IMPORTANT THINGS TO KNOW FROM TRIGONOMETRY

1. Trigonometry on the Unit Circle: Consider the unit circle $x^2 + y^2 = 1$. If (x, y) is a point on the unit circle and if t is the angle subtended by the point in the center of the circle then $(x, y) = (\cos t, \sin t)$.

From this it follows that

$$\cos t = x \quad \text{and} \quad \sec t = \frac{1}{x}$$

$$\sin t = x \quad \text{and} \quad \csc t = \frac{1}{y}$$

$$\tan t = \frac{y}{x} \quad \text{and} \quad \cot t = \frac{x}{y}$$

Remark: Note that $\sec t$, $\csc t$ and $\cot t$ are the reciprocals of $\cos t$, $\sin t$ and $\tan t$

2. Converting from Degrees to Radians: To convert the given angle from degrees to radians multiply the given angle by $\frac{\pi}{180}$

3. Converting from Radians to Degrees: To convert the given angle from radians to degrees multiply the given angle by $\frac{180}{\pi}$

4. Arc Length Formula: $S = r\theta$, where S is the length of the arc, r is the radius of the circle and θ is the angle subtended by the arc in the center of the circle.

Remark: When calculating the arc length make sure the central angle θ is always in radians. If θ is given in degrees then convert it to radians before using the arc length formula.
5. Fundamental Identities

\[
\sin^2 t + \cos^2 t = 1
\]
\[
1 + \tan^2 t = \sec^2 t
\]
\[
1 + \cot^2 t = \csc^2 t
\]

6. Period of Trigonometric functions

\[
\sin t, \cos t, \csc t \text{ and } \sec t \text{ are periodic functions of period } 2\pi
\]
\[
\tan t, \cot t \text{ are periodic functions of period } \pi
\]

7. Even and Odd trigonometric functions

\[
\sin(-t) = -\sin(t) \quad [\text{Odd function}]
\]
\[
\cos(-t) = \cos(t) \quad [\text{Even function}]
\]
\[
\tan(-t) = -\tan(t) \quad [\text{Odd function}]
\]

Remark: Since \(\csc t \) and \(\cot t \) are the reciprocals of \(\sin t \) and \(\tan t \) they odd functions. \(\sec t \) is the reciprocal of \(\cos t \) and this makes \(\sec t \) an even function.

8. Trigonometric Functions using Right Triangles: We can define trigonometric functions using Right triangles as follows.

\[
\sin t = \frac{\text{Opp}}{\text{Hyp}} \quad \csc t = \frac{\text{Hyp}}{\text{Opp}}
\]
\[
\cos t = \frac{\text{Adj}}{\text{Hyp}} \quad \sec t = \frac{\text{Hyp}}{\text{Adj}}
\]
\[
\tan t = \frac{\text{Opp}}{\text{Adj}} \quad \cot t = \frac{\text{Adj}}{\text{Opp}}
\]
9. Signs of trigonometric Functions

All Trigonometric Functions are positive in the First Quadrant. (i.e $0 < t < \frac{\pi}{2}$)

- $\sin t$, $\csc t$ are positive in the Second Quadrant. (i.e $\frac{\pi}{2} < t < \pi$)
- $\tan t$, $\cot t$ are positive in the Third Quadrant. (i.e $\pi < t < \frac{3\pi}{2}$)
- $\cos t$, $\sec t$ are positive in the Fourth Quadrant. (i.e $\frac{3\pi}{2} < t < 2\pi$)

Remark: You can remember the signs of these functions by remembering the first four letters of this sentence, "A Smart Trig Class".

10. Reference Angles: Reference Angle θ' is defined to be the acute angle made by the terminal Side of θ with the $x-axis$.

- $\theta' = \theta$ [if θ lies in the First Quadrant]
- $\theta' = \pi - \theta$ [if θ lies in the Second Quadrant]
- $\theta' = \theta - \pi$ [if θ lies in the Third Quadrant]
- $\theta' = 2\pi - \theta$ [if θ lies in the Fourth Quadrant]

11. Finding Reference Angles: Follow these steps to find Reference Angles.

Step 1. Check if the given angle θ lies between 0 and 2π. If yes then find the reference angle by using 10. If no then goto step 2.

Step 2. Check if the given angle $\theta > 2\pi$. If yes then subtract multiples of 2π till you get an angle which is between 0 and 2π. This tells you the quadrant in which the terminal side of θ lies. Once you know this you can find the reference angle by using 10. If no then go to step 3.

Step 3. Check if the given angle $\theta < 0$. Then add multiples of 2π till you get an angle which is between 0 and 2π. This tells you the quadrant in which the terminal side of θ lies. Once you know this you can find the reference angle by using 10.
12. **Graphing Trigonometric Functions:** The following steps illustrate the method of graphing functions of the following type.

i) \(y = A \sin(Bx - c) + D \)

ii) \(y = A \cos(Bx - c) + D \)

Step 1. Compare the given equation with the above functions and determine the constants A, B, C, D.

Step 2. Find the Amplitude, Period and the Phase shift using the following.

Amplitude = \(|A|\)

Period = \(\frac{2\pi}{|B|}\)

Phase Shift = \(\frac{C}{B}\)

Step 3. Graph the given cosine or sine function in the interval from 0 to \(\frac{2\pi}{|B|}\) ignoring only the shifts.

Step 4: Horizontal Shifts: If \(\frac{C}{B} > 0\) take the graph obtained in step 3 and move it to the right by \(\frac{C}{B}\) units. If \(\frac{C}{B} < 0\) take the graph obtained in step 3 and move it to the left by \(\frac{C}{B}\) units.

Step 5: Vertical Shifts: If \(D > 0\) take the graph obtained in step 4 and shift it upwards by \(D\) units. If \(D < 0\) take the graph obtained in step 4 and shift it downwards by \(D\) units.

13. **Solution to the problem I missed in class:** Prove the following identity.

\[
\frac{\sin x - \cos x + 1}{\sin x + \cos x - 1} = \frac{\sin x + 1}{\cos x}
\]

\[
\frac{\sin x - \cos x + 1}{\sin x + \cos x - 1} = \left(\frac{\sin x - \cos x + 1}{\sin x + \cos x - 1}\right) \left(\frac{\sin x + \cos x + 1}{\sin x + \cos x + 1}\right)
\]

\[
= \left(\frac{(1 + \sin x)^2 - \cos^2 x}{(\sin x + \cos x)^2 - 1}\right) \text{[Simplifying we get the following]}
\]

\[
= \frac{2\sin^2 x + 2\sin x}{2\sin x \cos x} \quad \text{[Now } 2 \sin x \text{ is a common factor.]}
\]

\[
= \frac{1 + \sin x}{\cos x} \quad \text{[We get this by cancelling the common factors.]}
\]