MATH 2443 Final Exam Review Sheet

- 1. Assume that the function f(u, v) has continuous partial derivatives f_u and f_v and suppose that $f_u(1, 1) = 1$ and that $f_v(1, 1) = 2$. A new function g(x, y, z)is defined by setting g(x, y, z) = f(x/y, y/z). Compute $g_y(1, 1, 1)$.
- 2. Evaluate the limit or show it does not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{6x^3y}{2x^4 + y^4}.$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2(y)}{x^2 + 2y^2}.$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2}.$$

(d)
$$\lim_{(x,y)\to(1,2)} \frac{y - 2x}{4 - xy^2}.$$

- 3. Find all critical points of the function f and determine if each critical point is a local max, local min, or saddle point.
 - (a) $f(x, y) = x^3y + 12x^2 8y$ (b) $f(x, y) = e^{4y - x^2 - y^2}$
- 4. Find the point or points on the curve $x^2 + 3y^2 = 36$ which are closest to the point (2,0). Find the point or points on the curve which are furthest from the point (2,0).

5. Evaluate
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \frac{y^2}{(x^2+y^2)^{3/2}} \, dy dx.$$

- 6. Let f(x, y, z) be differentiable. Suppose f(1, 3, 5) = 7 and $\nabla f(1, 3, 5) = \langle 2, -3, 1 \rangle$.
 - (a) Compute the directional derivative of f at the point (1,3,5) in the direction of the point (-1,4,7).
 - (b) Find the equation of the tangent plane to the surface f(x, y, z) = 7 at the point (1, 3, 5).
 - (c) Use linear approximation to estimate f(.9, 3.2, 5.1).
 - (d) Compute $\nabla g(3,2)$ where g(x,y) = f(2y x, xy 3, x + y).
- 7. Find the area of the part of the surface $z = x^2 + y^2$ between the planes z = 1and z = 2.

- 8. Evaluate $\int_0^1 \int_1^4 x\sqrt{3+x^2/y} \, dydx + \int_1^2 \int_{x^2}^4 x\sqrt{3+x^2/y} \, dydx.$
- 9. The function $f(x, y, z) = x^2 + 2xy + 2y^2 + 3z^2$ has a minimum value on the plane x + 3y + 3z = 8. Find the point where the minimum occurs.
- 10. Let $w = x\sqrt{y} x y$. Find the maximum and minimum values of w and where the occur on the triangular region bounded by the x-axis, the y-axis, and the line x + y = 12.
- 11. Given a function f(x, y), suppose its gradient at the point (1, 2) is (2, -4).
 - (a) Find the directional derivative of f in the direction of the origin.
 - (b) Find the directional derivative of f in the direction of the maximum rate of increase of f.
 - (c) Let $w = f(t^3, t^2 + 1)$. Find dw/dt at t = 1.
- 12. Find $\int_C y^2(e^x + 1)dx + 2y(e^x + 1)dy$ where C is the closed path formed of three parts: the curve $y = x^2$ from (0,0) to (2,4), the line segment from (2,4) to (0,2) and the line segment from (0,2) to (0,0).
- 13. A particle is moved in the plane from the origin to the point (1, 1). While it is moving, it is acted on by the force $F = \langle y^2 - ye^x + xy, 2xy - e^x + x^2 \rangle$. This experiment is done twice. The first time the particle is moved in a straight line and the second time is it moved along the curve $y = x^3$. The work done by the force the first time is W_1 and the second time it is W_2 . Determine which of W_1 and W_2 is bigger and by how much.
- 14. The force $F = \langle e^{x^2}, 2x e^{y^2} \rangle$ acts on a particle moving from (0,0) to (1,1).
 - (a) Compute the work done by the force if the particle moves in a straight line.
 - (b) Compute the work done if the particle moves first along the x-axis to (4,0) then then in a straight line to (1,1).
- 15. Let w = f(x, y, z) be a differentiable function. At the point x = 3, y = 2, z = 1 assume that $w = 4, \partial w / \partial x = -1, \partial w / \partial y = 2$, and $\partial w / \partial z = 3$. Now view z as a function of x and y implicitly defined by f(x, y, z) = 4. Find ∇z at x = 3, y = 2.
- 16. Find the maximum and minimum of $f(x, y, z) = xy + \frac{1}{3}z^3$ on $x^2 + y^2 + 2z^2 \le 32$.
- 17. Set up but do not evaluate an integral equal to the area of that part of the surface $z = \sqrt{1 x y}$ that lies inside the cylinder of radius 1 whose axis is the *x*-axis.

- 18. Evaluate $\int_C (y + \sin(x)) dx + (z^2 + \cos(y)) dy + x^3 dz$ where C is the curve parametrized by $r(t) = \langle \sin(t), \cos(t), \sin(2t) \rangle, 0 \le t \le 2\pi$. Hint: C is on the surface z = 2xy.
- 19. (a) Find a number c such that the force field $F = \langle ye^x + 3x^2 + 3y^2, e^x + cxy + 3y^2 \rangle$ is conservative.
 - (b) Suppose the constant c has the value found in part a. Find a function f(x, y) such that $F = \nabla f$.
 - (c) Continuing to assume that c has the value found in part a, find the work done by F on a particle moving from (1,0) to (0,1) along the circle of radius 1 centered at the origin.
- 20. A solid sphere with radius $\sqrt{2}$ is cut into two unequal piece by a plane, where the distance from the center of the ball to the plane is 1 unit. Set up, but do not evaluate, integrals equal to the volume of the smaller piece. Do this in rectangular, spherical, and cylindrical coordinates.
- 21. Let S be the surface consisting of three surfaces S_1, S_2, S_3 where S_1 is the part of the cylinder $x^2 + y^2 = 16$ with $0 \le z \le 4$, S_2 is the disk $x^2 + y^2 \le 16$ on the plane z = 4, and S_3 is the hemisphere $z = \sqrt{16 - x^2 - y^2}$. Find $\iint_S F \cdot d\mathbf{S}$ where $F = \langle e^{\cos(z)}, 2y + 3x, 1/(x^2 + y^2) \rangle$.
- 22. Let S be the surface of the region which is between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ and also above the cone $z = \sqrt{x^2 + y^2}$. Find $\iint_S F \cdot d\mathbf{S}$ where $F = \langle 2x^2z, xyz, y^4 \rangle$.
- 23. Evaluate $\int_C x^2 y dx + \frac{1}{3}x^3 dy + xy dz$ where C is the curve of intersection of the hyperbolic paraboloid $z = y^2 x^2$ and the cylinder $x^2 + y^2 = 1$ oriented counterclockwise when viewed from above.
- 24. Let S be the top and 4 sides (but not bottom) of the cube with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1) oriented outwards. Let $F = \langle xy, z^2y, x^3z \rangle$. Compute $\iint_S F \cdot d\mathbf{S}$ and $\iint_S \operatorname{curl}(F) \cdot d\mathbf{S}$.