Exam 1 Solutions

1. Let $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Circle yes or no to the following questions. You do not need to show work on this problem.
(a) Is A a diagonal matrix? Yes
(b) Is A a scalar matrix?
(c) Is A an upper triangular matrix? Yes
(d) Is A a symmetric matrix? Yes
(e) Is A an invertible matrix? No
(f) Is A in row echelon form? No
2. The following 2 questions are multiple choice. Circle one answer for each question. You do not need to show work on this problem.
(a) Suppose A is a 5×5 matrix and $\operatorname{det}(A)=3$. What can you say about the reduced row echelon form (RREF) of A ?
(iii) It is I_{5}
$\operatorname{det}(A) \neq 0$ so A is invertible and the RREF of A is the identity of the same size as A which is I_{5}.
(b) Suppose $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are solutions to the linear system $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$. What linear system is $\mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}$ a solution to?

$$
\begin{aligned}
& \text { (i) } A \mathbf{x}=3 \mathbf{b} \\
& A\left(\mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}\right)=A \mathbf{v}_{\mathbf{1}}+2 A \mathbf{v}_{\mathbf{2}}=\mathbf{b}+2 \mathbf{b}=3 \mathbf{b} \text {. }
\end{aligned}
$$

3. Is the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ a linear combination of the vectors
$\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]$? Why or why not?
To see if \mathbf{v} is a linear combination of the other three vectors, we need to see if we can find x, y, z such that
$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=x\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+y\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]+z\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}x+3 y-2 z \\ 2 x+y+z \\ y-z\end{array}\right]$. This is equivalent to checking if the linear system $x+3 y-2 z=1,2 x+y+z=1, y-z=1$ has any solutions. This linear system has augmented matrix $\left[\begin{array}{ccc:c}1 & 3 & -2 & 1 \\ 2 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1\end{array}\right]$. The row operations $r_{2}-2 r_{1} \rightarrow r_{2}, r_{2}+5 r_{3} \rightarrow r_{2}$ take this to $\left[\begin{array}{ccc:c}1 & 3 & -2 & 1 \\ 0 & 0 & 0 & 4 \\ 0 & 1 & -1 & 1\end{array}\right]$. The second row is the equation $0=4$ so it has no solutions and \mathbf{v} is not a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$.
4. Suppose A and B are invertible matrices with $A^{-1}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 0 \\ 3 & -1 & 1\end{array}\right]$ and $B^{-1}=\left[\begin{array}{ccc}1 & -4 & 2 \\ -1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right]$.
(a) Compute $\left(B A^{T}\right)^{-1}$.
$\left(B A^{T}\right)^{-1}=\left(A^{T}\right)^{-1} B^{-1}=\left(A^{-1}\right)^{T} B^{-1}=$
$\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 2 & -1 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -4 & 2 \\ -1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 & -3 & 3 \\ 1 & -3 & 1\end{array}\right]$
(b) Let \mathbf{c} be the vector $\mathbf{c}=\left[\begin{array}{c}-2 \\ 0 \\ 3\end{array}\right]$. Find all solutions to the linear system $B A^{T} \mathbf{x}=\mathbf{c}$.
The solutions are $\mathbf{x}=\left(B A^{T}\right)^{-1} \mathbf{c}=\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 & -3 & 3 \\ 1 & -3 & 1\end{array}\right]\left[\begin{array}{c}-2 \\ 0 \\ 3\end{array}\right]=\left[\begin{array}{c}-3 \\ 11 \\ 1\end{array}\right]$
5. Let $A=\left[\begin{array}{cccc}0 & 1 & 0 & 3 \\ 5 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 1\end{array}\right]$.
(a) $\operatorname{Compute} \operatorname{det}(A)$.

There are lots of ways to compute this determinant. One way to do this would be to use cofactor expansion. If you expand along row 2 twice, you
$\operatorname{get} \operatorname{det}(A)=-5 \operatorname{det}\left(\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & -1 & 0 \\ 2 & 0 & 1\end{array}\right]\right)=(-5)(-1) \operatorname{det}\left(\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]\right)=$
$(-5)(-1)(1-6)=-25$.
Another way would be using reduction to triangular form. The row operations $r_{1} \leftrightarrow r_{2}, r_{4}-2 r_{2} \rightarrow r_{4}$ give you the upper triangular matrix
$\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -5\end{array}\right]$. . This matrix has determinant 25 (the product of the
diagonals). The row operations we did were type 1 and 3 . The type 3 doesn't change the determinant but the type 1 changed the sign, so $\operatorname{det}(A)=-25$.

This matrix can also be done using the definition of the determinant there would be 2 nonzero terms. Or it can be done with a combination of different methods, like cofactor expansion to get it down to 3×3 determinants then the 3×3 trick to find those determinants.
(b) One of the following matrices is A^{-1}, which one is it? Circle your answer. (5 pts)
(iii) $\left[\begin{array}{cccc}0 & \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 0 & 0 & \frac{3}{5} \\ 0 & 0 & -1 & 0 \\ \frac{2}{5} & 0 & 0 & -\frac{1}{5}\end{array}\right]$

The easiest way to do this is probably just to pick one and start multiplying by A. If at any point you get an entry that doesn't match I_{4}, then try another one. You can also use the method where you look at the matrix $\left[A: I_{4}\right]$ and do row operations to get to $\left[I_{4}: A^{-1}\right]$, but this probably takes longer.
6. Find all solutions to the following linear system using Gaussian elimination or Gauss-Jordan reduction. Make sure to specify the row operations that you are doing and write your answer as a vector.

$$
\begin{gathered}
x+y-z-3 w=6 \\
y+2 z=4 \\
x+y-z-2 w=7 \\
2 x+y-4 z-6 w=8
\end{gathered}
$$

The augmented matrix of this linear system is $\left[\begin{array}{cccc:c}1 & 1 & -1 & -3 & 6 \\ 0 & 1 & 2 & 0 & 4 \\ 1 & 1 & -1 & -2 & 7 \\ 2 & 1 & -4 & -6 & 8\end{array}\right]$. The
row operations $r_{3}-r_{1} \rightarrow r_{3}, r_{4}-2 r_{1} \rightarrow r_{4}, r_{4}+r_{2} \rightarrow r_{4}$ give you the matrix $\left[\begin{array}{cccc:c}1 & 1 & -1 & -3 & 6 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. This is in REF and you can either use back
substitution to solve from here, or put the matrix in RREF. The row operations $r_{1}+3 r_{3} \rightarrow r_{1}, r_{1}-r_{2} \rightarrow r_{1}$ will give you the RREF which is
$\left[\begin{array}{cccc:c}1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The variable z can be anything since the column
corresponding to z does not contain a leading one. The columns corresponding to the other variables have leading ones so they can be solved for in terms of
z. The equations from RREF are $x-3 z=5, y+2 z=4, w=1$ so the
solutions are all vectors of the form $\left[\begin{array}{c}5+3 z \\ 4-2 z \\ z \\ 1\end{array}\right]$ where z can be anything.
7. Let A be an $n \times n$ skew symmetric matrix.
(a) Show that if n is odd, then A is not invertible.

Hint: Use determinants and their properties.
A skew symmetric so $A^{T}=-A$. Taking determinants, this means $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(-A)$. Using properties of determinants, $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$ and $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)=-\operatorname{det}(A)$, so $\operatorname{det}(A)=-\operatorname{det}(A)$. Note that we used the fact that n was odd to get that $(-1)^{n}=-1$. The equation $\operatorname{det}(A)=-\operatorname{det}(A)$ means that $\operatorname{det}(A)=0$ so A is not invertible.
(b) Show that part (a) is not true for n even by finding an invertible 2×2 skew symmetric matrix.
The 2×2 skew symmetric matrices look like $\left[\begin{array}{cc}0 & k \\ -k & 0\end{array}\right]$ for a constant k. The determinant of a matrix of this form is k^{2} so as long as $k \neq 0$, the matrix will be invertible. Hence any matrix of the form $\left[\begin{array}{cc}0 & k \\ -k & 0\end{array}\right]$ with $k \neq 0$ would be an example of a skew symmetric invertible matrix.

