Math 3333
 Fall 2014
 Midterm 3

Problem	Points
Problem 1 (20pts)	
Problem 2 (18pts)	
Problem 3 (10pts)	
Problem 4 (26pts)	
Problem 5 (26pts)	
Total	

1. Let V be an inner product space and let \mathbf{u} and \mathbf{v} be vectors in V. Suppose that $\|\mathbf{u}\|=\sqrt{3},\|\mathbf{v}\|=4$ and the angle between \mathbf{u} and \mathbf{v} is $\frac{\pi}{6}$. Compute the following inner products.
The following may be useful: $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
(a) (\mathbf{u}, \mathbf{u}) and (\mathbf{v}, \mathbf{v})
(b) (\mathbf{u}, \mathbf{v})
(c) $(\mathbf{u}+\mathbf{v}, 2 \mathbf{u}-\mathbf{v})$
2. Let W be a subspace of the inner product space \mathbb{R}^{4} with the dot product. Suppose W has basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}4 \\ -1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 1 \\ 4 \\ 0\end{array}\right]\right\}$.
(a) Find an orthonormal basis for W.
(b) Is the vector $\left[\begin{array}{c}-2 \\ 0 \\ 1 \\ 1\end{array}\right]$ in W^{\perp} ? Why or why not? (6 pts)
3. Let $L: M_{n n} \rightarrow M_{n n}$ be the function $L(A)=A^{T} A$. Is L a linear transformation? Why or why not?
4. Let $L: P_{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
L\left(a t^{3}+b t^{2}+c t+d\right)=\left[\begin{array}{c}
a-b+c \\
d+2 b-2 c \\
b-c
\end{array}\right]
$$

(a) Find a basis for the kernel of L.
(b) Find the dimension of the range of L. Is L onto?
(c) Find the representation of L with respect to S and T where

$$
S=\left\{1, t, t^{2}, t^{3}\right\} \text { and } T=\left\{\left[\begin{array}{l}
1 \tag{10pts}\\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

5. Let $L: V \rightarrow V$ be a linear transformation. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be a basis for V. Suppose we know the following:

$$
\begin{gathered}
L\left(\mathbf{v}_{\mathbf{1}}\right)=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{3}} \\
L\left(\mathbf{v}_{\mathbf{2}}\right)=\mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}+3 \mathbf{v}_{\mathbf{3}} \\
L\left(\mathbf{v}_{\mathbf{3}}\right)=2 \mathbf{v}_{\mathbf{3}}
\end{gathered}
$$

(a) Find $L\left(2 \mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)$.
(b) Find the representation of L with respect to S.
(c) Prove that L is invertible and find $L^{-1}\left(\mathbf{v}_{\mathbf{3}}\right)$.

