1. Evaluate $\int_{C} x z d x-z d y+y d z$ where C is the line segment from $(1,1,1)$ to $(2,3,4)$.
2. The force field $F(x, y)=\left\langle e^{x^{2}}, 2 x-e^{y^{2}}\right\rangle$ acts on a particle moving from $(0,0)$ to $(1,1)$.
(a) Compute the work done by the force if the particle moves in a straight line.
(b) Compute the work done by the force if the particle moves first along the x-axis to $(4,0)$ and then in a straight line to $(1,1)$.
3. Evaluate $\int_{C}(1+y z) d x+(2 y+x z) d y+\left(-3 x^{2}\right) d z$ along the path parameterized by $x=t, y=t^{2}, z=e^{t}$ for $0 \leq t \leq 1$.
4. Find the mass of that part of the surface $z=x y$ that lies within one unit of the z-axis if the density at the point (x, y) is given by $\delta(x, y)=x^{2}+y^{2}$. Note: The mass of an object is equal to the integral over the object of the density function.
5. A nonuniform piece of wire if bent into the shape of the curve $y=\sin (x)$ between $x=0$ and $x=\pi$. The density of the wire at the point (x, y) is equal to $1+y$. Set up, but do not evaluate, an integral equal to the mass of the wire.
6. Find the work done by the force $F(x, y)=\left\langle 2 x \cos \left(x^{2}\right)+e^{y}, x e^{y}\right\rangle$ in moving a particle along a semicircle of radius 1 from $(1,0)$ to $(-1,0)$.
7. A force given by $F(x, y)=\left\langle y, e^{x}\right\rangle$ acts on a particle moving from the point $(0,1)$ to the point $(2,0)$ along the following path: first along the curve $y=e^{x}$ from $(0,1)$ to $\left(2, e^{2}\right)$ and then along a line from there to $(2,0)$. Find the work done by the force.
8. Evaluate $\int_{C} 2 x e^{y} d x+\left(3 x+x^{2} e^{y}\right) d y$ where C is the triangular path from $(0,0)$ to $(1,1)$ to $(2,0)$ and back to $(0,0)$.
9. Let $F(x, y, z)=\left\langle e^{y}+z e^{x}, x e^{y}-e^{z}, e^{x}-y e^{z}\right\rangle$.
(a) Compute the curl and divergence of F.
(b) Determine if F is conservative. If yes, find f such that $F=\nabla f$, if not explain why.
(c) Integrate $\int_{C} F \cdot d r$ along the line segment from $(1,1,1)$ to $(2,2,2)$.
10. Compute $\int \cos \left(y^{2}\right) d x+x\left(x-2 y \sin \left(y^{2}\right)\right) d y$ along each of the following paths.
(a) The line segment from $(0,0)$ to $(1,0)$.
(b) The line segment from $(0,1)$ to $(0,0)$.
(c) The line segment from $(0,1)$ to $(1,0)$.
11. Let F be the force field $F(x, y)=\left\langle x, \sqrt{x^{2}+y^{2}}\right\rangle$. A particle the feels this force starts at the origin. It is moved along the x-axis to the point $(1,0)$ and then it is moved along a quarter circle centered at the origin until it reaches the point $(0,1)$. Finally the particle is returned to the origin along the y-axis. Compute the total work done by the force field on the particle during this round trip.
12. A certain force $F=\langle P, Q, R\rangle$ is not completely known. It is known however that $P=y z e^{x y}-y^{2}+A x z, Q=x z e^{x y}+2 e^{z}+B x y$, and $R=e^{x y}+3 x^{2}+C y e^{z}$ where A, B, C are constants. A particle is moved from $(0,0,0)$ to $(1,1,1)$ many times along different paths and it is found that the work done by the force is the same each time. Determine values of A, B, C which might explain this result. Compute the work done by the force using these values of A, B, C.
13. A thin hollow shell has the shape of the paraboloid $z=9-x^{2}-y^{2}$ for $z \geq 0$. Find the surface area of the shell.
14. A sphere of radius 2 is centered at the origin. Find the area of that part of the sphere that lies above the region on the (x, y)-plane where $x \geq 0, y \geq 0$ and $x^{2}+y^{2} \leq 1$.
15. Evaluate the line integral $\int_{C} x y d s$ where C is the part of the ellipse $x^{2}+4 y^{2}=4$ in the first quadrant.
16. Evaluate the surface integral $\iint_{S} x y d S$ where S is the triangular region with vertices $(1,0,0),(0,2,0)$, and $(0,0,2)$.
17. Let S be the surface with vector equation $r(u, v)=\langle u \cos (v), u \sin (v), v\rangle$, $0 \leq u \leq 2,0 \leq v \leq \pi$. See Figure IV on p. 1115 of the textbook for a picture of this surface.
(a) Find the equation of the plane tangent to S at the point $(0,1, \pi / 2)$.
(b) Set up, but do not evaluate, and integral for the surface area of S.
(c) Evaluate the surface integral $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$.
(d) Evaluate the surface integral $\iint_{S} F \cdot d \mathbf{S}$ where $F=\left\langle y, x, z^{2}\right\rangle$ and S has upward orientation.
