MATH 2443

Final Exam Review Sheet

1. Assume that the function $f(u, v)$ has continuous partial derivatives f_{u} and f_{v} and suppose that $f_{u}(1,1)=1$ and that $f_{v}(1,1)=2$. A new function $g(x, y, z)$ is defined by setting $g(x, y, z)=f(x / y, y / z)$. Compute $g_{y}(1,1,1)$.
2. Evaluate the limit or show it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{6 x^{3} y}{2 x^{4}+y^{4}}$.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2}(y)}{x^{2}+2 y^{2}}$.
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$.
(d) $\lim _{(x, y) \rightarrow(1,2)} \frac{y-2 x}{4-x y^{2}}$.
3. Find all critical points of the function f and determine if each critical point is a local max, local min, or saddle point.
(a) $f(x, y)=x^{3} y+12 x^{2}-8 y$
(b) $f(x, y)=e^{4 y-x^{2}-y^{2}}$
4. Find the point or points on the curve $x^{2}+3 y^{2}=36$ which are closest to the point $(2,0)$. Find the point or points on the curve which are furthest from the point $(2,0)$.
5. Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y d x$.
6. Let $f(x, y, z)$ be differentiable. Suppose $f(1,3,5)=7$ and $\nabla f(1,3,5)=\langle 2,-3,1\rangle$.
(a) Compute the directional derivative of f at the point $(1,3,5)$ in the direction of the point $(-1,4,7)$.
(b) Find the equation of the tangent plane to the surface $f(x, y, z)=7$ at the point ($1,3,5$).
(c) Use linear approximation to estimate $f(.9,3.2,5.1)$.
(d) Compute $\nabla g(3,2)$ where $g(x, y)=f(2 y-x, x y-3, x+y)$.
7. Find the area of the part of the surface $z=x^{2}+y^{2}$ between the planes $z=1$ and $z=2$.
8. Evaluate $\int_{0}^{1} \int_{1}^{4} x \sqrt{3+x^{2} / y} d y d x+\int_{1}^{2} \int_{x^{2}}^{4} x \sqrt{3+x^{2} / y} d y d x$.
9. The function $f(x, y, z)=x^{2}+2 x y+2 y^{2}+3 z^{2}$ has a minimum value on the plane $x+3 y+3 z=8$. Find the point where the minimum occurs.
10. Let $w=x \sqrt{y}-x-y$. Find the maximum and minimum values of w and where the occur on the triangular region bounded by the x-axis, the y-axis, and the line $x+y=12$.
11. Given a function $f(x, y)$, suppose its gradient at the point $(1,2)$ is $\langle 2,-4\rangle$.
(a) Find the directional derivative of f in the direction of the origin.
(b) Find the directional derivative of f in the direction of the maximum rate of increase of f.
(c) Let $w=f\left(t^{3}, t^{2}+1\right)$. Find $d w / d t$ at $t=1$.
12. Find $\int_{C} y^{2}\left(e^{x}+1\right) d x+2 y\left(e^{x}+1\right) d y$ where C is the closed path formed of three parts: the curve $y=x^{2}$ from $(0,0)$ to $(2,4)$, the line segment from $(2,4)$ to $(0,2)$ and the line segment from $(0,2)$ to $(0,0)$.
13. A particle is moved in the plane from the origin to the point $(1,1)$. While it is moving, it is acted on by the force $F=\left\langle y^{2}-y e^{x}+x y, 2 x y-e^{x}+x^{2}\right\rangle$. This experiment is done twice. The first time the particle is moved in a straight line and the second time is it moved along the curve $y=x^{3}$. The work done by the force the first time is W_{1} and the second time it is W_{2}. Determine which of W_{1} and W_{2} is bigger and by how much.
14. The force $F=\left\langle e^{x^{2}}, 2 x-e^{y^{2}}\right\rangle$ acts on a particle moving from $(0,0)$ to $(1,1)$.
(a) Compute the work done by the force if the particle moves in a straight line.
(b) Compute the work done if the particle moves first along the x-axis to $(4,0)$ then then in a straight line to $(1,1)$.
15. Let $w=f(x, y, z)$ be a differentiable function. At the point $x=3, y=2, z=1$ assume that $w=4, \partial w / \partial x=-1, \partial w / \partial y=2$, and $\partial w / \partial z=3$. Now view z as a function of x and y implicitly defined by $f(x, y, z)=4$. Find ∇z at $x=3, y=2$.
16. Find the maximum and minimum of $f(x, y, z)=x y+\frac{1}{3} z^{3}$ on $x^{2}+y^{2}+2 z^{2} \leq 32$.
17. Set up but do not evaluate an integral equal to the area of that part of the surface $z=\sqrt{1-x-y}$ that lies inside the cylinder of radius 1 whose axis is the x-axis.
18. Evaluate $\int_{C}(y+\sin (x)) d x+\left(z^{2}+\cos (y)\right) d y+x^{3} d z$ where C is the curve parametrized by $r(t)=\langle\sin (t), \cos (t), \sin (2 t)\rangle, 0 \leq t \leq 2 \pi$. Hint: C is on the surface $z=2 x y$.
19. (a) Find a number c such that the force field
$F=\left\langle y e^{x}+3 x^{2}+3 y^{2}, e^{x}+c x y+3 y^{2}\right\rangle$ is conservative.
(b) Suppose the constant c has the value found in part a. Find a function $f(x, y)$ such that $F=\nabla f$.
(c) Continuing to assume that c has the value found in part a, find the work done by F on a particle moving from $(1,0)$ to $(0,1)$ along the circle of radius 1 centered at the origin.
20. A solid sphere with radius $\sqrt{2}$ is cut into two unequal piece by a plane, where the distance from the center of the ball to the plane is 1 unit. Set up, but do not evaluate, integrals equal to the volume of the smaller piece. Do this in rectangular, spherical, and cylindrical coordinates.
21. Let S be the surface consisting of three surfaces S_{1}, S_{2}, S_{3} where S_{1} is the part of the cylinder $x^{2}+y^{2}=16$ with $0 \leq z \leq 4, S_{2}$ is the disk $x^{2}+y^{2} \leq 16$ on the plane $z=4$, and S_{3} is the hemisphere $z=\sqrt{16-x^{2}-y^{2}}$. Find $\iint_{S} F \cdot d \mathbf{S}$ where $F=\left\langle e^{\cos (z)}, 2 y+3 x, 1 /\left(x^{2}+y^{2}\right)\right\rangle$.
22. Let S be the surface of the region which is between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ and also above the cone $z=\sqrt{x^{2}+y^{2}}$. Find $\iint_{S} F \cdot d \mathbf{S}$ where $F=\left\langle 2 x^{2} z, x y z, y^{4}\right\rangle$.
23. Evaluate $\int_{C} x^{2} y d x+\frac{1}{3} x^{3} d y+x y d z$ where C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$ oriented counterclockwise when viewed from above.
24. Let S be the top and 4 sides (but not bottom) of the cube with vertices $(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)$ oriented outwards. Let $F=\left\langle x y, z^{2} y, x^{3} z\right\rangle$. Compute $\iint_{S} F \cdot d \mathbf{S}$ and $\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S}$.
