Math 3333 Fall 2014 Midterm 1

Name:___

Problem	Points
Problem 1 (12pts)	
Problem 2 (8pts)	
Problem 3 (12pts)	
Problem 4 (18pts)	
Problem 5 (17pts)	
Problem 6 (16pts)	
Problem 7 (17pts)	
Total	

1. Let $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Circle yes or no to the following questions. You do not need to show work on this problem. (12 pts)

(a)	Is A a diagonal matrix?	Yes/No
(b)	Is A a scalar matrix?	$\mathrm{Yes/No}$
(c)	Is A an upper triangular matrix?	$\mathrm{Yes/No}$
(d)	Is A a symmetric matrix?	$\mathrm{Yes/No}$
(e)	Is A an invertible matrix?	$\mathrm{Yes/No}$
(f)	Is A in row echelon form?	Yes/No

- 2. The following 2 questions are multiple choice. Circle one answer for each question. You do not need to show work on this problem. (8 pts)
 - (a) Suppose A is a 5×5 matrix and det(A) = 3. What can you say about the reduced row echelon form (RREF) of A?
 - (i) It has three leading ones
 - (ii) It has determinant 3
 - (iii) It is I_5
 - (iv) It is I_3
 - (v) None of the above
 - (b) Suppose $\mathbf{v_1}$ and $\mathbf{v_2}$ are solutions to the linear system $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$. What linear system is $\mathbf{v_1} + 2\mathbf{v_2}$ a solution to?
 - (i) $A\mathbf{x} = 3\mathbf{b}$
 - (*ii*) $3A\mathbf{x} = \mathbf{b}$
 - (*iii*) $A\mathbf{x} = \mathbf{b}$
 - $(iv) A\mathbf{x} = \mathbf{0}$
 - (v) None of the above

3. Is the vector $\mathbf{v} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ a linear combination of the vectors $\mathbf{v_1} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} -2\\1\\-1 \end{bmatrix}$? Why or why not? (12 pts) 4. Suppose A and B are invertible matrices with $A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 3 & -1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & -4 & 2 \end{bmatrix}$

$$B^{-1} = \left[\begin{array}{rrrr} 1 & -4 & 2 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{array} \right].$$

(a) Compute
$$(BA^T)^{-1}$$
. (12 pts)

(b) Let **c** be the vector
$$\mathbf{c} = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$$
. Find all solutions to the linear system
 $BA^T \mathbf{x} = \mathbf{c}.$ (6 pts)

5. Let
$$A = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 5 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix}$$
.
(a) Compute det(A).

(12 pts)

(b) One of the following matrices is A^{-1} , which one is it? Circle your answer. (5 pts)

(i)
$$\begin{bmatrix} 0 & \frac{1}{5} & 0 & \frac{3}{5} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & \frac{2}{5} & 0 & 1 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 0 & \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 0 & 0 & 0 \\ \frac{2}{5} & 0 & 0 & -\frac{1}{5} \end{bmatrix}$$
(ii)
$$\begin{bmatrix} 0 & \frac{1}{5} & 0 & 0 \\ -2 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -\frac{1}{3} \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} 0 & 1 & 0 & \frac{1}{3} \\ \frac{1}{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & \frac{1}{2} & 0 & 1 \end{bmatrix}$$

6. Find all solutions to the following linear system using Gaussian elimination or Gauss-Jordan reduction. Make sure to specify the row operations that you are doing and write your answer as a vector. (16 pts)

$$x + y - z - 3w = 6$$

$$y + 2z = 4$$

$$x + y - z - 2w = 7$$

$$2x + y - 4z - 6w = 8$$

- 7. Let A be an $n \times n$ skew symmetric matrix.
 - (a) Show that if n is odd, then A is not invertible. (12 pts) Hint: Use determinants and their properties.

(b) Show that part (a) is not true for n even by finding an invertible 2×2 skew symmetric matrix. (5 pts)