Factoring Polynomials

November 3, 2013

1 Special Products

1.1 Difference of two squares: $\mathrm{A}^{2}-\mathrm{B}^{2}=(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})$
1.2 Perfect square trinomials

- $\mathrm{A}^{2}+2 \mathrm{AB}+\mathrm{B}^{2}=(\mathrm{A}+\mathrm{B})^{2}$
- $\mathrm{A}^{2}-2 \mathrm{AB}+\mathrm{B}^{2}=(\mathrm{A}-\mathrm{B})^{2}$
1.3 Sum of two cubes: $A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$
1.4 Difference of two cubes: $\mathrm{A}^{3}-\mathrm{B}^{3}=(\mathrm{A}-\mathrm{B})\left(\mathrm{A}^{2}+\mathrm{AB}+\mathrm{B}^{2}\right)$

2 Factoring Trinomials

Strategy for factoring a polynomial $\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}$
2.1 Find two first terms whose product is ax^{2} :

- $\left(\mathrm{a}_{1} \mathrm{x}+\right)\left(\mathrm{a}_{2} \mathrm{x}+\right)=\underline{\mathbf{a x}^{2}}+\mathrm{bx}+\mathrm{c}\left(\right.$ Where $\mathbf{a}_{1} \mathbf{a}_{2}=\mathbf{a}$; This is the first step of FOIL)
2.2 Find two last terms whose product is c :
- $\left(\mathrm{a}_{1} \mathrm{x}+\mathrm{c}_{1}\right)\left(\mathrm{a}_{2} \mathrm{x}+\mathrm{c}_{2}\right)=\mathrm{ax}^{2}+\mathrm{bx}+\underline{\mathbf{c}}$ (Where $\mathbf{c}_{1} \mathbf{c}_{2}=\mathbf{c}$; This is the Last step of FOIL)
2.3 Pick outside terms in such a way that the sum of the Outside product and the Inside product is bx:
- So c_{1} and c_{2} must satisfy: $a_{1} x\left(c_{2}\right)+a_{2} x\left(c_{1}\right)=b x$ (This is the sum of the Outside and Inside products of FOIL)
- If no such combination exists then the polynomial is prime

3 Examples

3.1 Factor the following polynomials

3.1.1 $4 x^{2}-9=2^{2} x^{2}-3^{2}$

Now we can use the difference of two squares Let $\mathrm{A}=2 \mathrm{x}$ and let $\mathrm{B}=3$
So $4 \mathrm{x}^{2}-\mathbf{9}=(2 \mathrm{x}-3)(2 \mathrm{x}+3)$

3.1.2 $\quad \mathrm{x}^{2}+6 \mathrm{x}+9$

$x^{2}+6 x+9=x^{2}+2(x)(3)+3^{2}$, this is exactly what we need to use the product of perfect square trinomials.

So Let $\mathrm{A}=\mathrm{x}$ and let $\mathrm{B}=3$
$\mathrm{x}^{2}+6 \mathrm{x}+\mathbf{9}=(\mathrm{x}+3)^{2}$

3.1.3 $b^{3}-8 a^{6}$

$b^{3}-8 a^{6}=b^{3}-2^{3} a^{6}=b^{3}-\left(2 a^{2}\right)^{3}$, this is now what we need to use the sum of two cubes.
Let $\mathrm{A}=\mathrm{b}$ and Let $\mathrm{B}=2 \mathrm{a}^{2}$
$b^{3}-8 a^{6}=\left(b-2 a^{2}\right)\left(b^{2}+2(b)\left(2 a^{2}\right)+\left[2 a^{2}\right]^{2}\right)$
$=\left(\mathbf{b}-2 \mathbf{a}^{2}\right)\left(\mathbf{b}^{2}+4 \mathbf{a}^{2} \mathbf{b}+4 \mathbf{a}^{4}\right)$
3.1.4 $\quad \mathrm{y}^{2}+\mathbf{6 y}+8$

This polynomial does not factor using a special product, so we will have to follow the process of factoring trinomials

In this case, $\mathrm{a}=1, \mathrm{~b}=6$ and $\mathrm{c}=8$.

1. So the two First terms are 1 and 1 , since $1 \cdot 1=1$ (Thus far, we have: $(y+)(y+))$
2. Find two Last terms whose product is 8. There are several possibilities:

\mathbf{c}_{1}	\mathbf{c}_{2}
1	8
-1	-8
2	4
-2	-4

3. The above choices have to satisfy the following equation:
$\mathbf{y}\left(\mathbf{c}_{2}\right)+\mathbf{y}\left(\mathbf{c}_{1}\right)=\mathbf{6 y}$

- We can rule out negative values since $b=6$ is positive.
- We can rule out 1 and 8 by plugging values into our equation: $\mathrm{y}(8)+\mathrm{y}(1)=9 \mathrm{y}$
- The last choice is 2 and 4 . Plugging 2 and 4 into our equation provides:

$$
y(4)+y(2)=6 y
$$

We have found our solution, we just need to plug in the corresponding numbers

$$
y^{2}+6 y+8=(y+2)(y+4)
$$

3.1.5 $\quad 2 \mathrm{x}^{2} \mathrm{y}+3 \mathrm{xy}-20 \mathrm{y}$

We can see that there is a y in every term. So we can factor out a y:

$$
2 x^{2} y+3 x y-20 y=y\left(2 x^{2}+3 x-20\right) \quad \text { Now we must factor } 2 x^{2}+3 x-20
$$

1. We must find two numbers whose product is 2 .

We only have one choice, 1 and 2
(Thus far we have: $(\mathrm{x}+)(2 \mathrm{x}+)$)
2. Find two Last terms whose product is -20 . There are several possibilities:

\mathbf{c}_{1}	\mathbf{c}_{2}
-1	20
20	-1
-20	1
1	-20
2	-10
-10	2
-2	10
10	-2
4	-5
-5	4
-4	5
5	-4

3. Now, we must find c_{1} and c_{2} such that the following equation is satisfied:
$\mathrm{x}\left(\mathrm{c}_{2}\right)+2 \mathrm{x}\left(\mathrm{c}_{1}\right)=3 \mathrm{x}$

- By plugging in values, we can rule out all combinations with 10 and 20.
- $\mathrm{x}(-5)+2 \mathrm{x}(4)=-5 \mathrm{x}+8 \mathrm{x}=3 \mathrm{x}$

So $c_{1}=4$ and $c_{2}=-5$ are the values we are looking for. So all other values can be ruled out!

Now $2 \mathrm{x}^{2}+3 \mathrm{x}-20=(\mathrm{x}+4)(2 \mathrm{x}-5)$
Finally, $2 \mathrm{x}^{2} \mathrm{y}+3 \mathrm{xy}-20 \mathrm{y}=\mathrm{y}(\mathrm{x}+4)(2 \mathrm{x}-5)$

3.1.6 6a ${ }^{2}$ - 5a-4

1. We must find two numbers whose product is 6 .

We have two choices, [1 and 6] and [2 and 3].
First try 2 and 3 . If this does not work try 1 and 6.
(Thus far we have: $(2 \mathrm{a}+)(3 \mathrm{a}+))$
2. Find two Last terms whose product -4 . There are several possibilities:

\mathbf{c}_{1}	$\underline{\mathbf{c}_{2}}$
1	-4
-4	1
-1	4
4	-1
2	-2
-2	2

3. Now, we must find c_{1} and c_{2} such that the following equation is satisfied: $3 \mathrm{a}\left(\mathrm{c}_{1}\right)+2 \mathrm{a}\left(\mathrm{c}_{2}\right)=-5 \mathrm{a}$

- $3 \mathrm{a}(1)+2 \mathrm{a}(-4)=3 \mathrm{a}-8 \mathrm{a}=-5 \mathrm{a}$

This is the solution we are looking for. All other values can be ruled out!
Finally, we obtain $\mathbf{6 a}{ }^{2} \mathbf{- 5 a}-\mathbf{4}=(\mathbf{2 a}+\mathbf{1})(\mathbf{3 a}-\mathbf{4})$
3.1.7 $(\mathrm{x}+2)^{\frac{5}{2}}+(\mathrm{x}+2)^{\frac{3}{2}}$
$(\mathrm{x}+2)^{\frac{5}{2}}+(\mathrm{x}+2)^{\frac{3}{2}}=(\mathrm{x}+2)^{\frac{4}{2}}(\mathrm{x}+2)^{\frac{1}{2}}+(\mathrm{x}+2)^{\frac{2}{2}}(\mathrm{x}+2)^{\frac{1}{2}}$
$=\left[(\mathrm{x}+2)^{2}+(\mathrm{x}+2)\right](\mathrm{x}+2)^{\frac{1}{2}}$
$=\left[\mathrm{x}^{2}+4 \mathrm{x}+4+\mathrm{x}+2\right](\mathrm{x}+2)^{\frac{1}{2}}$
$=\left[\mathrm{x}^{2}+5 \mathrm{x}+6\right](\mathrm{x}+2)^{\frac{1}{2}}$ (Use the process of factoring trinomials)
$=(\mathrm{x}+2)(\mathrm{x}+3)(\mathrm{x}+2)^{\frac{1}{2}}$
$=(\mathrm{x}+2)^{\frac{3}{2}}(\mathrm{x}+3)$

