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Abstract. We study several combinatorial identities that arise naturally from the struc-

ture of finite cyclic groups and finite extensions of finite fields. We are particularly

interested in interconnections between the identities.

Introduction.

We use standard facts about finite cyclic groups and finite fields to study several well-

known combinatorial identities. The novelty of our article stems from our route to the

identities and our focus on the close links between them.

To convey a sense of our approach, recall that a cyclic group C = Cn of order n has φ(n)

generators where φ is Euler’s function. An element of C is a generator if and only if it does

not belong to a maximal (proper) subgroup. Moreover, the maximal subgroups are precisely

the subgroups of prime index, one for each prime divisor of n. The subgroup structure of

C then leads, via some simple counting, to a well-known formula for φ(n). For example, in

the case n = 12, there are exactly two maximal subgroups, one of index 2 and one of index

3, whose intersection is of index 6. It follows that

φ(12) = 12− 12

2
− 12

3
+

12

6
. (i)

Now consider a parallel cyclic structure: for q a prime power, look at the degree n

extension Fqn/Fq of finite fields. How many generators does it have, that is, how many

elements α ∈ Fqn satisfy Fq(α) = Fqn? Observe that α generates Fqn over Fq if and only if

α does not belong to a maximal (proper) subfield of Fqn containing Fq. These are precisely

the subfields Fqn/l as l varies through the prime divisors of n. Again some simple counting

leads to a formula for the number of generators Ψn(q) of Fqn/Fq. For n = 12, it says

Ψ12(q) = q12 − q12/2 − q12/3 + q12/6. (ii)

We write Nn(q) for the number of monic irreducible polynomials of degree n over Fq. By

some elementary field theory, which we review in Section 3, Ψn(q) = nNn(q). Thus the

formula for Ψn(q) also gives an expression for Nn(q). This goes back to Gauss (for q prime)

and is sometimes called Gauss’s formula.

What explains the correspondence between (i) and (ii)? Formula (i) reflects the structure

of the lattice of subgroups of Cn; formula (ii) arises in the same way from the lattice of

intermediate fields of the extension Fqn/Fq (for n = 12 in each case). By Galois theory, or
1
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more elementary means, these lattices are really the same: each is isomorphic to the lattice

of positive divisors of n.

We also look at five similar identities, so seven in all. The initial proofs, as in the sketch

above, are via pleasant counting arguments (at least to our minds) that exploit the subgroup

structure of Cn or the parallel structure of Fqn/Fq. The identities can be transferred to

certain convolution rings of functions. Using this interpretation, we show that they are

formally equivalent—any one implies any other.

Much of what we say has been noted elsewhere. For example, we see that our use of

counting to arrive at a polynomial expression for Ψn(q), hence also Gauss’s formula, appears

in [7] (see Theorem 21.11) and [2]—and surely elsewhere. A similar argument is outlined

as an exercise in [3] (see Exercise 14 in Section 11.2). There is an overlap too with parts of

[1] and [8] and undoubtedly with many other references. There is no new thing under the

sun in such well-traveled parts of the mathematical landscape. However, there is something

new, we believe, in our overall perspective, particularly our focus on connections between

the various formulæ.

Notation and Preliminaries.

For integers d and n, we write d | n to indicate that d divides n. We only ever consider

positive divisors of positive integers, so divisor for us always means positive divisor.

For integers a and b, we write (a, b) for the greatest common divisor of a and b. As usual,

we say that a and b are relatively prime or that a is relatively prime to b if (a, b) = 1.

Euler’s function φ has the lead role in our tale. For n a positive integer, recall that φ(n)

counts the number of integers between 1 and n that are relatively prime to n, that is,

φ(n) = # integers a with 1 ≤ a ≤ n such that (a, n) = 1.

The Möbius function µ also plays a prominent role. For m a positive integer,

µ(m) =


1 if m = 1,

(−1)k if m is a product of k distinct primes,

0 otherwise.

For example, µ(2) = µ(3) = −1, µ(4) = 0, µ(6) = µ(2 · 3) = 1. In supporting roles, we have

the functions τ and σ. For n a positive integer,

τ(n) = # divisors of n =
∑
d|n

1,

σ(n) = sum of divisors of n =
∑
d|n

d.

We appeal twice to the inclusion-exclusion principle. For convenience, we recall the

statement.
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Inclusion-Exclusion Principle. For finite sets A1, . . . , Ar,∣∣∣∣∣
r⋃
i=1

Ai

∣∣∣∣∣ =
∑
i

|Ai| −
∑
j<k

|Ai ∩Ak|+ · · ·+ (−1)r−1|A1 ∩ · · · ∩Ar|.

We write Z for the set of integers. For us, N = {1, 2, 3, . . .}.

1. Counting with Finite Cyclic Groups.

Let n be a positive integer and C = Cn be a cyclic group of order n. The subgroup

structure of C is especially simple: C has a unique cyclic subgroup of order d for each d

dividing n and no other subgroups. It follows that the lattice of subgroups of C is just the

lattice of divisors of n. In particular, for any subgroups D1 and D2 of C,

|D1 ∩D2| = (|D1|, |D2|). (a)

We use the subgroup structure of C to derive three well-known number-theoretic identities.

1.1. First identity. The group C has φ(n) generators. For x ∈ C,

x generates C ⇐⇒ 〈x〉 is not a proper subgroup of C

⇐⇒ x does not belong to a maximal (proper) subgroup of C.

The maximal subgroups of C are precisely the subgroups of prime index. Write p1, . . . , pr
for the distinct prime divisors of n and Ci for the unique subgroup of C of index pi, or order

n/pi, for i = 1, . . . , r. Thus

φ(n) = n−

∣∣∣∣∣
r⋃
i=1

Ci

∣∣∣∣∣ .
Hence, by the inclusion-exclusion principle and repeated use of (a),

φ(n) = n−
∑
i

|Ci|+
∑
j<k

|Cj ∩ Ck| − · · ·+ (−1)r|C1 ∩ · · · ∩ Cr|

= n−
∑
i

n

pi
+
∑
j<k

n

pipj
− · · ·+ (−1)r

n

p1 · · · pr
(b)

= n

(
1− 1

p1

)
· · ·
(

1− 1

pr

)
. (c)

Using the Möbius function, we can write (b) more compactly as

φ(n) =
∑
d|n

µ(d)
n

d
. (1)

1.2. Second identity. Next we count the elements of C according to their orders. The

argument is a staple of introductory abstract algebra courses. Each element of C has order

d for some divisor d of n. Further, for a given divisor d, the elements of order d are precisely

the φ(d) generators of the unique cyclic subgroup of C of order d. Thus

n =
∑
d|n

φ(d). (2)
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1.3. Third identity. Now consider

Ω = {(x,D) : D ≤ C and x ∈ D}.

We count the number of elements in Ω in two ways by summing over the fibers of the two

projections:

(x,D) D : Ω {subgroups of C}

x C.

This gives ∑
D≤C

|{x ∈ C : x ∈ D}| =
∑
x∈C
|{D ≤ C : x ∈ D}|. (N)

Since C has a unique subgroup of order d for each divisor d of n and no other subgroups,

the first sum is ∑
D≤C

|D| =
∑
d|n

d = σ(n).

For the second sum, note that for x ∈ C and D ≤ C,

x ∈ D ⇐⇒ 〈x〉 ≤ D

⇐⇒ D/〈x〉 ≤ C/〈x〉.

If x has order d then C/〈x〉 is cyclic of order
n

d
and so has τ

(n
d

)
subgroups. Hence∑

x∈C
|{D ≤ C : x ∈ D}| =

∑
d|n

φ(d)τ
(n
d

)
.

Thus (N) says

σ(n) =
∑
d|n

φ(d)τ
(n
d

)
. (3)

2. Convolution Identities.

The identities (1)–(3) are equivalent—any one implies any other. There’s an elegant way

to see this via the following ring-theoretic construction.

Let C denote the set of functions f : N → Z. Define addition and multiplication of

elements f, g ∈ C by

(f + g)(n) = f(n) + g(n),

(f ? g)(n) =
∑
d|n

f(d) g
(n
d

)
, n ∈ N.

It’s routine to check that + and ? make C into a commutative ring with identity. The

(multiplicative) identity element is δ where

δ(n) =

{
1 if n = 1,

0 otherwise.

Multiplication in C is often called the Dirichlet product or convolution.
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Remark. We introduce only what we need to obtain equivalence of (1)–(3). See [1] for a

more detailed and very pleasant discussion of the ring C and certain relatives, particularly

their groups of units. The discussion continues in [4].

Define 1, i ∈ C by

1(n) = 1,

i(n) = n, n ∈ N.

We can then rewrite (1)–(3) as identities in C:

φ = µ ? i, (1?)

i = φ ? 1, (2?)

σ = φ ? τ. (3?)

Proposition. The identities (1?), (2?), (3?) are equivalent.

To prove the proposition and for later use, we record a fundamental observation:

µ ? 1 = δ. (1×)

We’ll also use a slight variant in another section:

(iµ) ? i = δ (2×)

where iµ is the pointwise product of i and µ, that is,

(iµ)(n) = nµ(n), n ∈ N.

Using µ(1) = 1 = δ(1), we have

(µ ? 1)(1) = 1 = δ(1),

so (1×) holds for n = 1. In the same way, (2×) holds for n = 1. Now let n > 1. Then

(µ ? 1)(n) =
∑
d|n

µ(d)

and

((iµ) ? i)(n) =
∑
d|n

dµ(d)
n

d

= n
∑
d|n

µ(d).

Thus to establish (1×) and (2×), we have to show that∑
d|n

µ(d) = 0.
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To this end, we again write p1, . . . , pr for the distinct prime divisors of n, so that∑
d|n

µ(d) = 1 +
∑
i

µ(pi) +
∑
j<k

µ(pjpk) + · · ·+ µ(p1 · · · pr)

= 1−
(
r

1

)
+

(
r

2

)
− · · ·+ (−1)r

= (1− 1)r

= 0,

as required. In other words, the functions µ, 1, i, iµ belong to the group of units C× of C

and µ−1 = 1, i−1 = iµ.

Proof of Proposition. Recall we want to prove equivalence of the formulæ

φ = µ ? i, (1?)

i = φ ? 1, (2?)

σ = φ ? τ. (3?)

We’ll show that (1?) ⇔ (2?) ⇔ (3?).

(1?) ⇔ (2?): We rewrite φ = µ ? i as φ ? µ−1 = i. By (1×) , µ−1 = 1, so (1?) and (2?) are

equivalent.

(2?) ⇔ (3?): We have i = φ ? 1 if and only if i ? 1 = φ ? 1 ? 1. Now σ = i ? 1 and τ = 1 ? 1,

so i ? 1 = φ ? 1 ? 1 says exactly that σ = φ ? τ . �

3. Counting in Finite Fields.

We recall some standard facts about finite fields with a few words of justification. For

more detail, see for example [5, Section 14.3] or the more elementary treatment in [6,

Sections 7.1–7.2]. We’ll use these facts to obtain q-versions of the identities (1)–(3).

Let q be a prime power. A field has q elements if and only if it is a splitting field over

its prime field of the polynomial Xq − X. In this case, each element of the field is a root

of Xq − X. In particular, the polynomial has no repeated roots. By uniqueness of splitting

fields (up to isomorphism), there is a unique field of order q (up to isomorphism). We write

Fq for any such field and refer to it, following standard practice, as the finite field of order

q.

Now let n be a positive integer. Then q−1 | qn−1 and hence Xq−1−1 divides Xqn−1−1

in Fq[X], or equivalently Xq − X divides Xqn − X in Fq[X]. Thus the field Fqn contains a

unique copy of Fq. The extension Fqn/Fq is closely related to the cyclic group Cn with n

elements. The fundamental fact for our purposes is that the lattice of intermediate fields of

Fqn/Fq is exactly the lattice of divisors of n. That is:

1) for each divisor d of n, there is a unique copy of Fqd between Fq and Fqn and the

extension Fqn/Fq admits no other intermediate fields;

2) for any divisors d and d′ of n, Fqd ⊆ Fqd′ if and only if d | d′.
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As a consequence of statement 2), we have the following analogue of the relation (a) in

Section 1: for any divisors d and e of n,

Fqd ∩ Fqe = Fq(d,e) . (aq)

We recall also that the automorphism group Aut(Fqn/Fq) is cyclic of order n. More

precisely, Aut(Fqn/Fq) admits a canonical generator of order n, the Frobenius automorphism

Φ given by Φ(λ) = λq, λ ∈ Fqn . Since the lattice of subgroups of Cn is just the lattice of

divisors of n, statements 1) and 2) follow from the fundamental theorem of Galois theory.

They can also be derived by elementary means from the characterizations of Fq and Fqn as

splitting fields.

For α ∈ Fqn , we write min Fqα for the minimal polynomial of α over Fq, that is, the

unique monic polynomial f(X) ∈ Fq[X] of least degree such that f(α) = 0. Then min Fq
α is

irreducible in Fq[X] and g(α) = 0 for g(X) ∈ Fq[X] if and only if min Fqα divides g(X).

We say that α generates Fqn over Fq if Fq(α) = Fqn . For any α ∈ Fqn ,

[Fq(α) : Fq] = deg min Fq
α.

Thus α generates Fqn over Fq if and only if deg min Fqα = n.

Suppose now that f(X) ∈ Fq[X] is monic and irreducible of degree n. Let α be a root of

f(X) in some extension of Fq, so that f = min Fq
α and [Fq(α) : Fq] = n. Thus Fq(α) = Fqn ,

so α is a root of Xqn − X. It follows that f(X) divides Xqn − X in Fq[X]. As Xqn − X has

no repeated roots, we see that f(X) has n distinct roots in Fqn .

To sum up, α generates Fqn over Fq if and only if α is a root of a monic irreducible

polynomial of degree n in Fq[X]. Moreover:

• each monic irreducible polynomial in Fq[X] of degree n has n distinct roots in Fqn ;

• if two monic irreducible polynomials over Fq share a root, say α, then they are

equal—each must be min Fq
α.

As in the introduction, we write Ψn(q) for the number of generators of Fqn over Fq and

Nn(q) for the number of monic irreducible polynomials of degree n in Fq[X]. From our

discussion, Ψn(q) = nNn(q).

We now begin to work toward suitable q-versions of the identities (1)–(3). The quantity

Ψn(q) will play the role of φ(n).

3.1. First q-identity. Note that

α generates Fqn/Fq ⇐⇒ Fq(α) is not a proper subfield of Fqn

⇐⇒ Fq(α) is not contained in a maximal

(proper) subfield of Fqn .

Write l1, . . . , lr for the distinct prime divisors of n. Then the maximal subfields of Fqn/Fq
are the fields Fqn/li for i = 1, . . . , r. Thus

Ψn(q) = qn −

∣∣∣∣∣
r⋃
i=1

Fqn/li

∣∣∣∣∣ .
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Hence, by the inclusion-exclusion principle and repeated use of (aq),

Ψn(q) = qn −
∑
i

|Fqn/li |+
∑
j<k

|F
qn/lj ∩ Fqn/lk | − · · ·

+ (−1)r|Fqn/l1 ∩ · · · ∩ Fqn/lr |

= qn −
∑
i

qn/li +
∑
j<k

qn/lj lk − · · ·+ (−1)rqn/l1···lr .

In more compact form,

Ψn(q) =
∑
d|n

µ(d)qn/d. (1q)

3.2. Second q-identity. It’s convenient to introduce the following terminology.

Definition. We say that α ∈ Fqn has level d if Fq(α) = Fqd . Equivalently, the level of α is

the degree of min Fq
α. For this reason, the level of α is sometimes called its degree.

We count the elements of Fqn according to their levels. The level of each α ∈ Fqn is a

divisor of n. Further, for a given divisor d, there are Ψd(q) elements of level d. Hence

qn =
∑
d|n

Ψd(q). (2q)

3.3. Third q-identity. Next we consider the q-analogue Ωq of the set Ω from Section 1. It

consists of all pairs (α,E) where E is a subfield of Fqn containing Fq and α ∈ E:

Ωq = {(α,E) : Fq ⊆ E ⊆ Fqn , E a field, α ∈ E}.

Again, we count |Ωq| in two ways by summing over the fibers of the two projections:

(α,E) E : Ωq {subfields of Fqn containing Fq}

α Fqn .

This gives ∑
Fq⊆E⊆Fqn

|{α ∈ Fqn : α ∈ E}| =
∑
α∈Fqn

|{E ⊆ Fqn : Fq(α) ⊆ E}|. (H)

To not clutter the notation, we’ve left implicit the requirement that E is a field. We follow

this convention for the remainder of the subsection.

Since Fqn/Fq has a unique intermediate field of order qd for each divisor d of n and no

other intermediate fields, the first sum is∑
Fq⊆E⊆Fqn

|E| =
∑
d|n

qd.

For the second sum, note that for α ∈ Fqn , there is a unique divisor d of n such that

Fq(α) = Fqd (namely, the level of α). Then

Fq(α) ⊆ E ⊆ Fqn ⇐⇒ Fqd ⊆ E ⊆ Fqn

⇐⇒ |E| = qde where e | n
d
.
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In other words, for a given α of level d, there are τ
(n
d

)
choices for E. Since there are Ψd(q)

elements of level d in Fqn ,∑
α∈Fqn

|{E ⊆ Fqn : Fq(α) ⊆ E}| =
∑
d|n

τ
(n
d

)
Ψd(q).

Thus (H) says ∑
d|n

qd =
∑
d|n

τ
(n
d

)
Ψd(q). (3q)

3.4. Fourth q-identity. We record another q-identity. The proof relies on Burnside’s

lemma whose statement we now recall.

Suppose a finite group G acts on a finite set X. Write G \X for the set of G-orbits on

X. For g ∈ G, let

χ(g) = |{x ∈ X : g.x = x}|.
Thus χ(g) counts the number of fixed points of g on X. Burnside’s lemma says that the

number of G-orbits on X is the average value of χ on G:

|G \X| =
1

|G|
∑
g∈G

χ(g).

We apply Burnside’s lemma to the action of Aut(Fqn/Fq) on Fqn . To simplify the no-

tation, we set Γ = Aut(Fqn/Fq). As noted above, Γ is cyclic of order n with canonical

generator Φ where Φ(λ) = λq for λ ∈ Fqn .

There is a natural bijection

Γ \Fqn ←→ set of monic irreducible polynomials

of degree dividing n in Fq[X]

Γ. α ←→ min Fq
α.

Indeed, for α ∈ Fqn , the orbit Γ. α is precisely the set of roots of min Fq
α in Fqn . Moreover,

as α varies through Fqn , the elements min Fqα vary through the set of monic irreducible

polynomials in Fq[X] of degree dividing n. Thus

|Γ \Fqn | =
∑
d|n

Nd(q)

=
∑
d|n

1

d
Ψd(q).

Observe next that Γ has φ(d) elements of order d, namely the generators of the unique

subgroup 〈Φn/d〉 of order d. It follows that the set of fixed points for each of these elements

is Fqn/d , whence ∑
γ∈Γ

χ(γ) =
∑
d|n

φ(d)qn/d.

Therefore Burnside’s lemma gives∑
d|n

1

d
Ψd(q) =

1

n

∑
d|n

φ(d)qn/d
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which we rewrite as ∑
d|n

Ψd(q)
n

d
=
∑
d|n

φ(d)qn/d. (4q)

4. More Convolution Identities.

The identities (1q)–(4q) are equivalent. We can see this by the strategy of Section 2, that

is, by transferring the identities to the ring C and observing that any one can be obtained

from any other by multiplying by a suitable unit.

We write Ψ−(q) and e−(q) for the elements of C whose values at n ∈ N are Ψn(q) and

qn, respectively. We can then express (1q)–(4q) as the convolution identities

Ψ−(q) = µ ? e−(q), (1q?)

e−(q) = Ψ−(q) ? 1, (2q?)

e−(q) ? 1 = Ψ−(q) ? τ, (3q?)

Ψ−(q) ? i = φ ? e−(q). (4q?)

Exactly as in Section 2, we have (1q?) ⇔ (2q?) ⇔ (3q?). Finally, observe that (4q?) is

obtained from (1q?) by multiplying by i ∈ C×, so that (1q?) and (4q?) are equivalent. In

detail,

Ψ−(q) = µ ? e−(q) ⇐⇒ Ψ−(q) ? i = µ ? e−(q) ? i

= φ ? e−(q) (as φ = µ ? i).

5. An unusual ring.

The identities (1q)–(4q) hold for arbitrary prime powers. We can therefore regard them

as identities in the polynomial ring Z[q] where we view q now as an indeterminate. Their

most natural home, however, is a ring Z〈q〉 which we introduce in this section. We also

introduce a related convolution ring Cq as a habitat for (1q?)–(4q?). We’ll see that there

are natural ring homomorphisms from Z〈q〉 to Z and from Cq to C that carry our q- and q?-

identities to the number-theoretic identities (1)–(3) and (1?)–(3?). In this sense, (1q)–(3q)

and (1q?)–(3q?) are not just analogues of (1)–(3) and (1?)–(3?) but generalizations.

5.1. The ring Z〈q〉. As a set,

Z〈q〉 = {a1q + a2q
2 + · · ·+ anq

n : a1, . . . , an ∈ Z, n ∈ N}

where q is a symbol. At first glance, Z〈q〉 consists of polynomials in q with integer coefficients

and constant term zero and we add elements of Z〈q〉 in this way. Multiplication in Z〈q〉,
however, is not ordinary multiplication of polynomials. For

f(q) =

m∑
i=1

aiq
i and g(q) =

n∑
j=1

bjq
j ,

we define

(f ? g)(q) =

m∑
i=1

n∑
j=1

aibjq
ij . (?)
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In other words, we multiply powers of q via the formula

qi ? qj = qij (?′)

and extend Z-linearly. Via these operations, Z〈q〉 is a commutative ring with identity. The

(multiplicative) identity element is q.

Remark. The ring Z〈q〉—strange perhaps at first sight—is a natural object: it’s the semi-

group ring with Z-coefficients of the multiplicative semigroup N. In these terms, the ordinary

polynomial ring Z[X] is the semigroup ring with Z-coefficients of the additive semigroup Z≥0

of nonnegative integers. Note that, by uniqueness of prime factorization, the multiplicative

semigroup N is isomorphic to the direct sum of countably many copies of Z≥0 (one for each

prime). It follows that we can view Z〈q〉 as a polynomial ring with integer coefficients in

countably many indeterminates. More precisely, if we list the primes as p1, p2, . . . and write

X1,X2, . . . for corresponding indeterminates, then the assignment

q 7−→ 1,

q pi 7−→ Xi, i = 1, 2, . . . ,

extends to an isomorphism of rings

Z〈q〉 ' Z[X1,X2, . . .].

The identities (1q)–(4q) involve polynomials with integer coefficients and constant term

zero, and so can be viewed as identities in Z〈q〉. Indeed, as an abelian group Z〈q〉 coincides

with (more pedantically, is canonically isomorphic to) the subgroup of Z[q] consisting of

polynomials with constant term zero. Hence any additive identity between such polynomials

transfers to Z〈q〉.
We define a map

e : Z〈q〉 −→ Z

by e =
d

dq

∣∣∣∣
q=1

. Thus for f(q) =
∑m
i=1 aiq

i ∈ Z〈q〉,

e(f(q)) =

m∑
i=1

iai.

Note that e is a homomorphism of rings, that is,

e(f(q) + g(q)) = e(f(q)) + e(g(q)),

e(f(q) ? g(q)) = e(f(q))e(g(q)), for f(q), g(q) ∈ Z〈q〉.

The first equation is immediate and the second follows directly from (?) or (?′).

5.2. The ring Cq. We define the convolution ring Cq alluded to in the introduction to this

section. Its underlying set consists of functions from N to Z〈q〉. We’ll write f−(q) for a

typical element, so that the value of f−(q) at n ∈ N is fn(q) ∈ Z〈q〉. In particular, we may

view Ψ−(q) and e−(q) as elements of Cq.
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Addition in Cq is pointwise addition of functions. We multiply functions via convolution

which we’ll again denote by ?. Thus for f = f−(q), g = g−(q) ∈ Cq,

(f + g)n(q) = fn(q) + gn(q),

(f ? g)n(q) =
∑
d|n

fd(q) ? gn/d(q), n ∈ N.

These operations make Cq into a commutative ring with identity. The (multiplicative)

identity element is δ−(q) where

δn(q) =

{
q if n = 1,

0 otherwise.

The homomorphism e : Z〈q〉 → Z induces the map

f−(q) 7−→ e ◦ f−(q) : Cq → C

which we’ll write simply as

ẽ : Cq → C.

Thus ẽ(f−(q)) sends n to e(fn(q)) for f−(q) ∈ Cq, n ∈ N. From the definitions, we see that

ẽ : Cq → C is again a homomorphism of rings.

Observe that we can also multiply elements of C and Cq via convolution. Explicitly, for

α ∈ C and f−(q) ∈ Cq, the product α ? f−(q) is given by

n 7−→
∑
d|n

α(d)fn/d(q), n ∈ N.

In this way, Cq is a module over C. Moreover, if we view C as a module over itself by

convolution (the regular module), then ẽ : Cq → C is a C-module homomorphism.

5.3. ?-identities from q?-identities. We show that (1?)–(3?) follow from (1q?)–(3q?) by

applying the map ẽ. The “extra” identity (4q?) plays a crucial role.

For ease of reference, we repeat (1q?)–(4q?), interpreted now as identities in the C-module

Cq:

Ψ−(q) = µ ? e−(q), (1q?)

e−(q) = Ψ−(q) ? 1, (2q?)

e−(q) ? 1 = Ψ−(q) ? τ, (3q?)

Ψ−(q) ? i = φ ? e−(q). (4q?)

We set

ẽ(Ψ−(q)) = ψ.
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Observe that ẽ(e−(q)) = i. Applying the C-module map ẽ : Cq → C to (1q?)–(3q?) therefore

yields

ψ = µ ? i,

i = ψ ? 1,

i ? 1 = ψ ? τ.

These are just the identities (1)–(3) with ψ in place of φ, so we need to show that ψ = φ.

For this, we apply ẽ to (4q?) to obtain

ψ ? i = φ ? i,

whence ψ = φ (using i ∈ C×).

6. Multiplicativity and Canonical Lifts.

In this section we show that (1q?)–(3q?) follow from the number-theoretic identities (1?)–

(3?) via a uniqueness principle. Our approach also yields an alternative proof of (4q?).

It hinges on two notions—multiplicativity of elements of C and Cq and the concept of a

canonical lift of a multiplicative element of C to Cq.

The following schematic diagram summarizes the implications we’ve already noted or will

soon establish.

(1?) (2?) (3?) φ ? i

(1q?) (2q?) (3q?) (4q?)

take canonical liftsapply ẽ

The right and left arrows arise by multiplication by suitable units in C. It remains only to

prove the implications from the top to the bottom row.

6.1. Multiplicativity. A function f ∈ C is multiplicative if

• f(mn) = f(m)f(n) for any relatively prime positive integers m and n,

• f(1) = 1.

The second condition serves only to exclude the zero function. Indeed, for any f that satisfies

the first condition, f(1) = f(1)f(1) and f(n) = f(1)f(n) for all n ∈ N. Thus f(1) = 0 or

f(1) = 1 and if f(1) = 0 then f is identically zero.

We extend the terminology to the ring Cq and say that f−(q) ∈ Cq is multiplicative if

• fmn(q) = fm(q) ? fn(q) for any relatively prime positive integers m and n,

• f1(q) = q.

A multiplicative element of C or Cq is determined by its values at prime powers.

It is crucial for our purposes that convolution preserves multiplicativity.

Proposition. Let α, β ∈ C and f−(q), g−(q) ∈ Cq be multiplicative. Then α ? β ∈ C and

α ? f−(q), f−(q) ? g−(q) ∈ Cq are also multiplicative.
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Proof. We’ll check only that α ? β ∈ C is multiplicative. The argument in the other cases is

effectively identical. Observe first that

(α ? β)(1) = α(1)β(1) = 1 · 1 = 1.

Now let m and n be relatively prime positive integers. Any divisor d of mn factors uniquely

as d1d2 where d1 | m and d2 | n. Hence

(α ? β)(mn) =
∑
d|mn

α(d)β(mn/d)

=
∑
d1|m

∑
d2|n

α(d1d2)β(mn/d1d2)

=
∑
d1|m

∑
d2|n

α(d1)α(d2)β(m/d1)β(n/d2)

=
∑
d1|m

α(d1)β(m/d1) ·
∑
d2|n

α(d2)β(n/d2)

= (α ? β)(m) (α ? β)(n). �

Corollary. The functions φ, τ, σ ∈ C and Ψ−(q) ∈ Cq are multiplicative.

Proof. The functions 1 and i are self-evidently multiplicative. Moreover, a moment’s thought

shows that the Möbius function µ is multiplicative. It follows that φ = µ ? i, τ = 1 ? 1, and

σ = i?1 are multiplicative. Similarly, e−(q) is visibly multiplicative, and so Ψ−(q) = µ?e−(q)

is multiplicative. �

Example. Let n = pe11 · · · perr be the prime factorization of an integer n > 1. Multiplica-

tivity of φ and its simple form on prime powers gives the familiar formula

φ(n) = φ(pe11 ) · · ·φ(perr )

=
(
pe11 − p

e1−1
1

)
· · ·
(
perr − per−1

r

)
which is implicit also in equation (c) in Section 1. The parallel formula for Ψn(q) ∈ Z〈q〉 is

Ψn(q) = Ψp
e1
1

(q) ? · · · ?Ψperr (q)

=
(
qp

e1
1 − qp

e1−1
1

)
? · · · ?

(
qp

er
r − qp

er−1
r

)
.

Straightforward calculations show that (1q?)–(4q?) hold at prime powers. Multiplicativity

then implies that they hold at all positive integers. This, however, is an unsatisfactory

approach—it fails to explain why the identities must hold at prime powers. Instead, we’ll

establish a uniqueness principle (recorded in the theorem below and its corollary) that makes

the identities inevitable at prime powers and hence at all positive integers.

6.2. Canonical lifts. The map ẽ : Cq → C preserves multiplicativity: if f−(q) ∈ Cq is

multiplicative then ẽ(f−(q)) ∈ C is multiplicative. In the opposite direction, given a mul-

tiplicative f ∈ C, can we find a multiplicative f−(q) ∈ Cq such that ẽ(f−(q)) = f? To

facilitate our discussion, we introduce some terminology.



COUNTING IN FINITE CYCLIC GROUPS AND FINITE FIELDS 15

Definition. Let f ∈ C be multiplicative. We say that f−(q) ∈ Cq lifts f or is a lift of f if

f−(q) is multiplicative and ẽ(f−(q)) = f .

Thus our question is: does every multiplicative element in C admit a lift to Cq? Posed in

this form, the answer is “yes” for trivial reasons. For example, given f ∈ C multiplicative,

we can simply set fn(q) = f(n)q for n ∈ N. Is there a more intrinsic lift, one that reflects

the structure of the ring Z〈q〉? For instance, e−(q) and Ψ−(q) lift i and φ, respectively, and

are surely the most natural lifts of these elements. What makes them so? Trying to answer

this question led us to the following notion.

Definition. Let f ∈ C be multiplicative. We say that f−(q) ∈ Cq is a canonical lift of f if

• f−(q) is a lift of f ;

• for each prime p and each positive integer k,

fpk(q) = qp ? fpk−1(q) + ckq (IC)

for some ck ∈ Z.

In the crucial iterative condition (IC), observe that the integers ck are determined. Indeed,

if we apply e : Z〈q〉 → Z to (IC), then

f(pk) = pf(pk−1) + ck or ck = f(pk)− pf(pk−1).

Thus

fp(q) = qp + c1q with c1 = f(p)− p,

fp2(q) = qp
2

+ c1q
p + c2q with c2 = f(p2)− pf(p),

and so on. In general, with c0 = 1 and cj = f(pj)− pf(pj−1) for j ≥ 1 (as above),

fpk(q) =

k∑
i=0

ck−i q
pi , k = 0, 1, 2, . . . .

Thus a canonical lift is completely determined at prime powers.

Using multiplicativity, it follows that canonical lifts exist and are unique. We are justified

so in speaking of the canonical lift of a multiplicative element of C.

Example. It’s immediate that the multiplicative function e−(q) satisfies (IC). In detail, for

any prime p and any positive integer k,

epk(q) = qp
k

= qp ? qp
k−1

= qp ? epk−1(q).

Hence e−(q) is the canonical lift of i.

Similarly, for any prime p and any integer k ≥ 2,

Ψpk(q) = qp
k

− qp
k−1

= qp ?
(
qp

k−1

− qp
k−2
)

= qp ? pk−1Ψpk−1(q). rem. to delete pk−1
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Further,

Ψp(q) = qp − q

= qp ?Ψ1(q)− q.

In all, the multiplicative function Ψ−(q) satisfies (IC) and hence is the canonical lift of φ.

6.3. Canonical lifts and convolution. The key to our analysis is that canonical lifts

commute with convolution.

Theorem. Let α, f ∈ C be multiplicative. Writing f−(q) and (α ? f)−(q) for the canonical

lifts of f and α ? f , respectively, we have

α ? f−(q) = (α ? f)−(q).

Proof. The element α ? f−(q) ∈ Cq is a lift of α ? f ∈ C. To show that it coincides with the

canonical lift (α ? f)−(q), we only have to check that α ? f−(q) satisfies (IC). To this end,

let p be a prime and k be a positive integer. Writing α ? fn(q) for the value of α ? f−(q) at

n, we have

α ? fpk(q) =

k∑
i=0

α(pk−i)fpi(q)

= α(pk)q +

k∑
i=1

α(pk−i)
(
qp ? fpi−1(q) + ci q

)
= qp ?

k∑
i=1

α(pk−i) ? fpi−1(q) +

(
k∑
i=0

α(pk−i)ci

)
q

= qp ?

k−1∑
j=0

α(pk−1−j)fpj (q) +

(
k∑
i=0

α(pk−i)ci

)
q

= qp ?
(
α ? fpk−1(q)

)
+ γk q, for some γk ∈ Z.

This completes the proof. �

Remark. We can use the theorem to see once more that Ψ−(q) is the canonical lift of φ.

Indeed, as noted in the preceding example, e−(q) is plainly the canonical lift of i, whence

Ψ−(q) = µ ? e−(q) must be the canonical lift of φ = µ ? i.

Corollary. Let α, β ∈ C be multiplicative with canonical lifts α−(q), β−(q) ∈ Cq. Then

α ? β−(q) = α−(q) ? β.

Proof. Each side is the canonical lift of α ? β ∈ C. �

6.4. q?-identities from ?-identities. Finally, we use the theorem and its corollary to

derive (1q?)–(4q?) from (1?)–(3?) and the trivial identity φ ? i = φ ? i.
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For convenience, we recapitulate our ?-identities:

φ = µ ? i, (1?)

i = φ ? 1, (2?)

σ = φ ? τ. (3?)

We observed a moment ago that φ has canonical lift Ψ−(q) and i has canonical lift e−(q).

Applying the theorem to (1?) and (2?) then yields

Ψ−(q) = µ ? e−(q), (1q?)

e−(q) = Ψ−(q) ? 1. (2q?)

Another application of the theorem shows that σ = i ? 1 has canonical lift e−(q) ? 1. On the

other hand, φ ? τ has canonical lift Ψ−(q) ? τ (again by the theorem). Using uniqueness of

canonical lifts, we see that (3?) implies

e−(q) ? 1 = Ψ−(q) ? τ. (3q?)

Now consider the convolution φ ? i. Taking canonical lifts and applying the corollary, we

obtain

Ψ−(q) ? i = φ ? e−(q). (4q?)
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