Homework 12

1. Which of the following are linear transformations?

(a)
$$L : \mathbb{R}_2 \to M_{22}$$
 defined by $L(\begin{bmatrix} a & b \end{bmatrix}) = \begin{bmatrix} a & 0 \\ b & a+b \end{bmatrix}$.
(b) $L : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $L(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} a-b \\ b+1 \\ a \end{bmatrix}$.
(c) $L : P_3 \to P_2$ defined by $L(p(t)) = p'(t)$.

2. Let L be the linear transformation $L : \mathbb{R}^4 \to \mathbb{R}^4$ defined by $L \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} =$

$$\begin{bmatrix} a+2d \\ d+b+c \\ c \\ b-a \end{bmatrix}$$
. Find the standard matrix representing *L*.

3. Suppose L is a linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^3$ such that $L\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\\-1\end{bmatrix}, L\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\2\\1\end{bmatrix}$ and $L\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}0\\-2\\5\end{bmatrix}$. (a) Find $L\left(\begin{bmatrix}1\\3\\-2\end{bmatrix}\right)$. (b) Find a general formula for $L\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right)$.

4. Let $L: M_{22} \to P_3$ be the linear transformation given by

$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b)t^3 + (a-c)t^2 + (2a-d)t + (2a+b-c) .$$

- (a) Find a basis for ker L.
- (b) Find a basis for range L.

- (c) Is L one-to-one? Is L onto?
- 5. Let $L: M_{33} \to M_{33}$ be defined by $L(A) = A A^T$.
 - (a) Prove that L is a linear transformation.
 - (b) Describe the matrices in the kernel of L. What is dim ker L?
 - (c) Prove that the range of L is the set of all 3×3 skew symmetric matrices. What is dim range L?
- 6. Let A be an $m \times n$ matrix. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation defined by $L(\mathbf{v}) = A\mathbf{v}$. Show that dim ker L is equal to the nullity of A and dim range L is equal to the rank of A.
- 7. Let V be an inner product space and $\mathbf{w_1}, \mathbf{w_2}$ be nonzero orthogonal vectors in V. Let $L: V \to \mathbb{R}^2$ be defined by $L(\mathbf{v}) = \begin{bmatrix} (\mathbf{v}, \mathbf{w_1}) \\ (\mathbf{v}, \mathbf{w_2}) \end{bmatrix}$.
 - (a) Show that L is a linear transformation.
 - (b) Show that L is onto. Hint: Consider $L(\mathbf{w_1})$ and $L(\mathbf{w_2})$.
 - (c) If dim V = n, what is dim ker L?
 - (d) Let $W = \text{span}\{\mathbf{w_1}, \mathbf{w_2}\}$. How are ker L and W^{\perp} related?

8. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with $L\left(\begin{bmatrix} 1\\0 \end{bmatrix} \right) = \begin{bmatrix} 2\\1 \end{bmatrix}$ and $L\left(\begin{bmatrix} 0\\1 \end{bmatrix} \right) = \begin{bmatrix} 5\\3 \end{bmatrix}$. Show that L is invertible and find L^{-1} .

- 9. Let A be an invertible $n \times n$ matrix and let $L : M_{nn} \to M_{nn}$ be defined by $L(B) = A^{-1}BA$.
 - (a) Show that L is a linear transformation.
 - (b) Find ker L and range L.
 - (c) Is L invertible? If yes, what is L^{-1} ?