1. Let E be the solid below the surface $z=x+2 y^{2}$ and above the rectangle $R=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 4\}$.
(a) Estimate the volume of E using a Riemann sum with $m=n=2$ and sample points the midpoint.
(b) Estimate the volume of E using a Riemann sum with $m=2, n=4$ and sample points the lower left corner.
(c) Find the actual volume of E using an iterated integral.
2. Let D be the region on the $x y$-plane between the curves $y=|3 x|$ and $y=4-x^{2}$. Set up the double integral $\iint_{R} f(x, y) d A$ as a sum of iterated integrals in 2 different ways (integrating with respect to x first and integrating with respect to y first).
3. Evaluate the following integrals.
(a)

$$
\int_{1}^{e^{2}} \int_{\ln (y)}^{2} \frac{e^{x^{2}}}{y} d x d y
$$

(b)

$$
\iint_{R} y \sin \left(x^{3}\right) d A
$$

where R is the triangle with vertices $(0,0),(2,2)$, and $(2,0)$.
(c)

$$
\int_{0}^{1} \int_{0}^{\sqrt{x}} x y d y d x
$$

(d)

$$
\iint_{R} x^{1 / 3} y d A
$$

where R is the quarter disk defined by $x \geq 0, y \geq 0$ and $x^{2}+y^{2} \leq 1$.
(e)

$$
\int_{0}^{1} \int_{y}^{\sqrt{2 y-y^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y
$$

(f)

$$
\int_{1}^{2} \int_{x / \sqrt{3}}^{x \sqrt{3}} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y d x
$$

(g)

$$
\int_{0}^{8} \int_{x^{2 / 3}}^{4} \frac{x}{\sqrt{x^{2}+y^{3}}} d y d x
$$

(h)

$$
\iint_{R} y d A
$$

where R consists of all points between the positive x-axis and the line $\theta=\pi / 3$ that are also inside the circle of radius 2 centered at the origin and outside of the circle of radius 1 centered at the point $(1,0)$.
4. Fill in the blanks with x, y and z in some order and evaluate.

$$
\int_{0}^{1} \int_{0}^{x} \int_{x}^{x+z} z d() d() d()
$$

5. Let E be the region bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, y=3 x, z=0$ in the first octant. Set up $\iiint_{E} z d V$ six different ways. Evaluate one of these integrals.
6. Evaluate:

$$
\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} x z d z d x d y
$$

7. Find the mass of the solid E with density function $\delta(x, y, z)$ using the formula

$$
\text { Mass }=\iiint_{E} \delta(x, y, z) d V
$$

(a) E is the region between two spheres with common center and radii $\sqrt{2}$ and 1 and with density at (x, y, z) equal to the distance from (x, y, z) to the center of the spheres.
(b) E is the region bounded by the planes $x=y, x=2, y=0, z=2 x$ and $z=0$ with $\delta(x, y, z)=y$.
8. Let E be the region inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the plane $z=1$. Set up triple integrals for the volume of E in both cylindrical and spherical coordinates. Evaluate both and check that you get the same answer.
9. A spherical ball of radius 2 has a cylindrical hole of radius 1 bored through it. The ball is centered at the origin and the z-axis forms the axis of the hole. Set up integrals in spherical and cylindrical coordinates for the integral of $f(x, y, z)=x^{2}+y^{2}$ over this region. Do not evaluate.

