}a-b \\ b+1 \\ a\end{array}\right]$.

This is not a linear transformation. It fails both of the properties of a linear transformation. To show it is not a linear transformation, you only need to show that it fails one of the properties, but here we will check both. If $\left[\begin{array}{l}a_{1} \\ b_{1}\end{array}\right]$ and $\left[\begin{array}{l}a_{2} \\ b_{2}\end{array}\right]$ are two vectors in \mathbb{R}^{2}, then $L\left(\left[\begin{array}{l}a_{1} \\ b_{1}\end{array}\right]+\left[\begin{array}{l}a_{2} \\ b_{2}\end{array}\right]\right)=$ $L\left(\left[\begin{array}{l}a_{1}+a_{2} \\ b_{1}+b_{2}\end{array}\right]\right)=\left[\begin{array}{c}a_{1}+a_{2}-\left(b_{1}+b_{2}\right) \\ b_{1}+b_{2}+1 \\ a_{1}+a_{2}\end{array}\right]$ and $L\left(\left[\begin{array}{l}a_{1} \\ b_{1}\end{array}\right]\right)+L\left(\left[\begin{array}{l}a_{2} \\ b_{2}\end{array}\right]\right)=$ $\left[\begin{array}{c}a_{1}-b_{1} \\ b_{1}+1 \\ a_{1}\end{array}\right]+\left[\begin{array}{c}a_{2}-b_{2} \\ b_{2}+1 \\ a_{2}\end{array}\right]=\left[\begin{array}{c}a_{1}+a_{2}-\left(b_{1}+b_{2}\right) \\ b_{1}+b_{2}+2 \\ a_{1}+a_{2}\end{array}\right]$. If $\left[\begin{array}{l}a \\ b\end{array}\right]$ is a vector in \mathbb{R}^{2} and r is a real number then $L\left(r\left[\begin{array}{l}a \\ b\end{array}\right]\right)=L\left(\left[\begin{array}{c}r a \\ r b\end{array}\right]\right)=\left[\begin{array}{c}r a-r b \\ r b+1 \\ r a\end{array}\right]$ and $r L\left(\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=r\left[\begin{array}{c}a-b \\ b+1 \\ a\end{array}\right]=\left[\begin{array}{c}r a-r b \\ r b+r \\ r a\end{array}\right]\right.$. For both properties, they fail because of the middle component $b+1$.
(c) $L: P_{3} \rightarrow P_{2}$ defined by $L(p(t))=p^{\prime}(t)$.

This is a linear transformation. Note that if $p(t)$ has degree at most 3, then $p^{\prime}(t)$ has degree at most 2. If $p(t), q(t)$ are in P_{3} then $L(p(t)+q(t))=$ $(p(t)+q(t))^{\prime}=p^{\prime}(t)+q^{\prime}(t)=L(p(t))+L(q(t))$. If $p(t)$ is in P_{3} and r is a real number, $L(r p(t))=(r p(t))^{\prime}=r p^{\prime}(t)=r L(p(t))$.
2. Let L be the linear transformation $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined by $L\left(\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]\right)=$ $\left[\begin{array}{c}a+2 d \\ d+b+c \\ c \\ b-a\end{array}\right]$. Find the standard matrix representing L.

To find this matrix, take the vectors from the standard basis for \mathbb{R}^{4} and plug them into $L . L\left(\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right], L\left(\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right], L\left(\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], L\left(\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]$. These are the columns of the standard matrix representing L so the matrix is $\left[\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0\end{array}\right]$.
3. Suppose L is a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $L\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], L\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ and $L\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0 \\ -2 \\ 5\end{array}\right]$.
(a) Find $L\left(\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]\right)$.

First write $\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. This is $\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]=-2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+5\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]-2\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] . \operatorname{Then} L\left(\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]\right)=L\left(-2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+5\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]-2\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)$ and by the properties of linear transformations this is $L\left(-2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)+$ $L\left(5\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)+L\left(-2\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=-2 L\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)+5 L\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)-2 L\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=$ $-2\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]+5\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]-2\left[\begin{array}{c}0 \\ -2 \\ 5\end{array}\right]=\left[\begin{array}{c}8 \\ 14 \\ -3\end{array}\right]$.
(b) Find a general formula for $L\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)$.

We follow the same process as in the previous part, but for a general vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ instead of the specific vector given in (a). $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=c\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+(b-$
c) $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+(a-b)\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ so $L\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=c L\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)+(b-c)\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)+(a-$
b) $L\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=c\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]+(b-c)\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]+(a-b)\left[\begin{array}{c}0 \\ -2 \\ 5\end{array}\right]=\left[\begin{array}{c}2 b-c \\ -2 a+4 b-2 c \\ 5 a-4 b-2 c\end{array}\right]$.
4. Let $L: M_{22} \rightarrow P_{3}$ be the linear transformation given by

$$
L\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b) t^{3}+(a-c) t^{2}+(2 a-d) t+(2 a+b-c)
$$

(a) Find a basis for $\operatorname{ker} L$.

The kernel of L is all matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a+b=0, a-c=0,2 a-$ $d=0,2 a+b-c=0$. We can take a to be anything and then take $b=-a, c=a, d=2 a$. The kernel is therefore all matrices of the form $\left[\begin{array}{cc}a & -a \\ a & 2 a\end{array}\right]$. This has basis $\left\{\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]\right\}$.
(b) Find a basis for range L.

The range of L is all polynomials of the form $(a+b) t^{3}+(a-c) t^{2}+(2 a-d) t+$ $(2 a+b-c)=a\left(t^{3}+t^{2}+2 t+2\right)+b\left(t^{3}+1\right)+c\left(-t^{2}-1\right)+d(-t)$. The range is thus spanned by $\left\{t^{3}+t^{2}+2 t+2, t^{3}+1,-t^{2}-1,-t\right\}$. Some subset of this set will be a basis for the range. It may be helpful at this point to compute the dimension of the range of L so that we know how many vectors we will need to delete to get a basis. For a linear transformation $L: V \rightarrow W$, the dimensions satisfy the formula $\operatorname{dim} V=\operatorname{dim} \operatorname{ker} L+\operatorname{dim}$ range L. Here $V=M_{22}$ which has dimension 4 and from part (a), the kernel has dimension 1 . It follows that dim range $L=3$ so we will need to delete one of the four vectors in the spanning set to get a basis. In this case, any one of the four vectors can be written as a linear combination of the others so any one of them can be deleted. For example, $t^{3}+t^{2}+2 t+2=1\left(t^{3}+1\right)+(-1)\left(-t^{2}-1\right)+(-2)(-t)$ so the first is a linear combination of the others and one possible basis would be $\left\{t^{3}+1,-t^{2}-1,-t\right\}$.
(c) Is L one-to-one? Is L onto?
L is not one-to-one since its kernel is has dimension 1 , not dimension 0 . It is also not onto because the range has dimension 3 and P_{3} had dimension 4 so the range is not all of P_{3}.
5. Let $L: M_{33} \rightarrow M_{33}$ be defined by $L(A)=A-A^{T}$.
(a) Prove that L is a linear transformation.

Check the two properties of linear transformations. If A, B are in M_{33} then $L(A+B)=(A+B)-(A+B)^{T}=A+B-\left(A^{T}+B^{T}\right)=A+B-A^{T}-B^{T}=$ $\left(A-A^{T}\right)+\left(B-B^{T}\right)=L(A)+L(B)$. If A is in M_{33} and r is a real number, $L(r A)=(r A)-(r A)^{T}=r A-r A^{T}=r\left(A-A^{T}\right)=r L(A)$.
(b) Describe the matrices in the kernel of L. What is dim ker L ?

If A is in the kernel of L then $\mathbf{0}=L(A)=A-A^{T}$ so $A=A^{T}$. The kernel of L is exactly the set of all 3×3 symmetric matrices. The symmetric matrices form a subspace of dimension 6 so $\operatorname{dim} \operatorname{ker} L=6$.

Note: The dimension is 6 because the symmetric matrices have the form

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right] \text { and have basis }} \\
& \left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

(c) Prove that the range of L is the set of all 3×3 skew symmetric matrices. What is dim range L ?

The range of L is all matrices of the form $A-A^{T}$. Matrices of this form are skew symmetric as $\left(A-A^{T}\right)^{T}=A^{T}-\left(A^{T}\right)^{T}=A^{T}-A=-\left(A-A^{T}\right)$. This shows that the range of L is contained in the set of all 3×3 skew symmetric matrices and hence the range of L is a subspace of the space of 3×3 skew symmetric matrices. The skew symmetric matrices have the form $\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$ and have basis $\left\{\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\right\}$. Hence the set of all skew symmetric matrices is a subspace of M_{33} with dimension 3. The dimension of the range of L is dim range $L=\operatorname{dim} M_{33}-$ $\operatorname{dim} \operatorname{ker} L=9-6=3$. The range of L is a subspace of the skew symmetric matrices and both spaces have dimension 3, so they must be the same space.
6. Let A be an $m \times n$ matrix. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation defined by $L(\mathbf{v})=A \mathbf{v}$. Show that $\operatorname{dim} \operatorname{ker} L$ is equal to the nullity of A and dim range L is equal to the rank of A.

A vector \mathbf{v} is in the kernel of L if and only if $\mathbf{0}=L(\mathbf{v})=A \mathbf{v}$. It follows that the kernel of L is exactly the null space of A so $\operatorname{dim} \operatorname{ker} L$ is the nullity of A. The dimension of the range is dim range $L=\operatorname{dim} \mathbb{R}^{n}-\operatorname{dim} \operatorname{ker} L$ which is n minus the nullity of A. Also, the rank plus nullity of A equal the number of columns which is n so the rank is also n minus the nullity of A. The rank of A is therefore equal to the dimension of the range of L.

Note: Another way to prove the statement about the range is to show that the range of L is the same as the column space of A. This is true because if $c_{1}, c_{2}, \ldots, c_{n}$ are the columns of A and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ then $A \mathbf{v}=v_{1} c_{2}+v_{2} c_{2}+\ldots+v_{n} c_{n}$.
7. Let V be an inner product space and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}$ be nonzero orthogonal vectors in V. Let $L: V \rightarrow \mathbb{R}^{2}$ be defined by $L(\mathbf{v})=\left[\begin{array}{l}\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{v}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]$.
(a) Show that L is a linear transformation.

Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ be two vectors in V. Then $L\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}\right)=\left[\begin{array}{l}\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=$ $\left[\begin{array}{l}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right)+\left(\mathbf{v}_{\mathbf{2}}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)+\left(\mathbf{v}_{\mathbf{2}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=\left[\begin{array}{l}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]+\left[\begin{array}{l}\left(\mathbf{v}_{\mathbf{2}}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{v}_{\mathbf{2}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=L\left(\mathbf{v}_{\mathbf{1}}\right)+L\left(\mathbf{v}_{\mathbf{2}}\right)$. Note that this uses property 3 of inner products. If \mathbf{v} is in V and r is a real number then $L(r \mathbf{v})=\left[\begin{array}{l}\left(r \mathbf{v}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(r \mathbf{v}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=\left[\begin{array}{l}r\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right) \\ r\left(\mathbf{v}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=r\left[\begin{array}{l}\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{v}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=r L(\mathbf{v})$. This uses property 4 of inner products.
(b) Show that L is onto. Hint: Consider $L\left(\mathbf{w}_{\mathbf{1}}\right)$ and $L\left(\mathbf{w}_{\mathbf{2}}\right)$.

As $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}$ are orthogonal, $\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=\left(\mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{1}}\right)=0$. Then $L\left(\mathbf{w}_{\mathbf{1}}\right)=$ $\left[\begin{array}{l}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=\left[\begin{array}{c}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right) \\ 0\end{array}\right]$ and $L\left(\mathbf{w}_{\mathbf{2}}\right)=\left[\begin{array}{l}\left(\mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]=\left[\begin{array}{c}0 \\ \left(\mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]$. Note that $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}$ are nonzero so by property 1 of inner products, $\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right) \neq 0$ and $\left(\mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{2}}\right) \neq 0$. It follows that the vectors $\left\{\left[\begin{array}{c}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right) \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ \left(\mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]\right\}$ are a basis for \mathbb{R}^{2}. These are both in the range of L and the range of L is a subspace of \mathbb{R}^{2}, so the range of L must be all of \mathbb{R}^{2}.
(c) If $\operatorname{dim} V=n$, what is $\operatorname{dim} \operatorname{ker} L$?
$\operatorname{dim} \operatorname{ker} L=\operatorname{dim} V-\operatorname{dim}$ range $L=n-2$.
(d) Let $W=\operatorname{span}\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$. How are $\operatorname{ker} L$ and W^{\perp} related?

The kernel of L is exactly the set of vectors which are orthogonal to both $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}$. A vector \mathbf{v} is orthogonal to $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ if and only if it is orthogonal to everything in their span which is W. It follows that $\operatorname{ker} L=W^{\perp}$.
8. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with $L\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $L\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{l}5 \\ 3\end{array}\right]$. Show that L is invertible and find L^{-1}.

The range of L contains $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 3\end{array}\right]\right\}$ which is a basis for \mathbb{R}^{2}. The range is therefore all of \mathbb{R}^{2} and L is onto. Then $\operatorname{dim} \operatorname{ker} L=\operatorname{dim} \mathbb{R}^{2}$ - dim range $L=2-2=0$ so L is also one-to-one. It is one-to-one and onto so it is invertible.

To find L^{-1}, use that $L^{-1}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $L^{-1}\left(\left[\begin{array}{l}5 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. To find out what L^{-1} does to a vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ we must figure out a way to write it as a linear combination of $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 3\end{array}\right]\right\}$. If we write $\left[\begin{array}{l}a \\ b\end{array}\right]=x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}5 \\ 3\end{array}\right]$ this is the linear system $\left[\begin{array}{ll|l}2 & 5 & a \\ 1 & 3 & b\end{array}\right]$. The row operations $r_{1} \leftrightarrow r_{2}, r_{2}-2 r_{1} \rightarrow r_{2},-r_{2} \rightarrow r_{2}, r_{1}-$ $3 r_{2} \rightarrow r_{2}$ change this to RREF which is $\left[\begin{array}{cc|c}1 & 0 & 3 a-5 b \\ 0 & 1 & 2 b-a\end{array}\right]$. This tells us that $\left[\begin{array}{l}a \\ b\end{array}\right]=(3 a-5 b)\left[\begin{array}{l}2 \\ 1\end{array}\right]+(2 b-a)\left[\begin{array}{l}5 \\ 3\end{array}\right]$ so $L^{-1}\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=L^{-1}\left((3 a-5 b)\left[\begin{array}{l}2 \\ 1\end{array}\right]+(2 b-a)\left[\begin{array}{l}5 \\ 3\end{array}\right]\right)=$
$(3 a-5 b) L^{-1}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)+(2 b-a) L^{-1}\left(\left[\begin{array}{l}5 \\ 3\end{array}\right]\right)=(3 a-5 b)\left[\begin{array}{l}1 \\ 0\end{array}\right]+(2 b-a)\left[\begin{array}{l}0 \\ 1\end{array}\right]=$
$\left[\begin{array}{c}3 a-5 b \\ 2 b-a\end{array}\right]$.

Another way to do this is to use the standard matrix representing L. In this case, the matrix is $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$. This matrix is invertible $\operatorname{because} \operatorname{det}(A)=1 \neq 0$ so L is also invertible. Its inverse will be the linear transformation whose standard matrix representing it is A^{-1}. We can compute A^{-1} either using the formula for 2×2 inverses, or by writing $[A: I]$ and doing row operations to get $\left[I: A^{-1}\right]$. The same row operations as above will take $[A: I]$ to $\left[I: A^{-1}\right]$ so $A^{-1}=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$. Then $L^{-1}\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}3 a-5 b \\ -a+2 b\end{array}\right]$.
9. Let A be an invertible $n \times n$ matrix and let $L: M_{n n} \rightarrow M_{n n}$ be defined by $L(B)=A^{-1} B A$.
(a) Show that L is a linear transformation.

If B, C are $n \times n$ matrices, then $L(B+C)=A^{-1}(B+C) A=A^{-1} B A+$ $A^{-1} C A=L(B)+L(C)$ and if B is and $n \times n$ matrix and r is a real number then $L(r B)=A^{-1}(r B) A=r\left(A^{-1} B A\right)=r L(B)$.
(b) Find ker L and range L.

If B is in ker L then $A^{-1} B A=\mathbf{0}$. Multiplying on the left of both sides by A this equation becomes $A A^{-1} B A=A \mathbf{0}$ which simplifies to $B A=\mathbf{0}$. Multiplying on the right of both sides by A^{-1} (because we are given that A is invertible), gives $B A A^{-1}=\mathbf{0} A^{-1}$ which simplifies to $B=\mathbf{0}$. Therefore the only thing in $\operatorname{ker} L$ is $\mathbf{0}$ so ker $L=\{\mathbf{0}\}$. Then dim range $L=\operatorname{dim} M_{n n}-$ $\operatorname{dim} \operatorname{ker} L=n^{2}-0=n^{2}$. As range L is a subspace of $M_{n n}$ and they have the same finite dimension, range $L=M_{n n}$.
(c) Is L invertible? If yes, what is L^{-1} ?

Yes. L is one-to-one since $\operatorname{ker} L=\{\mathbf{0}\}$ and L is onto because range $L=$ $M_{n n} . L$ is both one-to-one and onto so it is invertible. The inverse of L is $L^{-1}(B)=A B A^{-1}$. We check this as follows: $L\left(L^{-1}(B)\right)=L\left(A B A^{-1}\right)=$ $A^{-1}\left(A B A^{-1}\right) A=\left(A^{-1} A\right) B\left(A^{-1} A\right)=B$ and $L^{-1}(L(B))=L^{-1}\left(A^{-1} B A\right)=$ $A\left(A^{-1} B A\right) A^{-1}=\left(A A^{-1}\right) B\left(A A^{-1}\right)=B$.

