For all problems involving \mathbb{R}^{n}, you may assume the inner product is the dot product unless otherwise specified.

1. Let $S=\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right],\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ -1 / 2 \\ 1 / 2\end{array}\right]\right\}$.

Verify that S is an orthonormal basis for \mathbb{R}^{4}. Let $\mathbf{v}=\left[\begin{array}{c}4 \\ -1 \\ 2 \\ 7\end{array}\right]$. Use dot products to find $[\mathbf{v}]_{S}$.

All pairs of distinct vectors have dot product 0 (there are 6 pairs to check) and all vectors in S have length 1, so S is orthonormal. It is linearly independent because it is orthogonal. S is a linearly independent set of 4 vectors in a 4 -dimensional vector space so it is a basis. To find $[\mathbf{v}]_{S}$, write $\mathbf{v}=$ $a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+a_{3} \mathbf{v}_{\mathbf{3}}+a_{4} \mathbf{v}_{\mathbf{4}}$ where $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}$ are the vectors in S. As S is orthonormal, $a_{i}=\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}$. So we can compute the a_{i} by taking 4 dot products.

$$
\begin{aligned}
& a_{1}=\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-1 \\
2 \\
7
\end{array}\right]=3 / \sqrt{2} \\
& a_{2}=\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}=\left[\begin{array}{c}
0 \\
0 \\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-1 \\
2 \\
7
\end{array}\right]=9 / \sqrt{2} \\
& a_{3}=\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-1 \\
2 \\
7
\end{array}\right]=0 \\
& a_{4}=\mathbf{v}_{\mathbf{4}} \cdot \mathbf{v}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-1 \\
2 \\
7
\end{array}\right]=5 \\
& \text { So }[\mathbf{v}]_{S}=\left[\begin{array}{c}
3 / \sqrt{2} \\
9 / \sqrt{2} \\
0 \\
5
\end{array}\right] .
\end{aligned}
$$

2. Let $S=\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]\right\}$. S is a basis for \mathbb{R}^{3}. Use the Gram-Schmidt process to transform S into:
(a) an orthogonal basis.

Let $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$. The new basis will be $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$.
Take $\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
Then $\mathbf{v}_{\mathbf{2}}=-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{\mathbf{2}}}{\mathbf{v}_{1} \cdot \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{\mathbf{1}}+\mathbf{u}_{\mathbf{2}}=-\frac{2}{2}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]+\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Then $\mathbf{v}_{\mathbf{3}}=-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{3}}{\mathbf{v}_{1} \cdot \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{\mathbf{1}}-\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{u}_{3}}{\mathbf{v}_{2} \cdot \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{\mathbf{2}}+\mathbf{u}_{\mathbf{3}}=-\frac{(-1)}{2}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]-\frac{6}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]=$ $\left[\begin{array}{c}-1 / 2 \\ 1 \\ -1 / 2\end{array}\right]$.
The orthogonal basis you get is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 / 2 \\ 1 \\ -1 / 2\end{array}\right]\right\}$. You can also replace $\mathbf{v}_{\mathbf{3}}$ with $2 \mathbf{v}_{\mathbf{3}}$ and it will still be an orthogonal basis and there won't be any fractions. The resulting basis is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]\right\}$.
(b) an orthonormal basis.

Take the basis from (a) and divide each vector by its length. The resulting orthonormal basis is $\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right],\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right],\left[\begin{array}{c}-1 / \sqrt{6} \\ 2 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right]\right\}$.
3. Use the Gram-Schmidt process to find an orthonormal basis for W where W is the subspace of \mathbb{R}^{4} which consists of all vectors of the form $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that $a+b+c+d=0$.

The answer to this problem depends on the basis you pick for W. One possibility is to solve for d so $d=-a-b-c$ then rewrite $\left[\begin{array}{c}b \\ c \\ -a-b-c\end{array}\right]$ as $a\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]+b\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]+c\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]$. The basis is then $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right], \mathbf{u}_{\mathbf{3}}=$ $\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]$. Then $\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]$.
Then $\mathbf{v}_{\mathbf{2}}=-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{\mathbf{1}}+\mathbf{u}_{\mathbf{2}}=-\frac{1}{2}\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]+\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 / 2 \\ 1 \\ 0 \\ -1 / 2\end{array}\right]$. To avoid fractions, we can replace $\mathbf{v}_{\mathbf{2}}$ with $2 \mathbf{v}_{\mathbf{2}}$, so instead take $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}-1 \\ 2 \\ 0 \\ -1\end{array}\right]$
Then $\mathbf{v}_{\mathbf{3}}=-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{3}}{\mathbf{v}_{1} \cdot \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{\mathbf{1}}-\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{\mathbf{2}}+\mathbf{u}_{\mathbf{3}}=-\frac{1}{2}\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}-1 \\ 2 \\ 0 \\ -1\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 / 3 \\ -1 / 3 \\ 1 \\ -1 / 3\end{array}\right]$.
To avoid fractions, we can replace $\mathbf{v}_{\mathbf{3}}$ with $3 \mathbf{v}_{\mathbf{3}}$ so $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-1 \\ -1 \\ 3 \\ -1\end{array}\right]$.
The orthogonal basis you get is $\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 3 \\ -1\end{array}\right]\right\}$. To get an orthonormal basis, divide each vector by its length. The resulting basis is $\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 0 \\ -1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}-1 / \sqrt{6} \\ 2 \sqrt{6} \\ 0 \\ -1 \sqrt{6}\end{array}\right],\left[\begin{array}{c}-1 / \sqrt{12} \\ -1 / \sqrt{12} \\ 3 / \sqrt{12} \\ -1 / \sqrt{12}\end{array}\right]\right\}$.

Note: If you started by solving for a instead of d, the original basis would
be $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ and the orthogonal matrix resulting from Gram-
Schmidt would be $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ -1 \\ 3\end{array}\right]\right\}$. The resulting orthonormal basis
would then be $\left\{\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 / \sqrt{6} \\ -1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 0\end{array}\right],\left[\begin{array}{l}-1 / \sqrt{12} \\ -1 / \sqrt{12} \\ -1 / \sqrt{12} \\ 3 / \sqrt{12}\end{array}\right]\right\}$.
4. Let V be P_{2} with inner product $(p(t), q(t))=\int_{0}^{1} p(t) q(t) d t$. Use the GramSchmidt process to transform the basis $\left\{1, t, t^{2}\right\}$ into an orthogonal basis.

Let $\mathbf{u}_{\mathbf{1}}=1, \mathbf{u}_{\mathbf{2}}=t, \mathbf{u}_{\mathbf{3}}=t^{2}$. Take $\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}=1$. Then $\mathbf{v}_{\mathbf{2}}=-\frac{\left(\mathbf{v}_{1}, \mathbf{u}_{2}\right)}{\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)} \mathbf{v}_{\mathbf{1}}+\mathbf{u}_{\mathbf{2}}$. The inner products are $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right)=(1, t)=\int_{0}^{1}(1)(t) d t=1 / 2$ and $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)=$ $(1,1)=\int_{0}^{1}(1)(1) d t=1$. Plugging these in we get that $\mathbf{v}_{\mathbf{2}}=-\frac{(1 / 2)}{1} 1+t=t-\frac{1}{2}$. If we want to avoid fractions, we can replace this with $2 t-1$ so $\mathbf{v}_{\mathbf{2}}=2 t-1$. Then $\mathbf{v}_{\mathbf{3}}=-\frac{\left(\mathbf{v}_{\mathbf{1}}, \mathbf{u}_{3}\right)}{\left(\mathbf{v}_{1}, \mathbf{v}_{1}\right)} \mathbf{v}_{\mathbf{1}}-\frac{\left(\mathbf{v}_{\mathbf{2}}, \mathbf{u}_{3}\right)}{\left(\mathbf{v}_{2}, \mathbf{v}_{\mathbf{2}}\right)} \mathbf{v}_{\mathbf{2}}+\mathbf{u}_{\mathbf{3}}$. The inner products are $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{3}}\right)=$ $\left(1, t^{2}\right)=\int_{0}^{1}(1)\left(t^{2}\right) d t=1 / 3,\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)=1,\left(\mathbf{v}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right)=\left(2 t-1, t^{2}\right)=\int_{0}^{1}(2 t-$ 1) $\left(t^{2}\right) d t=\int_{0}^{1} 2 t^{3}-t^{2} d t=\frac{1}{2}-\frac{1}{3}=1 / 6$, and $\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}\right)=(2 t-1,2 t-1)=$ $\int_{0}^{1}(2 t-1)^{2} d t=\int_{0}^{1} 4 t^{2}-4 t+1 d t=\frac{4}{3}-2+1=\frac{1}{3}$. Plugging these in we get $\mathbf{v}_{\mathbf{3}}=-\frac{(1 / 3)}{1} 1-\frac{(1 / 6)}{(1 / 3)}(2 t-1)+t^{2}=t^{2}-t+\frac{1}{6}$, or to avoid fractions, $6 t^{2}-6 t+1$.

The orthogonal basis is $\left\{1,2 t-1,6 t^{2}-6 t+1\right\}$.
5. Let W be the subspace of \mathbb{R}^{3} spanned by $\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right]\right\}$.
(a) Find a basis for W^{\perp}.

The is the set of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ which are perpendicular to all vectors in W. Note that if a vector is perpendicular a set of vectors, then it is perpendicular to all the linear combinations of those vectors. It follows that we just need to find the vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ which are perpendic-
ular to the three spanning vectors. If we take dot products, we get that $0=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right] \cdot\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=a+2 b+4 c, 0=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right] \cdot\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=-a+2 b$, $0=\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right] \cdot\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=3 a+b+7 c$. We are therefore looking for all solutions to the homogeneous linear system $a+2 b+4 c=0,-a+2 b=0,3 a+b+7 c=0$. This has coefficient matrix $\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & 2 & 0 \\ 3 & 1 & 7\end{array}\right]$. The RREF of this matrix is $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$. Then c can be anything, $b=-c, a=-2 c$ so the solution are all vectors of the form $\left[\begin{array}{c}-2 c \\ -c \\ c\end{array}\right]$.
W^{\perp} is the set of all vectors of the form $\left[\begin{array}{c}-2 c \\ -c \\ c\end{array}\right]$. These are all the multiples of $\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right]$ so $\left\{\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis for W^{\perp}.
(b) Find $\operatorname{dim} W$ and $\operatorname{dim} W^{\perp}$.

By the pervious part, $\operatorname{dim} W^{\perp}=1$ since a basis for W^{\perp} has size 1 . Then $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} \mathbf{R}^{3}$ so $\operatorname{dim} W=2$. Note that the given spanning set for W is not linearly independent as the last vector is a linear combination of the first two.
(c) Describe W and W^{\perp} geometrically.
W is a 2 dimensional subspace of \mathbb{R}^{3} so it is a plane through the origin. W^{\perp} is a one dimensional subspace of \mathbb{R}^{3} so it is a line through the origin. Note that the line W^{\perp} is normal to the plane W.
6. Let $A=\left[\begin{array}{ccccc}1 & 0 & 3 & 1 & 0 \\ 0 & 1 & 0 & -1 & 2 \\ 2 & 1 & 6 & 1 & 2 \\ 0 & 0 & 1 & 0 & -3\end{array}\right]$. Let U be the null space of A and W be the column space of A^{T}. Note that U and W are both subspaces of \mathbb{R}^{5}.
(a) Find a basis for U.

The RREF of A is $\left[\begin{array}{ccccc}1 & 0 & 0 & 1 & 9 \\ 0 & 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. If we use variables x, y, z, r, s then r, s are anything and $z=3 s, y=r-2 s, x=-r-9 s$. The null space is all vectors of the form $\left[\begin{array}{c}-r-9 s \\ r-2 s \\ 3 s \\ r \\ s\end{array}\right]=r\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{c}-9 \\ -2 \\ 3 \\ 0 \\ 1\end{array}\right]$. A basis for the null space is $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-9 \\ -2 \\ 3 \\ 0 \\ 1\end{array}\right]\right\}$.
(b) Find a basis for W.

From the RREF of A, a basis for the row space of A is $\left\{\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 9\end{array}\right],\left[\begin{array}{lllll}0 & 1 & 0 & -1 & 2\end{array}\right],\left[\begin{array}{ccccc}0 & 0 & 1 & 0 & -3\end{array}\right]\right\}$ so a basis for the column space of A^{T} will be $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 9\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ -3\end{array}\right]\right\}$.
Another possible method to find a basis for the column space of A^{T} is to find RREF of A^{T} then take the columns of A^{T} that correspond to columns in RREF with leading ones. The basis you get from this method is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ -3\end{array}\right]\right\}$.
(c) Show that if \mathbf{u} is in U and \mathbf{w} is in W then $\mathbf{u} \cdot \mathbf{w}=0$.

If \mathbf{u} is in U then $\mathbf{u}=\left[\begin{array}{c}-r-9 s \\ r-2 s \\ 3 s \\ r \\ s\end{array}\right]$ for some r, s. If \mathbf{w} is in W then $\mathbf{w}=$

$$
\begin{aligned}
& {\left[\begin{array}{c}
x \\
y \\
z \\
x-y \\
9 x+2 y-3 z
\end{array}\right] \text { for some } x, y, z \text {. Note that we are using the first basis }} \\
& \text { found in part (b), it will also work to use the second basis. Then } \mathbf{u} \cdot \mathbf{w}= \\
& {\left[\begin{array}{c}
-r-9 s \\
r-2 s \\
3 s \\
r \\
s
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
x-y \\
9 x+2 y-3 z
\end{array}\right]=(-r-9 s)(x)+(r-2 s)(y)+(3 s)(z)+(r)(x-} \\
& y)+(s)(9 x+2 y-3 z)=-r x-9 s x+r y-2 s y+3 s z+r x-r y+9 x s+2 s y-3 s z= \\
& 0 .
\end{aligned}
$$

7. Let V be a finite dimensional inner product space and let W be a subspace of V. Find $\operatorname{dim} W^{\perp}$ if:
(a) $\operatorname{dim} V=7$ and $\operatorname{dim} W=3$. $\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W=7-3=4$.
(b) $V=\mathbb{R}^{2}$ and W is a line through the origin.
$\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W=2-1=1$.
(c) $V=\mathbb{R}^{3}$ and W is a line through the origin.

$$
\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W=3-1=2 .
$$

