Exam 1 Solutions

1. Let
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

Circle yes or no to the following questions. You do not need to show work on this problem. (12 pts)

(a) Is A a diagonal matrix?	Yes
(b) Is A a scalar matrix?	No
(c) Is A an upper triangular matrix?	Yes
(d) Is A a symmetric matrix?	Yes
(e) Is A an invertible matrix?	No
(f) Is A in row echelon form?	No

- 2. The following 2 questions are multiple choice. Circle one answer for each question. You do not need to show work on this problem. (8 pts)
 - (a) Suppose A is a 5×5 matrix and det(A) = 3. What can you say about the reduced row echelon form (RREF) of A?

(*iii*) It is I_5

 $det(A) \neq 0$ so A is invertible and the RREF of A is the identity of the same size as A which is I_5 .

- (b) Suppose $\mathbf{v_1}$ and $\mathbf{v_2}$ are solutions to the linear system $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$. What linear system is $\mathbf{v_1} + 2\mathbf{v_2}$ a solution to?
 - (i) $A\mathbf{x} = 3\mathbf{b}$

$$A(v_1 + 2v_2) = Av_1 + 2Av_2 = b + 2b = 3b$$

3. Is the vector $\mathbf{v} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ a linear combination of the vectors $\mathbf{v_1} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} -2\\1\\-1 \end{bmatrix}$? Why or why not? (12 pts)

To see if **v** is a linear combination of the other three vectors, we need to see if we can find x, y, z such that

 $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = x \begin{bmatrix} 1\\2\\0 \end{bmatrix} + y \begin{bmatrix} 3\\1\\1 \end{bmatrix} + z \begin{bmatrix} -2\\1\\-1 \end{bmatrix} = \begin{bmatrix} x+3y-2z\\2x+y+z\\y-z \end{bmatrix}.$ This is equivalent to checking if the linear system x + 3y - 2z = 1, 2x + y + z = 1, y - z = 1 has any solutions. This linear system has augmented matrix $\begin{bmatrix} 1&3&-2&1\\2&1&1&1\\0&1&-1&1\\0&1&-1&1\\\end{bmatrix}.$ The row operations $r_2 - 2r_1 \to r_2, r_2 + 5r_3 \to r_2$ take this to $\begin{bmatrix} 1&3&-2&1\\0&0&0&4\\0&1&-1&1\\0&1&-1&1\\\end{bmatrix}.$ The second row is the equation 0 = 4 so it has no solutions and **v** is not a

linear combination of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$.

4. Suppose A and B are invertible matrices with $A^{-1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 \\ 3 & -1 & 1 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 1 & -4 & 2 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. (a) Compute $(BA^{T})^{-1}$. (12 pts) $(BA^{T})^{-1} = (A^{T})^{-1}B^{-1} = (A^{-1})^{T}B^{-1} =$ $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 2 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & -3 & 3 \\ 1 & -3 & 1 \end{bmatrix}$ (b) Let **c** be the vector $\mathbf{c} = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$. Find all solutions to the linear system $BA^{T}\mathbf{x} = \mathbf{c}$. (6 pts) The solutions are $\mathbf{x} = (BA^{T})^{-1}\mathbf{c} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & -3 & 3 \\ 1 & -3 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 11 \\ 1 \end{bmatrix}$ 5. Let $A = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 5 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix}$. (a) Compute det(A). (12 pts)

There are lots of ways to compute this determinant. One way to do this would be to use cofactor expansion. If you expand along row 2 twice, you

get det(A) = $-5 \det \left(\begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \right) = (-5)(-1) \det \left(\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \right) = (-5)(-1)(1-6) = -25.$

Another way would be using reduction to triangular form. The row operations $r_1 \leftrightarrow r_2, r_4 - 2r_2 \rightarrow r_4$ give you the upper triangular matrix $\begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -5 \end{bmatrix}$. This matrix has determinant 25 (the product of the

diagonals). The row operations we did were type 1 and 3. The type 3 doesn't change the determinant but the type 1 changed the sign, so det(A) = -25.

This matrix can also be done using the definition of the determinant there would be 2 nonzero terms. Or it can be done with a combination of different methods, like cofactor expansion to get it down to 3×3 determinants then the 3×3 trick to find those determinants.

(b) One of the following matrices is A^{-1} , which one is it? Circle your answer. (5 pts)

(iii)
$$\begin{bmatrix} 0 & \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 0 & 0 & \frac{3}{5} \\ 0 & 0 & -1 & 0 \\ \frac{2}{5} & 0 & 0 & -\frac{1}{5} \end{bmatrix}$$

The easiest way to do this is probably just to pick one and start multiplying by A. If at any point you get an entry that doesn't match I_4 , then try another one. You can also use the method where you look at the matrix $[A : I_4]$ and do row operations to get to $[I_4 : A^{-1}]$, but this probably takes longer.

6. Find all solutions to the following linear system using Gaussian elimination or Gauss-Jordan reduction. Make sure to specify the row operations that you are doing and write your answer as a vector. (16 pts)

$$x + y - z - 3w = 6$$

$$y + 2z = 4$$

$$x + y - z - 2w = 7$$

$$2x + y - 4z - 6w = 8$$

The augmented matrix of this linear system is

$$\begin{bmatrix} 1 & 1 & -1 & -3 & 6 \\ 0 & 1 & 2 & 0 & 4 \\ 1 & 1 & -1 & -2 & 7 \\ 2 & 1 & -4 & -6 & 8 \end{bmatrix}$$
. The

row operations $r_3 - r_1 \to r_3, r_4 - 2r_1 \to r_4, r_4 + r_2 \to r_4$ give you the matrix $\begin{bmatrix} 1 & 1 & -1 & -3 & 6 \\ 0 & 1 & 2 & 0 & | & 4 \\ 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$. This is in REF and you can either use back

substitution to solve from here, or put the matrix in RREF. The row operations $r_1 + 3r_3 \rightarrow r_1, r_1 - r_2 \rightarrow r_1$ will give you the RREF which is

 $\begin{bmatrix} 1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. The variable z can be anything since the column

corresponding to z does not contain a leading one. The columns corresponding to the other variables have leading ones so they can be solved for in terms of z. The equations from RREF are x - 3z = 5, y + 2z = 4, w = 1 so the

solutions are all vectors of the form $\begin{bmatrix} 5+3z\\4-2z\\z\\1 \end{bmatrix}$ where z can be anything.

- 7. Let A be an $n \times n$ skew symmetric matrix.
 - (a) Show that if n is odd, then A is not invertible. (12 pts)Hint: Use determinants and their properties.

A skew symmetric so $A^T = -A$. Taking determinants, this means $det(A^T) = det(-A)$. Using properties of determinants, $det(A^T) = det(A)$ and $det(-A) = (-1)^n det(A) = -det(A)$, so det(A) = -det(A). Note that we used the fact that n was odd to get that $(-1)^n = -1$. The equation det(A) = -det(A) means that det(A) = 0 so A is not invertible.

(b) Show that part (a) is not true for n even by finding an invertible 2×2 skew symmetric matrix. (5 pts)

The 2 × 2 skew symmetric matrices look like $\begin{bmatrix} 0 & k \\ -k & 0 \end{bmatrix}$ for a constant k. The determinant of a matrix of this form is k^2 so as long as $k \neq 0$, the matrix will be invertible. Hence any matrix of the form $\begin{bmatrix} 0 & k \\ -k & 0 \end{bmatrix}$ with $k \neq 0$ modulo by the form $\begin{bmatrix} 0 & k \\ -k & 0 \end{bmatrix}$ $k \neq 0$ would be an example of a skew symmetric invertible matrix.