Math 3333 Fall 2014 Midterm 3

Name:___

Problem	Points
Problem 1 (20pts)	
Problem 2 (18pts)	
Problem 3 (10pts)	
Problem 4 (26pts)	
Problem 5 (26pts)	
Total	

- 1. Let V be an inner product space and let **u** and **v** be vectors in V. Suppose that $\|\mathbf{u}\| = \sqrt{3}$, $\|\mathbf{v}\| = 4$ and the angle between **u** and **v** is $\frac{\pi}{6}$. Compute the following inner products. The following may be useful: $\sin(\frac{\pi}{6}) = \frac{1}{2}$ and $\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$
 - (a) (\mathbf{u}, \mathbf{u}) and (\mathbf{v}, \mathbf{v}) (6 pts)

(b) (\mathbf{u}, \mathbf{v})

(6 pts)

(c) $(\mathbf{u} + \mathbf{v}, 2\mathbf{u} - \mathbf{v})$ (8 pts)

- 2. Let W be a subspace of the inner product space \mathbb{R}^4 with the dot product. Suppose W has basis $\left\{ \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\-1\\2\\0 \end{bmatrix}, \begin{bmatrix} 5\\1\\4\\0 \end{bmatrix} \right\}$.
 - (a) Find an orthonormal basis for W. (12 pts)

3. Let $L: M_{nn} \to M_{nn}$ be the function $L(A) = A^T A$. Is L a linear transformation? Why or why not? (10 pts)

4. Let $L: P_3 \to \mathbb{R}^3$ be the linear transformation defined by

$$L(at^{3} + bt^{2} + ct + d) = \begin{bmatrix} a - b + c \\ d + 2b - 2c \\ b - c \end{bmatrix} .$$

(a) Find a basis for the kernel of L.

(b) Find the dimension of the range of
$$L$$
. Is L onto? (8 pts)

(c) Find the representation of
$$L$$
 with respect to S and T where
 $S = \{1, t, t^2, t^3\}$ and $T = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$
(10 pts)

(8 pts)

5. Let $L: V \to V$ be a linear transformation. Let $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}}$ be a basis for V. Suppose we know the following:

$$L(\mathbf{v_1}) = \mathbf{v_1} + \mathbf{v_3}$$
$$L(\mathbf{v_2}) = \mathbf{v_1} + 2\mathbf{v_2} + 3\mathbf{v_3}$$
$$L(\mathbf{v_3}) = 2\mathbf{v_3}$$

(a) Find $L(2v_1 - v_2)$. (6 pts)

(b) Find the representation of L with respect to S. (8 pts)

(c) Prove that L is invertible and find $L^{-1}(\mathbf{v_3})$. (12 pts)