Homework 10

Due: Wednesday, October 29

1. Let $\mathbf{u} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}$. Use the dot product on \mathbb{R}^3 to compute the following.

(a) The lengths of \mathbf{u} and \mathbf{v} , $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.

$$\begin{aligned} |\mathbf{u}|| &= \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6} \\ |\mathbf{v}|| &= \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{3^2 + 0^2 + 1^2} = \sqrt{10} \end{aligned}$$

(b) The distance between \mathbf{u} and \mathbf{v} .

$$\|\mathbf{u} - \mathbf{v}\| = \sqrt{(1-3)^2 + (2-0)^2 + (-1-1)^2} = \sqrt{12}$$

(c) The cosine of the angle between \mathbf{u} and \mathbf{v} .

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{2}{\sqrt{6}\sqrt{10}}$$

2. Determine if the following sets of vectors in \mathbb{R}^4 with the dot product are orthogonal, orthonormal, or neither.

(a)
$$\left\{ \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3\\0 \end{bmatrix} \right\}$$

This is orthogonal as the dot product of any two of the three is 0, but the vectors are not length 1.

(b)
$$\left\{ \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\\frac{1}{2}\\\frac{1}{$$

This is neither. The dot product of the last vector with any of the other vectors is not 0.

(c) $\left\{ \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right\}$

This is orthonormal. The dot product of any two is 0 and they are all length 1.

- 3. Let V = P with inner product $(p(t), q(t)) = \int_0^1 p(t)q(t) dt$. Let $r(t) = t^4, s(t) = 3t^4 - 1$.
 - (a) Find ||r(t)|| and ||s(t)||.

$$\begin{aligned} \|r(t)\| &= \sqrt{\int_0^1 r(t)^2 \, dt} = \sqrt{\int_0^1 t^8 \, dt} = \sqrt{\frac{1}{9}} = \frac{1}{3}. \\ \|s(t)\| &= \sqrt{\int_0^1 s(t)^2 \, dt} = \sqrt{\int_0^1 (3t^4 - 1)^2 \, dt} = \sqrt{\int_0^1 9t^8 - 6t^4 + 1 \, dt} = \\ \sqrt{1 - \frac{6}{5} + 1} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}. \end{aligned}$$

(b) Find the distance between r(t) and s(t).

$$\begin{aligned} \|r(t) - s(t)\| &= \|-2t^4 + 1\| = \sqrt{\int_0^1 (-2t^4 + 1)^2 \, dt} = \sqrt{\int_0^1 4t^8 - 4t^4 + 1 \, dt} = \sqrt{\frac{4}{9} - \frac{4}{5} + 1} = \sqrt{\frac{29}{45}} \end{aligned}$$

(c) Find the cosine of the angle between r(t) and s(t).

$$\cos(\theta) = \frac{(r(t), s(t))}{\|r(t)\| \|s(t)\|}.$$

$$(r(t), s(t)) = \int_0^1 r(t) s(t) \ dt = \int_0^1 3t^8 - t^4 \ dt = \frac{1}{3} - \frac{1}{5} = \frac{2}{15}, \text{ so } \cos(\theta) = \frac{2/15}{(1/3)(2/\sqrt{5})}.$$

- 4. In the inner product space V from the previous problem, which of the following sets are orthogonal, orthonormal, or neither?
 - (a) $\{t^2, t, 1\}$

This is neither. None of these inner products are 0. For example, $(t^2, t) = \int_0^1 t^3 dt = \frac{1}{4}$.

(b)
$$\{1, 2t - 1\}$$

This is orthogonal. The vectors are orthogonal as $(1, 2t-1) = \int_0^1 2t - 1 \, dt = 0$. The first one is length 1 since $(1, 1) = \int_0^1 1 \, dt = 1$, but the second one is not as $(2t-1, 2t-1) = \int_0^1 (2t-1)^2 \, dt = \int_0^1 4t^2 - 4t + 1 \, dt = \frac{4}{3} - 2 + 1 \neq 1$.

- 5. Determine if the following are inner products on \mathbb{R}^2 .
 - (a) $\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right) = ac + ad + bc + 2bd$

This is an inner product. Check the 4 properties.

Property 1: $(\mathbf{u}, \mathbf{u}) \ge 0$ and equals 0 if and only if $\mathbf{u} = \mathbf{0}$. In this case, \mathbf{u} looks like $\begin{bmatrix} a \\ b \end{bmatrix}$. Then $\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \right) = a^2 + ab + ba + 2b^2 = (a+b)^2 + b^2 \ge 0$.

This is equal to 0 if and only if a + b = 0 and b = 0 which is true if and only if a = b = 0 so $\mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Property 2: $(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u})$. If $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} c \\ d \end{bmatrix}$ then $(\mathbf{u}, \mathbf{v}) = \begin{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \end{pmatrix} = ac + ad + bc + 2bd = ca + cb + cd + 2bd = \begin{pmatrix} \begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \end{pmatrix} = (\mathbf{v}, \mathbf{u})$. Property 3: $(\mathbf{u} + \mathbf{v}, \mathbf{w}) = (\mathbf{u}, \mathbf{w}) + (\mathbf{v}, \mathbf{w})$. If $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} c \\ d \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} e \\ f \end{bmatrix}$ then $(\mathbf{u} + \mathbf{v}, \mathbf{w}) = \begin{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} a + c \\ b + d \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \end{pmatrix} = (a + c)e + (a + c)f + (b + d)e + 2(b + d)f = ae + ce + af + cf + be + de + 2bf + 2df = (ae + af + be + 2bf) + (ce + cf + de + 2df) = \begin{pmatrix} \begin{bmatrix} a \\ b \\ d \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \end{pmatrix} = (\mathbf{u}, \mathbf{w}) + (\mathbf{v}, \mathbf{w})$. Property 4: $(r\mathbf{u}, \mathbf{v}) = r(\mathbf{u}, \mathbf{v})$. If $\mathbf{u} = \begin{bmatrix} a \\ b \\ d \end{bmatrix}, \mathbf{v} = \begin{bmatrix} c \\ d \end{bmatrix}$ then $(r\mathbf{u}, \mathbf{v}) = \begin{pmatrix} ra \\ rb \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \end{pmatrix} = rac + rad + rbc + 2rbd = r(ac + ad + bc + 2bd) = r\begin{pmatrix} \begin{bmatrix} a \\ b \\ d \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \end{pmatrix} = r(\mathbf{u}, \mathbf{v})$.

This is not an inner product. It does not satisfy properties 3 and 4. To answer this question, you only need to demonstrate that it fails one of the properties, but we will review all 4 properties here.

Property 1: $(\mathbf{u}, \mathbf{u}) \geq 0$ and equals 0 if and only if $\mathbf{u} = \mathbf{0}$. In this case, \mathbf{u} looks like $\begin{bmatrix} a \\ b \end{bmatrix}$. Then $\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \right) = (2a)^2 + (2b)^2 = 4(a^2 + b^2)$. This is always ≥ 0 and equals 0 if and only if a = b = 0. Property 2: $(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u})$. If $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}, \mathbf{v} = \begin{bmatrix} c \\ d \end{bmatrix}$ then $(\mathbf{u}, \mathbf{v}) = \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right) =$ $(a + c)^2 + (b + d)^2 = (c + a)^2 + (d + b)^2 = \left(\begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \right) = (\mathbf{v}, \mathbf{u})$. Property 3: $(\mathbf{u} + \mathbf{v}, \mathbf{w}) = (\mathbf{u}, \mathbf{w}) + (\mathbf{v}, \mathbf{w})$. If $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}, \mathbf{v} = \begin{bmatrix} c \\ d \end{bmatrix}, \mathbf{w} = \begin{bmatrix} e \\ f \end{bmatrix}$ then $(\mathbf{u} + \mathbf{v}, \mathbf{w}) = \left(\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \right) = \left(\begin{bmatrix} a + c \\ b + d \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \right) = (a + c + e)^2 + (b + d)^2$. However, $(\mathbf{u}, \mathbf{w}) + (\mathbf{v}, \mathbf{w}) = \left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \right) + \left(\begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} e \\ f \end{bmatrix} \right) = (a + c + e)^2 + (b + d)^2 + (c + e)^2 + (d + f)^2$. These do not look equal, but we check with a concrete example to make sure. Take a = b = c = d = e = f = 1. Then $(a+c+e)^2 + (b+d+f)^2 = 18$ and $(a+e)^2 + (b+f)^2 + (c+e)^2 + (d+f)^2 = 16$. This property does not hold. Property 4: $(r\mathbf{u}, \mathbf{v}) = r(\mathbf{u}, \mathbf{v})$. If $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}, \mathbf{v} = \begin{bmatrix} c \\ d \end{bmatrix}$ then $(r\mathbf{u}, \mathbf{v}) = \left(r \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right) = \left(\begin{bmatrix} ra \\ rb \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right) = (ra+c)^2 + (rb+d)^2$. The other side is $r(\mathbf{u}, \mathbf{v}) = r\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right) = r((a+c)^2 + (b+d)^2)$. These are not equal, for example if r = 0, a = b = c = d = 1 then $(ra+c)^2 + (rb+d)^2 = 2$ and $r((a+c)^2 + (b+d)^2) = 0$.

6. Let V be an inner product space and \mathbf{v} be a fixed vector in V. Let W be the set of all vectors \mathbf{w} in V such that $(\mathbf{v}, \mathbf{w}) = 0$ (i.e. the set of all vectors which are orthogonal to \mathbf{v}). Prove that W is a subspace of V.

This set is nonempty as **0** is in W (see next problem). First we show this is closed under addition. If $\mathbf{w_1}$ and $\mathbf{w_2}$ are in W then $(\mathbf{w_1}, \mathbf{v}) = 0$ and $(\mathbf{w_2}, \mathbf{v}) = 0$. Their sum, $\mathbf{w_1} + \mathbf{w_2}$ is also in W as $(\mathbf{w_1} + \mathbf{w_2}, \mathbf{v}) = (\mathbf{w_1}, \mathbf{v}) + (\mathbf{w_2}, \mathbf{v}) = 0 + 0 = 0$ (note that this uses property 3 of inner products). Next show W is closed under scalar multiplication. If \mathbf{w} is in W then $(\mathbf{w}, \mathbf{v}) = 0$. For any real number $r, r\mathbf{w}$ is also in W because $(r\mathbf{w}, \mathbf{v}) = r(\mathbf{w}, \mathbf{v}) = r(0) = 0$ (note that this uses property 4 of inner products).

- 7. Let V be an inner product space. Show the following:
 - (a) $\|\mathbf{0}\| = 0$

By property 1 of inner products, $(\mathbf{0}, \mathbf{0}) = 0$ so $\|\mathbf{0}\| = \sqrt{(\mathbf{0}, \mathbf{0})} = 0$.

(b) $(\mathbf{v}, \mathbf{0}) = 0$ for any \mathbf{v} in V.

(v, 0) = (v, 20) = 2(v, 0). Subtracting (v, 0) from both sides gives 0 = (v, 0).

(c) If $(\mathbf{u}, \mathbf{v}) = 0$ for all \mathbf{v} in V then $\mathbf{u} = \mathbf{0}$.

If $(\mathbf{u}, \mathbf{v}) = 0$ for all \mathbf{v} in V, then \mathbf{u} is orthogonal to all vectors in V. In particular, \mathbf{u} is orthogonal to itself, so $(\mathbf{u}, \mathbf{u}) = 0$. By property 1 of inner products, this only happens if $\mathbf{u} = \mathbf{0}$.

8. Let V be a 3-dimensional inner product space and let $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}}$ be an orthonormal set of vectors in V.

(a) Show that S is a basis for V.

S is orthonormal so it is orthogonal and all vectors in S have length 1. The vectors in S are nonzero because they have length 1. We proved in class that any set of nonzero orthogonal vectors is linearly independent so S is linearly independent. Then as S is linearly independent and has size 3 and the dimension of V is 3, S must be a basis for V.

(b) If \mathbf{v} is a vector in V with $[\mathbf{v}]_S = \begin{bmatrix} 2\\ -4\\ 7 \end{bmatrix}$, find the inner products $(\mathbf{v}, \mathbf{v_1}), (\mathbf{v}, \mathbf{v_2}),$ and $(\mathbf{v}, \mathbf{v_3})$.

As
$$[\mathbf{v}]_S = \begin{bmatrix} 2\\ -4\\ 7 \end{bmatrix}$$
, $\mathbf{v} = 2\mathbf{v_1} - 4\mathbf{v_2} + 7\mathbf{v_3}$. Then $(\mathbf{v}, \mathbf{v_1}) = (2\mathbf{v_1} - 4\mathbf{v_2} + 7\mathbf{v_3}, \mathbf{v_1})$.

By property 3, this equals $(2\mathbf{v_1}, \mathbf{v_1}) + (-4\mathbf{v_2}, \mathbf{v_1}) + (7\mathbf{v_3}, \mathbf{v_1})$. By property 4, this equals $2(\mathbf{v_1}, \mathbf{v_1}) + (-4)(\mathbf{v_2}, \mathbf{v_1}) + 7(\mathbf{v_3}, \mathbf{v_1})$. S is an orthonormal set, so $(\mathbf{v_1}, \mathbf{v_1}) = \|\mathbf{v_1}\|^2 = 1$ and $(\mathbf{v_2}, \mathbf{v_1}) = 0$ and $(\mathbf{v_3}, \mathbf{v_1}) = 0$. Plugging these in, we get $(\mathbf{v}, \mathbf{v_1}) = 2$. By a similar process, $(\mathbf{v}, \mathbf{v_2}) = -4$ and $(\mathbf{v}, \mathbf{v_3}) = 7$.