Homework 10

Due: Wednesday, October 29

1. Let $\mathbf{u} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}$. Use the dot product on \mathbb{R}^3 to compute the following.

- (a) The lengths of \mathbf{u} and \mathbf{v} , $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
- (b) The distance between \mathbf{u} and \mathbf{v} .
- (c) The cosine of the angle between \mathbf{u} and \mathbf{v} .
- 2. Determine if the following sets of vectors in \mathbb{R}^4 with the dot product are orthogonal, orthonormal, or neither.

- 3. Let V = P with inner product $(p(t), q(t)) = \int_0^1 p(t)q(t) dt$. Let $r(t) = t^4, s(t) = 3t^4 - 1$.
 - (a) Find ||r(t)|| and ||s(t)||.
 - (b) Find the distance between r(t) and s(t).
 - (c) Find the cosine of the angle between r(t) and s(t).
- 4. In the inner product space V from the previous problem, which of the following sets are orthogonal, orthonormal, or neither?
 - (a) $\{t^2, t, 1\}$
 - (b) $\{1, 2t 1\}$
- 5. Determine if the following are inner products on \mathbb{R}^2 .

(a)
$$\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right) = ac + ad + bc + 2bd$$

(b)
$$\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right) = (a+c)^2 + (b+d)^2$$

- 6. Let V be an inner product space and \mathbf{v} be a fixed vector in V. Let W be the set of all vectors \mathbf{w} in V such that $(\mathbf{v}, \mathbf{w}) = 0$ (i.e. the set of all vectors which are orthogonal to \mathbf{v}). Prove that W is a subspace of V.
- 7. Let V be an inner product space. Show the following:
 - (a) $\|\mathbf{0}\| = 0$
 - (b) $(\mathbf{v}, \mathbf{0}) = 0$ for any \mathbf{v} in V.
 - (c) If $(\mathbf{u}, \mathbf{v}) = 0$ for all \mathbf{v} in V then $\mathbf{u} = \mathbf{0}$.
- 8. Let V be a 3-dimensional inner product space and let $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}}$ be an orthonormal set of vectors in V.
 - (a) Show that S is a basis for V.

(b) If
$$\mathbf{v}$$
 is a vector in V with $[\mathbf{v}]_S = \begin{bmatrix} 2\\ -4\\ 7 \end{bmatrix}$, find the inner products $(\mathbf{v}, \mathbf{v_1}), (\mathbf{v}, \mathbf{v_2}),$
and $(\mathbf{v}, \mathbf{v_3})$.