For all problems involving \mathbb{R}^{n}, you may assume the inner product is the dot product unless otherwise specified.

1. Let $S=\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right],\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ -1 / 2 \\ 1 / 2\end{array}\right]\right\}$.

Verify that S is an orthonormal basis for \mathbb{R}^{4}. Let $\mathbf{v}=\left[\begin{array}{c}4 \\ -1 \\ 2 \\ 7\end{array}\right]$. Use dot products to find $[\mathbf{v}]_{S}$.
2. Let $S=\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]\right\}$. S is a basis for \mathbb{R}^{3}. Use the Gram-Schmidt process to transform S into:
(a) an orthogonal basis.
(b) an orthonormal basis.
3. Use the Gram-Schmidt process to find an orthonormal basis for W where W is the subspace of \mathbb{R}^{4} which consists of all vectors of the form $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that $a+b+c+d=0$.
4. Let V be P_{2} with inner product $(p(t), q(t))=\int_{0}^{1} p(t) q(t) d t$. Use the GramSchmidt process to transform the basis $\left\{1, t, t^{2}\right\}$ into an orthogonal basis.
5. Let W be the subspace of \mathbb{R}^{3} spanned by $\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right]\right\}$.
(a) Find a basis for W^{\perp}.
(b) Find $\operatorname{dim} W$ and $\operatorname{dim} W^{\perp}$.
(c) Describe W and W^{\perp} geometrically.
6. Let $A=\left[\begin{array}{ccccc}1 & 0 & 3 & 1 & 0 \\ 0 & 1 & 0 & -1 & 2 \\ 2 & 1 & 6 & 1 & 2 \\ 0 & 0 & 1 & 0 & -3\end{array}\right]$. Let U be the null space of A and W be the column space of A^{T}. Note that U and W are both subspaces of \mathbb{R}^{5}.
(a) Find a basis for U.
(b) Find a basis for W.
(c) Show that if \mathbf{u} is in U and \mathbf{w} is in W then $\mathbf{u} \cdot \mathbf{w}=0$.
7. Let V be a finite dimensional inner product space and let W be a subspace of V. Find $\operatorname{dim} W^{\perp}$ if:
(a) $\operatorname{dim} V=7$ and $\operatorname{dim} W=3$.
(b) $V=\mathbb{R}^{2}$ and W is a line through the origin.
(c) $V=\mathbb{R}^{3}$ and W is a line through the origin.

