1. Let

$$
f(x)= \begin{cases}\sqrt{x^{2}-y}, & (x, y) \neq(0,-5),(2,-5) \\ 3, & (x, y)=(0,-5),(2,-5)\end{cases}
$$

(a) Find and sketch the domain of f.
(b) Find the range of f.
(c) Where is f continuous?
2. Find the limit or show it does not exist.
(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y+x y^{3}}{x^{2}+y^{2}}
$$

(b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y+x y^{3}}{x^{4}+y^{4}}
$$

(c)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{1-e^{x^{2}+y^{2}}}
$$

3. I have two functions, $f(x, y)$ and $g(x, y)$. I compute f_{x} and g_{x} and get two of these three functions: $e^{y}, 2 x y, x+y$. Then I compute f_{y} and g_{y} and get two of these three functions: $2 x+e^{y}, x e^{y}, x^{2}+e^{y}$. Which function in the first list is not one of f_{x} or g_{x} and which function in the second list is not f_{y} or g_{y} ?
4. The equation $x^{2} y z-z^{2}=x^{3}-y^{2}$ determines a surface through the point $(1,2,3)$.
(a) Find the equation of the tangent plane to the surface at this point.
(b) Viewing z as an implicitly defined function of x and y near the point $(1,2,3)$, compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $x=1, y=2$.
5. Given a function $z=f(x, y)$, one of the following three functions is f_{x} and one is f_{y}. Identify them. The functions are: $e^{x}+e^{y}, e^{x}+y, x e^{y}+y$.
6. Let $z=x \cos \left(y^{2}\right)+e^{x y}$. Use differentials to estimate the change in z as x changes from 7 to 7.1 and y changes from 0 to -. 1 .
7. The two shorter sides of a right triangle are measured then used to calculate the length of the hypotenuse. The error in measurement of the sides is at most 1%. Use differentials to estimate the maximum percent error in the length of the hypotenuse.
8. Suppose that $w=f(x, y, z)$ is a differentiable function and that $w=4$ when $x=1, y=2, z=3$. If $f_{x}(1,2,3)=5, f_{y}(1,2,3)=-1, f_{z}(1,2,3)=2$, compute a reasonable approximation for $f(.9,2.1,3.2)$.

Suppose now that x, y and z are not really independent and that as x and y vary, z is constrained to move so that $x y z=6$. As a result, we can view w as a function of x and y and we write $w=h(x, y)$ to denote this function. Compute $h_{y}(1,2)$.
9. Find $\frac{\partial w}{\partial s}$ when $s=1$ and $t=1$ where

$$
w=f(x, y, z)=x^{2}+(y \sqrt{5+\arctan z}) \frac{e^{z^{3}-\sqrt{y^{4}+z}}}{\ln (3+\cos (\sin (z)+y))}
$$

and $x=s^{2}+s t+t^{2}, y=t^{3}, z=2 s t-s^{2}$.
10. Suppose $w=x y^{2}+z x^{2}, x=r s, y=s^{2}, z=t^{4}, s=2 t, r=e^{t-1}$. Draw a tree diagram and find $\frac{d w}{d t}$ when $t=1$.
11. Given functions $f(r, s)$ and $g(x, y)$, create a new function by the formula $w=f\left(y^{2}, g(x, y)\right)$. Using the following data, compute the values of $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ when $x=1, y=2$. (Assume that all partial derivatives are continuous). $g(1,2)=3, g_{x}(1,2)=4, g_{y}(1,2)=5, f(4,3)=6, f_{r}(4,3)=7, f_{s}(4,3)=2$, $f(1,2)=1, f_{r}(1,2)=3, f_{s}(1,2)=9$.
12. Let $f(x, y)=x^{2} y^{2}+a x y-y^{4}$ where a is some constant. The directional derivative of f at the point $(1,1)$ in the direction of the point $(5,4)$ is -1 .
(a) Find a.
(b) What are the maximum and minimum values of the directional derivative of f at the point $(1,1)$?
(c) Find a point such that the directional derivative at $(1,1)$ in the direction of that point is as small as possible.
13. Suppose that the function $f(x, y)$ is differentiable and assume that $f(3,4)=7$ and $\nabla f(3,4)=\langle 3,-2\rangle$.
(a) Find a reasonable approximation for $f(2.8,4.1)$.
(b) Let $h(s, t)=f\left(s^{2}+t, s t+2 s\right)$. Compute $h_{s}(1,2)$.
(c) Now suppose that $g(t)$ is a function that has the property that $f\left(g(t), t^{2}\right)=7$ for all values of t. If $g(2)=3$, compute $g^{\prime}(2)$.
14. Let $z=x\left(e^{y}+x\right)$.
(a) Compute $\partial z / \partial x, \partial z / \partial y$, and $\partial^{2} z / \partial y^{2}$.
(b) Find ∇z at the point $(2,0)$.
(c) What is the directional derivative of z at the point $(2,0)$ in the direction toward $(-1,4)$.
15. Suppose f is a differentiable function and at the point $(17,-23)$ the directional derivative of f in the direction of the vector $\langle 3,-1\rangle$ is $-\frac{11}{\sqrt{10}}$. At that same point, the directional derivative of f in the direction of $\langle 2,7\rangle$ is $\frac{31}{\sqrt{53}}$. Find the directional derivative of f at $(17,23)$ in the direction of $\langle-2,1\rangle$.
16. Find the point or points on the curve $2 y^{3}+9 x^{2}=16$ that are closest to the origin.
17. The function $w=x^{2}+y-x y$ is defined on the region bounded by the curve $y=9-x^{2}$ and the x-axis. Find the maximum and minimum values of w on this region and the points where they occur.
18. Find the minimum of $w=x^{2}+2 y^{2}+3 z^{2}$ on the plane $x+y+z=1$ and where it occurs.
19. A solid spherical ball of radius 3 is centered at the origin. The temperature at the point (x, y, z) is given by $T(x, y, z)=4 x+2 y+z^{2}$. Find the maximum and minimum temperatures on the ball and where they occur.
20. Let $f(x, y)=2 x^{2} y+\frac{1}{2} y^{2}-x^{4}-12 y$. Find all critical points of f. For each critical point, determine if it is a local max, a local min, or a saddle point.

