Math 3333
 Fall 2014
 Final Exam

Name:

Problem	Points
Problem 1 (15pts)	
Problem 2 (12pts)	
Problem 3 (18pts)	
Problem 4 (18pts)	
Problem 5 (13pts)	
Problem 6 (24pts)	
Bonus (5pts)	
Total	

1. Which of the following sets are subspaces of \mathbb{R}^{3} ? Circle yes if it is a subspace and no if it is not.
(a) A plane through the origin in \mathbb{R}^{3}.
(b) A line in \mathbb{R}^{3} which does not go through the origin.
yes/no
(c) The origin.
yes/no
(d) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]\right\}$
yes/no
(e) A sphere of radius 1 in \mathbb{R}^{3} centered at the origin.
yes/no
(f) A ball of radius 1 in \mathbb{R}^{3} centered at the origin (this is the sphere and its interior)
yes/no
(g) The solutions to the linear system $A \mathbf{x}=\mathbf{b}$ where A is a fixed 3×3 matrix and \mathbf{b} is a fixed nonzero vector.
yes/no
(h) The set of all vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $z=x y . \quad$ yes/no
(i) The column space of a 3×5 matrix. yes/no
(j) The null space of a 4×3 matrix. yes/no
2. Let W be the subspace of \mathbb{R}^{4} which consists of vectors $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that $a+c=b+d$.
(a) Find a basis for W and the dimension of W.
(b) Assuming the dot product on \mathbb{R}^{4}, find a basis for W^{\perp}.
3. Let $A=\left[\begin{array}{ccc}-4 & -7 & 7 \\ -1 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) For each eigenvalue, find a basis for the associated eigenspace.
(c) Is A diagonalizable? Why or why not?
4. Let $L: P_{1} \rightarrow \mathbb{R}^{3}$ be the linear transformation $L(a t+b)=\left[\begin{array}{c}a+2 b \\ a+b \\ a-b\end{array}\right]$.
(a) Find the dimension of the kernel L and the dimension of the range of L. (6 pts)
(b) Is L one-to-one? Is L onto?
(c) Find the representation of L with respect to S and T where

$$
S=\{5 t-1,2 t+3\} \text { and } T=\left\{\left[\begin{array}{l}
0 \tag{8pts}\\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
$$

5. Let $V=\mathbb{R}^{3}$ with the following inner product:

$$
\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right],\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]\right)=(a-b)(d-e)+4 b e+c f
$$

(a) Find the length of the vector $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
(b) Determine if the set $S=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]\right\}$ is orthogonal, orthonormal, or neither.
6. Let $A=\left[\begin{array}{ccc}-2 & 0 & 0 \\ -4 & 7 & -4 \\ -1 & 6 & -3\end{array}\right]$. Let $S=\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]\right\}$.
(a) Prove that the vectors in S are eigenvectors of A and find their associated eigenvalues.
(b) Find a diagonal matrix D and an invertible matrix P such that $D=P^{-1} A P$.
(c) Find the inverse of the matrix P from part (b).
(d) Find A^{50}.

Note: Your answer should be a single matrix. The entries of the matrix do not need to be simplified (they can contain terms like r^{50}).

Bonus: Find the determinant of the following 16×16 matrix. You must show work to get credit.

$$
\left[\begin{array}{cccccccccccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

