1. Which of the following are linear transformations?
(a) $L: \mathbb{R}_{2} \rightarrow M_{22}$ defined by $L\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)=\left[\begin{array}{cc}a & 0 \\ b & a+b\end{array}\right]$.
(b) $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $L\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=\left[\begin{array}{c}a-b \\ b+1 \\ a\end{array}\right]$.
(c) $L: P_{3} \rightarrow P_{2}$ defined by $L(p(t))=p^{\prime}(t)$.
2. Let L be the linear transformation $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined by $L\left(\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]\right)=$
$\left[\begin{array}{c}a+2 d \\ d+b+c \\ c \\ b-a\end{array}\right]$. Find the standard matrix representing L.
3. Suppose L is a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $L\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], L\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ and $L\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0 \\ -2 \\ 5\end{array}\right]$.
(a) Find $L\left(\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]\right)$.
(b) Find a general formula for $L\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)$.
4. Let $L: M_{22} \rightarrow P_{3}$ be the linear transformation given by

$$
L\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b) t^{3}+(a-c) t^{2}+(2 a-d) t+(2 a+b-c)
$$

(a) Find a basis for ker L.
(b) Find a basis for range L.
(c) Is L one-to-one? Is L onto?
5. Let $L: M_{33} \rightarrow M_{33}$ be defined by $L(A)=A-A^{T}$.
(a) Prove that L is a linear transformation.
(b) Describe the matrices in the kernel of L. What is dim ker L ?
(c) Prove that the range of L is the set of all 3×3 skew symmetric matrices. What is dim range L ?
6. Let A be an $m \times n$ matrix. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation defined by $L(\mathbf{v})=A \mathbf{v}$. Show that $\operatorname{dim} \operatorname{ker} L$ is equal to the nullity of A and dim range L is equal to the rank of A.
7. Let V be an inner product space and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}$ be nonzero orthogonal vectors in V. Let $L: V \rightarrow \mathbb{R}^{2}$ be defined by $L(\mathbf{v})=\left[\begin{array}{l}\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right) \\ \left(\mathbf{v}, \mathbf{w}_{\mathbf{2}}\right)\end{array}\right]$.
(a) Show that L is a linear transformation.
(b) Show that L is onto. Hint: Consider $L\left(\mathbf{w}_{\mathbf{1}}\right)$ and $L\left(\mathbf{w}_{\mathbf{2}}\right)$.
(c) If $\operatorname{dim} V=n$, what is $\operatorname{dim} \operatorname{ker} L$?
(d) Let $W=\operatorname{span}\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$. How are ker L and W^{\perp} related?
8. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with $L\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $L\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{l}5 \\ 3\end{array}\right]$. Show that L is invertible and find L^{-1}.
9. Let A be an invertible $n \times n$ matrix and let $L: M_{n n} \rightarrow M_{n n}$ be defined by $L(B)=A^{-1} B A$.
(a) Show that L is a linear transformation.
(b) Find ker L and range L.
(c) Is L invertible? If yes, what is L^{-1} ?

