Factoring Polynomials

November 3, 2013

1 Special Products

- **1.1** Difference of two squares: $A^2 B^2 = (A + B)(A B)$
- **1.2** Perfect square trinomials
 - $A^2 + 2AB + B^2 = (A + B)^2$
 - $A^2 2AB + B^2 = (A B)^2$
- 1.3 Sum of two cubes: $A^3+B^3 = (A + B)(A^2 AB + B^2)$
- 1.4 Difference of two cubes: $A^3 B^3 = (A B)(A^2 + AB + B^2)$

2 Factoring Trinomials

Strategy for factoring a polynomial $\mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$

2.1 Find two first terms whose product is ax^2 :

• $(a_1x +)(a_2x +) = \underline{ax^2} + bx + c$ (Where $a_1a_2 = a$; This is the first step of FOIL)

2.2 Find two last terms whose product is c:

- $(a_1x + c_1)(a_2x + c_2) = ax^2 + bx + \underline{c}$ (Where $c_1c_2 = c$; This is the **Last** step of **FOIL**)
- 2.3 Pick outside terms in such a way that the sum of the **Outside** product and the **Inside** product is bx:
 - So c_1 and c_2 must satisfy: $a_1x (c_2) + a_2x(c_1) = bx$ (This is the sum of the **Outside** and **Inside** products of **FOIL**)
 - If no such combination exists then the polynomial is prime

3 Examples

3.1 Factor the following polynomials

3.1.1 $4\mathbf{x}^2$ - 9 = $2^2\mathbf{x}^2$ - 3^2

Now we can use the difference of two squares Let A = 2x and let B = 3So $4x^2 - 9 = (2x - 3)(2x + 3)$

3.1.2
$$x^2 + 6x + 9$$

 $x^2 + 6x + 9 = x^2 + 2(x)(3) + 3^2$, this is exactly what we need to use the product of perfect square trinomials.

So Let A = x and let B = 3 $x^{2} + 6x + 9 = (x + 3)^{2}$

3.1.3 b³ - 8a⁶

 $b^3 - 8a^6 = b^3 - 2^3a^6 = b^3 - (2a^2)^3$, this is now what we need to use the sum of two cubes. Let A = b and Let B = 2a^2 $b^3 - 8a^6 = (b - 2a^2)(b^2 + 2(b)(2a^2) + [2a^2]^2)$ = (b - 2a^2)(b^2 + 4a^2b + 4a^4)

$3.1.4 y^2 + 6y + 8$

This polynomial does not factor using a special product, so we will have to follow the process of factoring trinomials

In this case, a = 1, b = 6 and c = 8.

- 1. So the two **First** terms are 1 and 1, since $1 \cdot 1 = 1$ (Thus far, we have: (y +)(y +))
- 2. Find two Last terms whose product is 8. There are several possibilities:

$\underline{\mathbf{c}}_1$	\mathbf{c}_2
1	8
-1	-8
2	4
-2	-4

3. The above choices have to satisfy the following equation:

 $\mathbf{y}(\mathbf{c}_2) \,+\, \mathbf{y}(\mathbf{c}_1) \,=\, \mathbf{6}\mathbf{y}$

- We can rule out negative values since b = 6 is positive.
- We can rule out 1 and 8 by plugging values into our equation: y(8) + y(1) = 9y
- The last choice is 2 and 4. Plugging 2 and 4 into our equation provides: y(4) + y(2) = 6y

We have found our solution, we just need to plug in the corresponding numbers

$$y^2 + 6y + 8 = (y + 2)(y + 4)$$

 $3.1.5 \quad 2x^2y + 3xy - 20y$

We can see that there is a y in every term. So we can factor out a y:

$$2x^{2}y + 3xy - 20y = y(2x^{2} + 3x - 20)$$
 Now we must factor $2x^{2} + 3x - 20$

- We must find two numbers whose product is 2. We only have one choice, 1 and 2 (Thus far we have: (x +)(2x +))
- 2. Find two Last terms whose product is -20. There are several possibilities:

<u>c</u> ₁	$\underline{\mathbf{c}}_2$
-1	20
20	-1
-20	1
1	-20
2	-10
-10	2
-2	10
10	-2
4	-5
-5	4
-4	5
5	-4

3. Now, we must find c_1 and c_2 such that the following equation is satisfied: $x(c_2)\,+\,2x(c_1)\,=\,3x$

- By plugging in values, we can rule out all combinations with 10 and 20.
- x(-5) + 2x(4) = -5x + 8x = 3x
 So c₁= 4 and c₂= -5 are the values we are looking for. So all other values can be ruled out!

Now $2x^2 + 3x - 20 = (x + 4)(2x - 5)$ Finally, $2x^2y + 3xy - 20y = y(x + 4)(2x - 5)$

3.1.6 $6a^2 - 5a - 4$

- We must find two numbers whose product is 6. We have two choices, [1 and 6] and [2 and 3]. First try 2 and 3. If this does not work try 1 and 6. (Thus far we have: (2a +)(3a +))
- 2. Find two Last terms whose product -4. There are several possibilities:

$\underline{\mathbf{c}}_1$	$\underline{\mathbf{c}}_2$
1	-4
-4	1
-1	4
4	-1
2	-2
-2	2

3. Now, we must find c_1 and c_2 such that the following equation is satisfied: $3a(c_1) + 2a(c_2) = -5a$

• 3a(1) + 2a(-4) = 3a - 8a = -5a

This is the solution we are looking for. All other values can be ruled out!

Finally, we obtain $6a^2 - 5a - 4 = (2a + 1)(3a - 4)$

3.1.7
$$(\mathbf{x} + \mathbf{2})^{\frac{5}{2}} + (\mathbf{x} + \mathbf{2})^{\frac{3}{2}}$$

 $(\mathbf{x} + 2)^{\frac{5}{2}} + (\mathbf{x} + 2)^{\frac{3}{2}} = (\mathbf{x} + 2)^{\frac{4}{2}}(\mathbf{x} + 2)^{\frac{1}{2}} + (\mathbf{x} + 2)^{\frac{2}{2}}(\mathbf{x} + 2)^{\frac{1}{2}}$
 $= [(\mathbf{x} + 2)^2 + (\mathbf{x} + 2)](\mathbf{x} + 2)^{\frac{1}{2}}$
 $= [\mathbf{x}^2 + 4\mathbf{x} + 4 + \mathbf{x} + 2](\mathbf{x} + 2)^{\frac{1}{2}}$
 $= [\mathbf{x}^2 + 5\mathbf{x} + 6](\mathbf{x} + 2)^{\frac{1}{2}}$ (Use the process of factoring trinomials)
 $= (\mathbf{x} + 2)(\mathbf{x} + 3)(\mathbf{x} + 2)^{\frac{1}{2}}$
 $= (\mathbf{x} + \mathbf{2})^{\frac{3}{2}}(\mathbf{x} + \mathbf{3})$