Math 3333
 Fall 2014
 Midterm 2

Name:

Problem	Points
Problem 1 (10pts)	
Problem 2 (10pts)	
Problem 3 (10pts)	
Problem 4 (20pts)	
Problem 5 (28pts)	
Problem 6 (22pts)	
Total	

1. Let V be the set of all real numbers with operations $\mathbf{u} \oplus \mathbf{v}=\mathbf{u}+\mathbf{v}$ and $c \odot \mathbf{u}=|c| \mathbf{u}$ (where $|c|$ is the absolute value of c). Prove that V with the operations \oplus and \odot is NOT a vector space by finding a property from the definition of a vector space which is not satisfied.
2. Let W be the set of all 2×2 matrices with determinant 0 . Is W a subspace of M_{22} ? Why or why not?
3. Let W be the subspace of P_{3} which consists of all polynomials of the form $p(t)=a t^{3}+b t^{2}+c t+d$ with $a+d=2 b$. Find a basis for W and $\operatorname{dim} W$.
4. Let $S=\left\{\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{llll}2 & 1 & -1 & 1\end{array}\right],\left[\begin{array}{llll}3 & 2 & -2 & 1\end{array}\right],\left[\begin{array}{llll}4 & 0 & 0 & 0\end{array}\right]\right\}$.
(a) Find a basis for span S. What is the dimension of span S ?
(12 pts)
(b) Circle yes or no. You do not need to explain your answer. (2 pts each)
Does S span \mathbb{R}_{4} ? yes/no
Is S linearly independent? yes/no
Does S contain a basis for \mathbb{R}_{4} ? yes/no
Is S contained in a basis for \mathbb{R}_{4} ? yes/no
5. Let V be a 2-dimensional space with basis $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$. Let $T=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$ where $\mathbf{w}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}$ and $\mathbf{w}_{\mathbf{2}}=2 \mathbf{v}_{\mathbf{1}}+3 \mathbf{v}_{\mathbf{2}}$.
(a) Show that T is also a basis for V.
(b) Find the transition matrix $P_{S \leftarrow T}$ from T to S.
(c) If \mathbf{v} is a vector in V with $[\mathbf{v}]_{T}=\left[\begin{array}{c}2 \\ -5\end{array}\right]$, what is $[\mathbf{v}]_{S}$?
6. Let $A=\left[\begin{array}{ccccc}3 & 6 & 2 & -1 & -4 \\ 1 & 2 & 3 & 0 & -2 \\ -2 & -4 & 1 & 1 & 2 \\ 5 & 10 & 1 & -2 & -6 \\ 3 & 6 & 6 & 1 & 2 \\ 2 & 4 & -5 & -3 & -8\end{array}\right]$. The RREF of A is $\left[\begin{array}{ccccc}1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find the rank and nullity of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.
(d) Find a basis for the null space of A.
