Final Exam Solutions - Section 001

1. Which of the following sets are subspaces of \mathbb{R}^{3} ? Circle yes if it is a subspace and no if it is not.
(a) A line in \mathbb{R}^{3} which does not go through the origin.
(b) A plane through the origin in \mathbb{R}^{3}. yes
(c) The origin. yes
(d) A sphere of radius 1 in \mathbb{R}^{3} centered at the origin. no
(e) A ball of radius 1 in \mathbb{R}^{3} centered at the origin (this is the sphere and its interior)
no
(f) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]\right\}$
(g) The null space of a 4×3 matrix.
yes
(h) The solutions to the linear system $A \mathbf{x}=\mathbf{b}$ where A is a fixed 3×3 matrix and \mathbf{b} is a fixed nonzero vector.
no
(i) The column space of a 3×5 matrix.
yes
(j) The set of all vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $z=x y$.
no
2. Let W be the subspace of \mathbb{R}^{4} which consists of vectors $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that $a+b=c+d$.
(a) Find a basis for W and the dimension of W.

Solving $a+b=c+d$ for d, we get that W is the set of all vectors of the form $\left[\begin{array}{c}a \\ b \\ c \\ a+b-c\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]+c\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]$. The set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]\right\}$ spans W. It is also linearly independent, so it is a
basis for W and $\operatorname{dim} W=3$. Note that if we solved for a, b, or c then the basis would look slightly different.
(b) Assuming the dot product on \mathbb{R}^{4}, find a basis for W^{\perp}.
W^{\perp} is the set of vectors which are orthogonal to all vectors in W. If a vector is orthogonal to the vectors in a basis for W, then it will be orthogonal to all of W so we need to find $\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$ which are orthogonal to all 3 vectors from the basis for W in part (a). Then
$0=\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]=x+w, 0=\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]=y+w$, and
$0=\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]=z-w$. We are therefore looking for solutions to the
linear system $x+w=0, y+w=0, z-w=0$. The variable w can be anything and $z=w, y=-w, x=-w$ so the vectors in W^{\perp} are all vectors of the form $\left[\begin{array}{c}-w \\ -w \\ w \\ w\end{array}\right]$. This has basis $\left\{\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 1\end{array}\right]\right\}$.
3. Let $A=\left[\begin{array}{ccc}1 & 3 & -8 \\ 0 & 2 & 0 \\ -1 & 3 & -6\end{array}\right]$.
(a) Find the eigenvalues of A.
$\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{ccc}\lambda-1 & -3 & 8 \\ 0 & \lambda-2 & 0 \\ 1 & -3 & \lambda+6\end{array}\right]\right)=$
$(\lambda-2)((\lambda-1)(\lambda+6)-8)=(\lambda-2)\left(\lambda^{2}+5 \lambda-14\right)=(\lambda-2)^{2}(\lambda+7)$.
The eigenvalues are 2 (with multiplicity 2) and -7 (with multiplicity 1).
(b) For each eigenvalue, find a basis for the associated eigenspace.
$\lambda=2$: The eigenspace is the solutions to $(2 I-A) \mathbf{x}=\mathbf{0}$. This has coefficient matrix $\left[\begin{array}{ccc}1 & -3 & 8 \\ 0 & 0 & 0 \\ 1 & -3 & 8\end{array}\right]$. The RREF of this matrix is $\left[\begin{array}{ccc}1 & -3 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
If the entries in the eigenvector are a, b, c then b, c can be anything and $a=3 b-8 c$. The eigenspace is all vectors of the form
$\left[\begin{array}{c}3 b-8 c \\ b \\ c\end{array}\right]=b\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]+c\left[\begin{array}{c}-8 \\ 0 \\ 1\end{array}\right]$. This has basis $\left\{\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-8 \\ 0 \\ 1\end{array}\right]\right\}$.
$\lambda=-7$: The eigenspace is the solutions to $(-7 I-A) \mathbf{x}=\mathbf{0}$. This has coefficient matrix $\left[\begin{array}{ccc}-8 & -3 & 8 \\ 0 & -9 & 0 \\ 1 & -3 & -1\end{array}\right]$. The RREF of this matrix is $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. If the entries in the eigenvector are a, b, c then c is
anything, $b=0$, and $a=c$. The eigenspace is all vectors of the form $\left[\begin{array}{l}c \\ 0 \\ c\end{array}\right]=c\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. This has basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
(c) Is A diagonalizable? Why or why not?

Yes. The multiplicity of each eigenvalue matches the dimension of the eigenspace.
4. Let $L: P_{1} \rightarrow \mathbb{R}^{3}$ be the linear transformation $L(a t+b)=\left[\begin{array}{c}a+b \\ a-b \\ a+2 b\end{array}\right]$.
(a) Find the dimension of the kernel L and the dimension of the range of L. (6 pts)
The kernel of L is the set of all $a t+b$ in P_{1} such that $L(a t+b)=\mathbf{0}$. We therefore need $a+b=0, a-b=0, a+2 b=0$. The only solution to this is $a=0, b=0$ so the kernel is just the zero vector and $\operatorname{dim} \operatorname{ker} L=0$.
Then dim range $L=\operatorname{dim} P_{1}-\operatorname{dim} \operatorname{ker} L=2-0=2$.
(b) Is L one-to-one? Is L onto?
L is one-to-one because the kernel is just the zero vector. L is not onto because the range of L has dimension 2 so it cannot be all of \mathbb{R}^{3}.
(c) Find the representation of L with respect to S and T where
$S=\{2 t+3, t-1\}$ and $T=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
Start by plugging the vectors of S into L to get $L(2 t+3)=\left[\begin{array}{c}5 \\ -1 \\ 8\end{array}\right]$ and
$L(t-1)=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$. Then take coordinates with respect to T.

$$
\begin{aligned}
& {\left[\begin{array}{c}
5 \\
-1 \\
8
\end{array}\right]=8\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+-9\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+6\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { so the coordinate vector is }\left[\begin{array}{c}
8 \\
-9 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]=-1\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+-2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { so the coordinate vector is }\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right] .}
\end{aligned}
$$

These are the columns of the representation so the representation is
$\left[\begin{array}{cc}8 & -1 \\ -9 & 3 \\ 6 & -2\end{array}\right]$.
5. Let $V=\mathbb{R}^{3}$ with the following inner product:

$$
\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right],\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]\right)=a d+(b-c)(e-f)+2 c f
$$

(a) Find the length of the vector $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.

Use the formula $\|\mathbf{v}\|=\sqrt{(\mathbf{v}, \mathbf{v})}$.
$\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=(0)(0)+(0-1)(0-1)+2(1)(1)=3$ so the length of $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is $\sqrt{3}$.
(b) Determine if the set $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]\right\}$ is orthogonal, orthonormal, or neither.

Check if each pair of vectors in S is orthogonal.

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=(1)(0)+(0-0)(0-1)+2(0)(1)=0 \\
& \left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]\right)=(1)(0)+(0-0)(3-1)+2(0)(1)=0, \text { and } \\
& \left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]\right)=(0)(0)+(0-1)(3-1)+2(1)(1)=-2+2=0 . \text { All three }
\end{aligned}
$$

pairs are orthogonal, so the set is orthogonal. It is not orthonormal
because the vectors are not all length 1 (we showed the second one was length $\sqrt{3}$ in part (a)).
6. Let $A=\left[\begin{array}{ccc}5 & -3 & -3 \\ 4 & -2 & 1 \\ 0 & 0 & -3\end{array}\right]$. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]\right\}$.
(a) Prove that the vectors in S are eigenvectors of A and find their associated eigenvalues.
For each vector \mathbf{v} in S, prove that $A \mathbf{v}$ is a multiple of \mathbf{v}.
$\left[\begin{array}{ccc}5 & -3 & -3 \\ 4 & -2 & 1 \\ 0 & 0 & -3\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]=2\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ so the first vector is an eigenvector
with eigenvalue 2. $\left[\begin{array}{ccc}5 & -3 & -3 \\ 4 & -2 & 1 \\ 0 & 0 & -3\end{array}\right]\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}0 \\ -3 \\ 3\end{array}\right]=-3\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ so the eigenvalue is $-3 .\left[\begin{array}{ccc}5 & -3 & -3 \\ 4 & -2 & 1 \\ 0 & 0 & -3\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]=1\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]$ so the eigenvalue is 1 .
(b) Find a diagonal matrix D and an invertible matrix P such that
$D=P^{-1} A P$.
The eigenvalues of A are $2,-3$, and 1 so $D=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$. The
associated eigenvectors are the vectors of S, these will be the columns of
P so $P=\left[\begin{array}{ccc}1 & 0 & 3 \\ 1 & 1 & 4 \\ 0 & -1 & 0\end{array}\right]$.
(c) Find the inverse of the matrix P from part (b).

Start with $[P: I]$ and do row operations to get $\left[I: P^{-1}\right]$. The row operations $r_{2}-r_{1} \rightarrow r_{2}, r_{2}+r_{3} \rightarrow r_{2}, r_{2} \leftrightarrow r_{3},-r_{2} \rightarrow r_{2}, r_{1}-3 r_{3} \rightarrow r_{1}$ will take P to I. Doing these row operations to I will give you
$P^{-1}=\left[\begin{array}{ccc}4 & -3 & -3 \\ 0 & 0 & -1 \\ -1 & 1 & 1\end{array}\right]$.
(d) Find A^{50}.

Note: Your answer should be a single matrix. The entries of the matrix do not need to be simplified (they can contain terms like r^{50}).
$D=P^{-1} A P$ so $A=P D P^{-1}$ and $A^{50}=P D^{50} P^{-1}$. As D is diagonal, $D^{50}=\left[\begin{array}{ccc}2^{50} & 0 & 0 \\ 0 & (-3)^{50} & 0 \\ 0 & 0 & 1^{50}\end{array}\right]=\left[\begin{array}{ccc}2^{50} & 0 & 0 \\ 0 & 3^{50} & 0 \\ 0 & 0 & 1\end{array}\right]$. Then

$$
\begin{aligned}
& A^{50}=\left[\begin{array}{ccc}
1 & 0 & 3 \\
1 & 1 & 4 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
2^{50} & 0 & 0 \\
0 & 3^{50} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
4 & -3 & -3 \\
0 & 0 & -1 \\
-1 & 1 & 1
\end{array}\right]= \\
& {\left[\begin{array}{ccc}
4\left(2^{50}\right)-3 & -3\left(2^{50}\right)+3 & -3\left(2^{50}\right)+3 \\
4\left(2^{50}\right)-4 & -3\left(2^{50}\right)+4 & -3\left(2^{50}\right)-\left(3^{50}\right)+4 \\
0 & 0 & 3^{50}
\end{array}\right] .}
\end{aligned}
$$

Bonus: Find the determinant of the following 18×18 matrix.
You must show work to get credit.

$$
\left[\begin{array}{ccccccccccccccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Let A_{k} denote the $k \times k$ matrix with 1's on the diagonal, -1 's right above and right below the diagonal, and 0 's elsewhere. When $k=1, A_{k}$ is the 1×1 matrix with entry 1 so $\operatorname{det}\left(A_{1}\right)=1$. When $k=2, A_{2}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ so $\operatorname{det}\left(A_{2}\right)=0$. Assume now that $k \geq 3$. If we do cofactor expansion along the first row, we get $\operatorname{det}\left(A_{k}\right)=(1) \operatorname{det}\left(A_{k-1}\right)-(-1) \operatorname{det}(B)$ where B is gotten from A_{k} by deleting the first row and second column. Then doing cofactor expansion along column 1 of B, $\operatorname{det}(B)=(-1) \operatorname{det}\left(A_{k-2}\right)$. Putting this together, $\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-1}\right)-\operatorname{det}\left(A_{k-2}\right)$. Since we know $\operatorname{det}\left(A_{1}\right)$ and $\operatorname{det}\left(A_{2}\right)$ we can use this formula to recursively find $\operatorname{det}\left(A_{18}\right)$. The determinants of A_{k} from $k=1$ to $k=18$ are $1,0,-1,-1,0,1,1,0,-1$, $-1,0,1,1,0,-1,-1,0,1$. The above matrix is A_{18} and $\operatorname{det}\left(A_{18}\right)=1$.

