$\begin{array}{c} \text{Math 3333} \\ \text{Fall 2014} \\ \text{Midterm 2} \end{array}$

Name:_____

Problem	Points
Problem 1 (10pts)	
Problem 2 (10pts)	
Problem 3 (10pts)	
Problem 4 (20pts)	
Problem 5 (28pts)	
Problem 6 (22pts)	
Total	

1. Let V be the set of all real numbers with operations $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} + \mathbf{v}$ and $c \odot \mathbf{u} = |c|\mathbf{u}$ (where |c| is the absolute value of c). Prove that V with the operations \oplus and \odot is NOT a vector space by finding a property from the definition of a vector space which is not satisfied. (10 pts)

2. Let W be the set of all 2×2 matrices with determinant 0. Is W a subspace of M_{22} ? Why or why not? (10 pts)

3. Let W be the subspace of P_3 which consists of all polynomials of the form $p(t) = at^3 + bt^2 + ct + d$ with a + d = 2b. Find a basis for W and dim W. (10 pts) 4. Let $S = \{ \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & -1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 2 & -2 & 1 \end{bmatrix}, \begin{bmatrix} 4 & 0 & 0 & 0 \end{bmatrix} \}.$ (a) Find a basis for span S. What is the dimension of span S? (12 pts)

(b)	Circle yes or no. You do not need to explain your answer.	(2 pts each)
	Does S span \mathbb{R}_4 ?	yes/no
	Is S linearly independent?	yes/no
	Does S contain a basis for \mathbb{R}_4 ?	yes/no
	Is S contained in a basis for \mathbb{R}_4 ?	yes/no

- 5. Let V be a 2-dimensional space with basis $S = {\mathbf{v_1}, \mathbf{v_2}}$. Let $T = {\mathbf{w_1}, \mathbf{w_2}}$ where $\mathbf{w_1} = \mathbf{v_1} - \mathbf{v_2}$ and $\mathbf{w_2} = 2\mathbf{v_1} + 3\mathbf{v_2}$.
 - (a) Show that T is also a basis for V. (12 pts)

(b) Find the transition matrix
$$P_{S\leftarrow T}$$
 from T to S. (8 pts)

(c) If **v** is a vector in V with
$$[\mathbf{v}]_T = \begin{bmatrix} 2\\ -5 \end{bmatrix}$$
, what is $[\mathbf{v}]_S$? (8 pts)

(b) Find a basis for the column space of
$$A$$
. (5 pts)

(c) Find a basis for the row space of A. (5 pts)

(d) Find a basis for the null space of A. (8 pts)