MATH 2443 1st Midterm Review Sheet

1. Let

$$f(x) = \begin{cases} \sqrt{x^2 - y}, & (x, y) \neq (0, -5), (2, -5) \\ 3, & (x, y) = (0, -5), (2, -5) \end{cases}.$$

- (a) Find and sketch the domain of f.
- (b) Find the range of f.
- (c) Where is f continuous?
- 2. Find the limit or show it does not exist.

(a)

$$\lim_{(x,y)\to(0,0)} \frac{x^3y + xy^3}{x^2 + y^2}$$
(b)

$$\lim_{(x,y)\to(0,0)} \frac{x^3y + xy^3}{x^4 + y^4}$$
(c)

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{1 - e^{x^2 + y^2}}$$

- 3. I have two functions, f(x, y) and g(x, y). I compute f_x and g_x and get two of these three functions: $e^y, 2xy, x + y$. Then I compute f_y and g_y and get two of these three functions: $2x + e^y, xe^y, x^2 + e^y$. Which function in the first list is not one of f_x or g_x and which function in the second list is not f_y or g_y ?
- 4. The equation $x^2yz z^2 = x^3 y^2$ determines a surface through the point (1, 2, 3).
 - (a) Find the equation of the tangent plane to the surface at this point.
 - (b) Viewing z as an implicitly defined function of x and y near the point (1,2,3), compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at x = 1, y = 2.
- 5. Given a function z = f(x, y), one of the following three functions is f_x and one is f_y . Identify them. The functions are: $e^x + e^y, e^x + y, xe^y + y$.
- 6. Let $z = x \cos(y^2) + e^{xy}$. Use differentials to estimate the change in z as x changes from 7 to 7.1 and y changes from 0 to -.1.

- The two shorter sides of a right triangle are measured then used to calculate the length of the hypotenuse. The error in measurement of the sides is at most 1 %. Use differentials to estimate the maximum percent error in the length of the hypotenuse.
- 8. Suppose that w = f(x, y, z) is a differentiable function and that w = 4 when x = 1, y = 2, z = 3. If $f_x(1, 2, 3) = 5, f_y(1, 2, 3) = -1, f_z(1, 2, 3) = 2$, compute a reasonable approximation for f(.9, 2.1, 3.2).

Suppose now that x, y and z are not really independent and that as x and y vary, z is constrained to move so that xyz = 6. As a result, we can view w as a function of x and y and we write w = h(x, y) to denote this function. Compute $h_y(1, 2)$.

9. Find $\frac{\partial w}{\partial s}$ when s = 1 and t = 1 where

$$w = f(x, y, z) = x^{2} + (y\sqrt{5 + \arctan z})\frac{e^{z^{3} - \sqrt{y^{4} + z}}}{\ln(3 + \cos(\sin(z) + y))}$$

and
$$x = s^2 + st + t^2$$
, $y = t^3$, $z = 2st - s^2$.

- 10. Suppose $w = xy^2 + zx^2$, x = rs, $y = s^2$, $z = t^4$, s = 2t, $r = e^{t-1}$. Draw a tree diagram and find $\frac{dw}{dt}$ when t = 1.
- 11. Given functions f(r, s) and g(x, y), create a new function by the formula $w = f(y^2, g(x, y))$. Using the following data, compute the values of $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ when x = 1, y = 2. (Assume that all partial derivatives are continuous). $g(1,2) = 3, g_x(1,2) = 4, g_y(1,2) = 5, f(4,3) = 6, f_r(4,3) = 7, f_s(4,3) = 2, f(1,2) = 1, f_r(1,2) = 3, f_s(1,2) = 9.$
- 12. Let $f(x, y) = x^2y^2 + axy y^4$ where a is some constant. The directional derivative of f at the point (1, 1) in the direction of the point (5, 4) is -1.
 - (a) Find a.
 - (b) What are the maximum and minimum values of the directional derivative of f at the point (1, 1)?
 - (c) Find a point such that the directional derivative at (1, 1) in the direction of that point is as small as possible.
- 13. Suppose that the function f(x, y) is differentiable and assume that f(3, 4) = 7and $\nabla f(3, 4) = \langle 3, -2 \rangle$.
 - (a) Find a reasonable approximation for f(2.8, 4.1).
 - (b) Let $h(s,t) = f(s^2 + t, st + 2s)$. Compute $h_s(1,2)$.

- (c) Now suppose that g(t) is a function that has the property that $f(g(t), t^2) = 7$ for all values of t. If g(2) = 3, compute g'(2).
- 14. Let $z = x(e^y + x)$.
 - (a) Compute $\partial z/\partial x$, $\partial z/\partial y$, and $\partial^2 z/\partial y^2$.
 - (b) Find ∇z at the point (2,0).
 - (c) What is the directional derivative of z at the point (2,0) in the direction toward (-1,4).
- 15. Suppose f is a differentiable function and at the point (17, -23) the directional derivative of f in the direction of the vector $\langle 3, -1 \rangle$ is $-\frac{11}{\sqrt{10}}$. At that same point, the directional derivative of f in the direction of $\langle 2, 7 \rangle$ is $\frac{31}{\sqrt{53}}$. Find the directional derivative of f at (17, 23) in the direction of $\langle -2, 1 \rangle$.
- 16. Find the point or points on the curve $2y^3 + 9x^2 = 16$ that are closest to the origin.
- 17. The function $w = x^2 + y xy$ is defined on the region bounded by the curve $y = 9 x^2$ and the x-axis. Find the maximum and minimum values of w on this region and the points where they occur.
- 18. Find the minimum of $w = x^2 + 2y^2 + 3z^2$ on the plane x + y + z = 1 and where it occurs.
- 19. A solid spherical ball of radius 3 is centered at the origin. The temperature at the point (x, y, z) is given by $T(x, y, z) = 4x + 2y + z^2$. Find the maximum and minimum temperatures on the ball and where they occur.
- 20. Let $f(x, y) = 2x^2y + \frac{1}{2}y^2 x^4 12y$. Find all critical points of f. For each critical point, determine if it is a local max, a local min, or a saddle point.