- 1) Change the following polar points to rectangular points:
 - a) $(10, \frac{4\pi}{3})$
- b) $(8,330^{\circ})$
- 2) Change the following rectangular points to polar points:

 - a) (-6,6) b) (4,-3)
- 3) Name the quadrant where each polar point resides:
 - a) $(-4,-60^{\circ})$ b) $(2,-240^{\circ})$
 - c) $(-3,225^{\circ})$ d) $(6,420^{\circ})$
- 4) Change each equation to a rectangular equation:
 - a) $r = 5 \sin \theta$
- b) $r = 10 \sec \theta$
- 5) Change each equation to a polar equation [solve for r]

 - a) 4y 3x = 11 b) $x^2 + y^2 = 2x + 4y$
- 6) Write 10 ($\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}$) in complex form.
- 7) Write $10\sqrt{2} 10\sqrt{2}$ i in polar form.

8) If u = 8 i - 15 j and v = -3 i - 4 j and w = 12 i + 6 j, then find:

e) the direction angle of vector \mathbf{w}

f)
$$(3w + 7v) \cdot u$$

g) find a vector in the same direction as **u** with a length of 12

h) find a vector orthogonal to vector v with a length of 7

i) find any vector that is ortogonal to the vector \mathbf{w}

9) If vector $\mathbf{u} = 8 \mathbf{i} - 14 \mathbf{j}$ and vector $\mathbf{v} = -6 \mathbf{i} + k \mathbf{j}$, then:

a) find k so that the vectors are orthogonal.

b) find k so that the vectors are parallel.

10) Complete the chart for hyperbolas:

equation

vertices

foci

asymptotes

$$\frac{x^2}{25} - \frac{y^2}{144} = 1$$

equation

.

center

vertices

foci

$$\frac{(y-2)^2}{16} - \frac{(x+1)^2}{9} = 1$$

11) Complete the chart for ellipses

equation

center

foci

major vertices

$$\frac{x^2}{64} + \frac{y^2}{225} = 1$$

 $+\frac{1}{225} = 1$

 $\frac{(x-2)^2}{144} + \frac{(y+4)^2}{25} = 1$

.....

12) Complete the following chart for parabolas:

equation

vertex

focus

directrix

$$v^2 = -24 x$$

$$(x-1)^2 = 12(y+7)$$

13) Find the equation of the ellipse centered about the origin with vertex at (0,7) and focus at (0,6).

- 14) Find the foci of the ellipse with equation $\frac{x^2}{625} + \frac{(y-5)^2}{49} = 1$
- 15) Find the focus and directrix of the parabola $(y-4)^2 = -24 x$
- 16) Find the equation of the parabola with vertex at (2,7) and focus at (2,3).
- 17) Find the equation of the parabola with focus at (5, -2) and directrix at x = -3.
- 18) What is the center of the ellipse $9 x^2 + 4 y^2 36 x + 40 y + 100 = 0$?
- 19) What is the equation of the hyperbola centered about the origin with vertex at (14,0) and asymptote of $y = \frac{6}{7}x$?
- 20) Parabola or hyperbola or ellipse?

a)
$$x^2 + 6x - 2y^2 - 8y - 20 = 0$$

b)
$$5 x - y^2 - 4 y - 20 = 0$$

c)
$$4 x^2 + 16 x + 9 y^2 - 18 y = 11$$

21) Find the vertex and the focus for the parabola with equation:

$$x^2 + 8x - 8y - 8 = 0$$