1. Let $\mathbf{u}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$. Use the dot product on \mathbb{R}^{3} to compute the following.
(a) The lengths of \mathbf{u} and $\mathbf{v},\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.

$$
\begin{aligned}
& \|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{1^{2}+2^{2}+(-1)^{2}}=\sqrt{6} \\
& \|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{3^{2}+0^{2}+1^{2}}=\sqrt{10}
\end{aligned}
$$

(b) The distance between \mathbf{u} and \mathbf{v}.

$$
\|\mathbf{u}-\mathbf{v}\|=\sqrt{(1-3)^{2}+(2-0)^{2}+(-1-1)^{2}}=\sqrt{12}
$$

(c) The cosine of the angle between \mathbf{u} and \mathbf{v}.

$$
\cos (\theta)=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{2}{\sqrt{6} \sqrt{10}}
$$

2. Determine if the following sets of vectors in \mathbb{R}^{4} with the dot product are orthogonal, orthonormal, or neither.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 0\end{array}\right]\right\}$

This is orthogonal as the dot product of any two of the three is 0 , but the vectors are not length 1 .
(b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right]\right\}$

This is neither. The dot product of the last vector with any of the other vectors is not 0 .
(c) $\left\{\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2}\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2}\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right]\right\}$

This is orthonormal. The dot product of any two is 0 and they are all length 1.
3. Let $V=P$ with inner product $(p(t), q(t))=\int_{0}^{1} p(t) q(t) d t$.

Let $r(t)=t^{4}, s(t)=3 t^{4}-1$.
(a) Find $\|r(t)\|$ and $\|s(t)\|$.

$$
\begin{aligned}
& \|r(t)\|=\sqrt{\int_{0}^{1} r(t)^{2} d t}=\sqrt{\int_{0}^{1} t^{8} d t}=\sqrt{\frac{1}{9}}=\frac{1}{3} \\
& \|s(t)\|=\sqrt{\int_{0}^{1} s(t)^{2} d t}=\sqrt{\int_{0}^{1}\left(3 t^{4}-1\right)^{2} d t}=\sqrt{\int_{0}^{1} 9 t^{8}-6 t^{4}+1 d t}= \\
& \sqrt{1-\frac{6}{5}+1}=\sqrt{\frac{4}{5}}=\frac{2}{\sqrt{5}}
\end{aligned}
$$

(b) Find the distance between $r(t)$ and $s(t)$.

$$
\begin{aligned}
& \|r(t)-s(t)\|=\left\|-2 t^{4}+1\right\|=\sqrt{\int_{0}^{1}\left(-2 t^{4}+1\right)^{2} d t}=\sqrt{\int_{0}^{1} 4 t^{8}-4 t^{4}+1 d t}= \\
& \sqrt{\frac{4}{9}-\frac{4}{5}+1}=\sqrt{\frac{29}{45}}
\end{aligned}
$$

(c) Find the cosine of the angle between $r(t)$ and $s(t)$.

$$
\begin{aligned}
& \cos (\theta)=\frac{(r(t), s(t))}{\|r(t)\| s(t) \|} . \\
& (r(t), s(t))=\int_{0}^{1} r(t) s(t) d t=\int_{0}^{1} 3 t^{8}-t^{4} d t=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}, \text { so } \cos (\theta)= \\
& \frac{2 / 15}{(1 / 3)(2 / \sqrt{5})} .
\end{aligned}
$$

4. In the inner product space V from the previous problem, which of the following sets are orthogonal, orthonormal, or neither?
(a) $\left\{t^{2}, t, 1\right\}$

This is neither. None of these inner products are 0 . For example, $\left(t^{2}, t\right)=$ $\int_{0}^{1} t^{3} d t=\frac{1}{4}$.
(b) $\{1,2 t-1\}$

This is orthogonal. The vectors are orthogonal as $(1,2 t-1)=\int_{0}^{1} 2 t-1 d t=$ 0 . The first one is length 1 since $(1,1)=\int_{0}^{1} 1 d t=1$, but the second one is not as $(2 t-1,2 t-1)=\int_{0}^{1}(2 t-1)^{2} d t=\int_{0}^{1} 4 t^{2}-4 t+1 d t=\frac{4}{3}-2+1 \neq 1$.
5. Determine if the following are inner products on \mathbb{R}^{2}.
(a) $\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=a c+a d+b c+2 b d$

This is an inner product. Check the 4 properties.
Property 1: $(\mathbf{u}, \mathbf{u}) \geq 0$ and equals 0 if and only if $\mathbf{u}=\mathbf{0}$. In this case, \mathbf{u} looks like $\left[\begin{array}{l}a \\ b\end{array}\right]$. Then $\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right]\right)=a^{2}+a b+b a+2 b^{2}=(a+b)^{2}+b^{2} \geq 0$.

This is equal to 0 if and only if $a+b=0$ and $b=0$ which is true if and only if $a=b=0$ so $\mathbf{u}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Property 2: $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$. If $\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right], \mathbf{v}=\left[\begin{array}{l}c \\ d\end{array}\right] \operatorname{then}(\mathbf{u}, \mathbf{v})=\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=$ $a c+a d+b c+2 b d=c a+c b+c d+2 b d=\left(\left[\begin{array}{l}c \\ d\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(\mathbf{v}, \mathbf{u})$.
Property 3: $(\mathbf{u}+\mathbf{v}, \mathbf{w})=(\mathbf{u}, \mathbf{w})+(\mathbf{v}, \mathbf{w})$. If $\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right], \mathbf{v}=\left[\begin{array}{l}c \\ d\end{array}\right], \mathbf{w}=\left[\begin{array}{l}e \\ f\end{array}\right]$ then $(\mathbf{u}+\mathbf{v}, \mathbf{w})=\left(\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)=\left(\left[\begin{array}{l}a+c \\ b+d\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)=(a+c) e+(a+$ c) $f+(b+d) e+2(b+d) f=a e+c e+a f+c f+b e+d e+2 b f+2 d f=$ $(a e+a f+b e+2 b f)+(c e+c f+d e+2 d f)=\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)+\left(\left[\begin{array}{l}c \\ d\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)=$ $(\mathbf{u}, \mathbf{w})+(\mathbf{v}, \mathbf{w})$.
Property 4: $(r \mathbf{u}, \mathbf{v})=r(\mathbf{u}, \mathbf{v})$. If $\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right], \mathbf{v}=\left[\begin{array}{l}c \\ d\end{array}\right]$ then $(r \mathbf{u}, \mathbf{v})=$ $\left(r\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=\left(\left[\begin{array}{l}r a \\ r b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=r a c+r a d+r b c+2 r b d=r(a c+a d+b c+$ $2 b d)=r\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=r(\mathbf{u}, \mathbf{v})$.
(b)

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right)=(a+c)^{2}+(b+d)^{2}
$$

This is not an inner product. It does not satisfy properties 3 and 4. To answer this question, you only need to demonstrate that it fails one of the properties, but we will review all 4 properties here.
Property 1: $(\mathbf{u}, \mathbf{u}) \geq 0$ and equals 0 if and only if $\mathbf{u}=\mathbf{0}$. In this case, \mathbf{u} looks like $\left[\begin{array}{l}a \\ b\end{array}\right]$. Then $\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(2 a)^{2}+(2 b)^{2}=4\left(a^{2}+b^{2}\right)$. This is always ≥ 0 and equals 0 if and only if $a=b=0$.
Property 2: $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$. If $\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right], \mathbf{v}=\left[\begin{array}{l}c \\ d\end{array}\right]$ then $(\mathbf{u}, \mathbf{v})=\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=$ $(a+c)^{2}+(b+d)^{2}=(c+a)^{2}+(d+b)^{2}=\left(\left[\begin{array}{l}c \\ d\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(\mathbf{v}, \mathbf{u})$.
Property 3: $(\mathbf{u}+\mathbf{v}, \mathbf{w})=(\mathbf{u}, \mathbf{w})+(\mathbf{v}, \mathbf{w})$. If $\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right], \mathbf{v}=\left[\begin{array}{l}c \\ d\end{array}\right], \mathbf{w}=\left[\begin{array}{l}e \\ f\end{array}\right]$ then $(\mathbf{u}+\mathbf{v}, \mathbf{w})=\left(\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)=\left(\left[\begin{array}{l}a+c \\ b+d\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)=(a+c+e)^{2}+$ $(b+d+f)^{2}$. However, $(\mathbf{u}, \mathbf{w})+(\mathbf{v}, \mathbf{w})=\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)+\left(\left[\begin{array}{l}c \\ d\end{array}\right],\left[\begin{array}{l}e \\ f\end{array}\right]\right)=(a+$ $e)^{2}+(b+f)^{2}+(c+e)^{2}+(d+f)^{2}$. These do not look equal, but we check with
a concrete example to make sure. Take $a=b=c=d=e=f=1$. Then $(a+c+e)^{2}+(b+d+f)^{2}=18$ and $(a+e)^{2}+(b+f)^{2}+(c+e)^{2}+(d+f)^{2}=16$. This property does not hold.
Property 4: $(r \mathbf{u}, \mathbf{v})=r(\mathbf{u}, \mathbf{v})$. If $\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right], \mathbf{v}=\left[\begin{array}{l}c \\ d\end{array}\right]$ then $(r \mathbf{u}, \mathbf{v})=$ $\left(r\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=\left(\left[\begin{array}{l}r a \\ r b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=(r a+c)^{2}+(r b+d)^{2}$. The other side is $r(\mathbf{u}, \mathbf{v})=r\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=r\left((a+c)^{2}+(b+d)^{2}\right)$. These are not equal, for example if $r=0, a=b=c=d=1$ then $(r a+c)^{2}+(r b+d)^{2}=2$ and $r\left((a+c)^{2}+(b+d)^{2}\right)=0$.
6. Let V be an inner product space and \mathbf{v} be a fixed vector in V. Let W be the set of all vectors \mathbf{w} in V such that $(\mathbf{v}, \mathbf{w})=0$ (i.e. the set of all vectors which are orthogonal to $\mathbf{v})$. Prove that W is a subspace of V.

This set is nonempty as $\mathbf{0}$ is in W (see next problem). First we show this is closed under addition. If $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ are in W then $\left(\mathbf{w}_{\mathbf{1}}, \mathbf{v}\right)=0$ and $\left(\mathbf{w}_{\mathbf{2}}, \mathbf{v}\right)=0$. Their sum, $\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}$ is also in W as $\left(\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}, \mathbf{v}\right)=\left(\mathbf{w}_{\mathbf{1}}, \mathbf{v}\right)+\left(\mathbf{w}_{\mathbf{2}}, \mathbf{v}\right)=0+0=0$ (note that this uses property 3 of inner products). Next show W is closed under scalar multiplication. If \mathbf{w} is in W then $(\mathbf{w}, \mathbf{v})=0$. For any real number $r, r \mathbf{w}$ is also in W because $(r \mathbf{w}, \mathbf{v})=r(\mathbf{w}, \mathbf{v})=r(0)=0$ (note that this uses property 4 of inner products).
7. Let V be an inner product space. Show the following:
(a) $\|\mathbf{0}\|=0$

By property 1 of inner products, $(\mathbf{0}, \mathbf{0})=0$ so $\|\mathbf{0}\|=\sqrt{(\mathbf{0}, \mathbf{0})}=0$.
(b) $(\mathbf{v}, \mathbf{0})=0$ for any \mathbf{v} in V.
$(\mathbf{v}, \mathbf{0})=(\mathbf{v}, 2 \mathbf{0})=2(\mathbf{v}, \mathbf{0})$. Subtracting $(\mathbf{v}, \mathbf{0})$ from both sides gives $0=$ $(\mathrm{v}, \mathbf{0})$.
(c) If $(\mathbf{u}, \mathbf{v})=0$ for all \mathbf{v} in V then $\mathbf{u}=\mathbf{0}$.

If $(\mathbf{u}, \mathbf{v})=0$ for all \mathbf{v} in V, then \mathbf{u} is orthogonal to all vectors in V. In particular, \mathbf{u} is orthogonal to itself, so $(\mathbf{u}, \mathbf{u})=0$. By property 1 of inner products, this only happens if $\mathbf{u}=\mathbf{0}$.
8. Let V be a 3 -dimensional inner product space and let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be an orthonormal set of vectors in V.
(a) Show that S is a basis for V.
S is orthonormal so it is orthogonal and all vectors in S have length 1. The vectors in S are nonzero because they have length 1 . We proved in class that any set of nonzero orthogonal vectors is linearly independent so S is linearly independent. Then as S is linearly independent and has size 3 and the dimension of V is $3, S$ must be a basis for V.
(b) If \mathbf{v} is a vector in V with $[\mathbf{v}]_{S}=\left[\begin{array}{c}2 \\ -4 \\ 7\end{array}\right]$, find the inner products $\left(\mathbf{v}, \mathbf{v}_{\mathbf{1}}\right),\left(\mathbf{v}, \mathbf{v}_{\mathbf{2}}\right)$, and $\left(\mathbf{v}, \mathbf{v}_{\mathbf{3}}\right)$.

As $[\mathbf{v}]_{S}=\left[\begin{array}{c}2 \\ -4 \\ 7\end{array}\right], \mathbf{v}=2 \mathbf{v}_{\mathbf{1}}-4 \mathbf{v}_{\mathbf{2}}+7 \mathbf{v}_{\mathbf{3}}$. Then $\left(\mathbf{v}, \mathbf{v}_{\mathbf{1}}\right)=\left(2 \mathbf{v}_{\mathbf{1}}-4 \mathbf{v}_{\mathbf{2}}+7 \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{1}}\right)$.
By property 3 , this equals $\left(2 \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)+\left(-4 \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{1}}\right)+\left(7 \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{1}}\right)$. By property 4, this equals $2\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)+(-4)\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{1}}\right)+7\left(\mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{1}}\right) . S$ is an orthonormal set, so $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)=\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2}=1$ and $\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{1}}\right)=0$ and $\left(\mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{1}}\right)=0$. Plugging these in, we get $\left(\mathbf{v}, \mathbf{v}_{\mathbf{1}}\right)=2$. By a similar process, $\left(\mathbf{v}, \mathbf{v}_{\mathbf{2}}\right)=-4$ and $\left(\mathbf{v}, \mathbf{v}_{\mathbf{3}}\right)=7$.

