1. Let $\mathbf{u}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$. Use the dot product on \mathbb{R}^{3} to compute the following.
(a) The lengths of \mathbf{u} and $\mathbf{v},\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
(b) The distance between \mathbf{u} and \mathbf{v}.
(c) The cosine of the angle between \mathbf{u} and \mathbf{v}.
2. Determine if the following sets of vectors in \mathbb{R}^{4} with the dot product are orthogonal, orthonormal, or neither.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 0\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2}\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2}\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right]\right\}$
3. Let $V=P$ with inner product $(p(t), q(t))=\int_{0}^{1} p(t) q(t) d t$.

Let $r(t)=t^{4}, s(t)=3 t^{4}-1$.
(a) Find $\|r(t)\|$ and $\|s(t)\|$.
(b) Find the distance between $r(t)$ and $s(t)$.
(c) Find the cosine of the angle between $r(t)$ and $s(t)$.
4. In the inner product space V from the previous problem, which of the following sets are orthogonal, orthonormal, or neither?
(a) $\left\{t^{2}, t, 1\right\}$
(b) $\{1,2 t-1\}$
5. Determine if the following are inner products on \mathbb{R}^{2}.
(a) $\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=a c+a d+b c+2 b d$
(b) $\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=(a+c)^{2}+(b+d)^{2}$
6. Let V be an inner product space and \mathbf{v} be a fixed vector in V. Let W be the set of all vectors \mathbf{w} in V such that $(\mathbf{v}, \mathbf{w})=0$ (i.e. the set of all vectors which are orthogonal to \mathbf{v}). Prove that W is a subspace of V.
7. Let V be an inner product space. Show the following:
(a) $\|\mathbf{0}\|=0$
(b) $(\mathbf{v}, \mathbf{0})=0$ for any \mathbf{v} in V.
(c) If $(\mathbf{u}, \mathbf{v})=0$ for all \mathbf{v} in V then $\mathbf{u}=\mathbf{0}$.
8. Let V be a 3 -dimensional inner product space and let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be an orthonormal set of vectors in V.
(a) Show that S is a basis for V.
(b) If \mathbf{v} is a vector in V with $[\mathbf{v}]_{S}=\left[\begin{array}{c}2 \\ -4 \\ 7\end{array}\right]$, find the inner products $\left(\mathbf{v}, \mathbf{v}_{\mathbf{1}}\right),\left(\mathbf{v}, \mathbf{v}_{\mathbf{2}}\right)$, and $\left(\mathbf{v}, \mathbf{v}_{\mathbf{3}}\right)$.

