Homework 11

For all problems involving \mathbb{R}^n , you may assume the inner product is the dot product unless otherwise specified.

1. Let
$$S = \left\{ \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ -1/2 \end{bmatrix}, \begin{bmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 1/2 \end{bmatrix} \right\}.$$

Verify that S is an orthonormal basis for \mathbb{R}^4 . Let $\mathbf{v} = \begin{bmatrix} 4 \\ -1 \\ 2 \\ 7 \end{bmatrix}$. Use dot products to find $[\mathbf{v}]_S$.

- 2. Let $S = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\2 \end{bmatrix} \right\}$. S is a basis for \mathbb{R}^3 . Use the Gram-Schmidt process to transform S into:
 - (a) an orthogonal basis.
 - (b) an orthonormal basis.

3. Use the Gram-Schmidt process to find an orthonormal basis for W where W is the subspace of \mathbb{R}^4 which consists of all vectors of the form $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ such that

- a+b+c+d=0.
- 4. Let V be P_2 with inner product $(p(t), q(t)) = \int_0^1 p(t)q(t) dt$. Use the Gram-Schmidt process to transform the basis $\{1, t, t^2\}$ into an orthogonal basis.

5. Let W be the subspace of
$$\mathbb{R}^3$$
 spanned by $\left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\7 \end{bmatrix} \right\}$

- (a) Find a basis for W^{\perp} .
- (b) Find dim W and dim W^{\perp} .
- (c) Describe W and W^{\perp} geometrically.

6. Let $A = \begin{bmatrix} 1 & 0 & 3 & 1 & 0 \\ 0 & 1 & 0 & -1 & 2 \\ 2 & 1 & 6 & 1 & 2 \\ 0 & 0 & 1 & 0 & -3 \end{bmatrix}$. Let U be the null space of A and W be the

column space of A^T . Note that U and W are both subspaces of \mathbb{R}^5 .

- (a) Find a basis for U.
- (b) Find a basis for W.
- (c) Show that if \mathbf{u} is in U and \mathbf{w} is in W then $\mathbf{u} \cdot \mathbf{w} = 0$.
- 7. Let V be a finite dimensional inner product space and let W be a subspace of V. Find dim W^{\perp} if:
 - (a) dim V = 7 and dim W = 3.
 - (b) $V = \mathbb{R}^2$ and W is a line through the origin.
 - (c) $V = \mathbb{R}^3$ and W is a line through the origin.