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Abstract

Let π be the automorphic representation of GSp4(A) generated by a full level
cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and τ be an arbitrary
cuspidal, automorphic representation of GL2(A). Using Furusawa’s integral repre-
sentation for GSp4 ×GL2 combined with a pullback formula involving the unitary
group GU(3, 3), we prove that the L-functions L(s, π× τ ) are “nice”. The converse
theorem of Cogdell and Piatetski-Shapiro then implies that such representations π
have a functorial lifting to a cuspidal representation of GL4(A). Combined with
the exterior-square lifting of Kim, this also leads to a functorial lifting of π to a
cuspidal representation of GL5(A). As an application, we obtain analytic properties
of various L-functions related to full level Siegel cusp forms. We also obtain special
value results for GSp4 ×GL1 and GSp4 ×GL2.
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Introduction

We will start by giving some general background on Siegel modular forms and
automorphic representations and then go on to explain the contents of this work.

Siegel modular forms

Classical elliptic modular forms, which are holomorphic functions on the com-
plex upper half plane with certain transformation properties, can be generalized in
various directions. One such generalization is the theory of Siegel modular forms,
which includes the elliptic case as the degree one case. General references for Siegel
modular forms are [17] and [43]. Just as in the elliptic case, Siegel modular forms
come with a weight and a level. Parts of the theory generalize to the Siegel case
in a straightforward way. For example, the space of Siegel modular forms of fixed
weight and level is finite-dimensional. Siegel modular forms have Fourier expan-
sions similar to that of elliptic modular forms. Also, there is a theory of Hecke
operators, hence a notion of eigenform, and each Siegel modular form is a linear
combination of eigenforms. The most interesting Siegel modular forms are the cusp
forms, characterized by the vanishing of certain Fourier coefficients.

Beyond the elliptic case, much work has concentrated on Siegel modular forms
of degree two. For example, Igusa wrote two famous papers [36] and [37] in the
1960’s, where he determined the structure of the ring of Siegel modular forms
of degree two with respect to the full modular group Sp4(Z) (in analogy to the
statement that the ring of modular forms with respect to SL2(Z) is generated by
the algebraically independent Eisenstein series of weight 4 and weight 6). Another
milestone came about a decade later, when Andrianov [1] associated a degree-4
Euler product L(s, F, spin), now known as the spin L-function, to a Siegel modular
form F with respect to Sp4(Z) (assumed to be an eigenform for all Hecke operators)
and proved its basic analytic properties: meromorphic continuation, functional
equation, and control over the possible poles.

A few years after this, Saito and Kurokawa [49] independently discovered the
existence of degree two Siegel modular forms that violated the naive generalization
of the Ramanujan conjecture: the statement that the roots of the Hecke polynomials
in the denominator of the spin L-function of cusp forms have absolute value 1. In a
series of papers [55], [56], [57], [2], [91] Maass, Andrianov and Zagier showed that
such Siegel modular forms are precisely those that “come from” elliptic modular
forms.1 More precisely, there is a construction, now known as the Saito-Kurokawa

1There exist cuspidal automorphic representations of Sp4(A) (and of GSp4(A)) which violate
the Ramanujan conjecture but are not lifts from elliptic modular forms, such as the examples

1
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lifting, which associates to an elliptic eigenform f for SL2(Z) a Siegel eigenform
F for Sp4(Z), such that the spin L-function of F is the product of the Hecke L-
function of f times two zeta factors. More precisely, with appropriate normalization
and disregarding archimedean factors,

(1) L(s, F, spin) = L(s, f)ζ(s+ 1/2)ζ(s− 1/2).

The zeta factors produce poles, and in fact Evdokimov [16] and Oda [62] have
shown that the existence of a pole in the spin L-function characterizes Saito-
Kurokawa liftings. The book [15] by Eichler and Zagier gives a streamlined ac-
count of the construction of Saito-Kurokawa lifts via the theory of Jacobi forms. If
a holomorphic eigenform for Sp4(Z) is not Saito-Kurokawa, then in fact it satisfies
the Ramanujan conjecture. This was proved by Weissauer [90].

Many questions that have been answered in the elliptic case remain open for
higher degree Siegel modular forms. For example, there is as of yet no good theory
of old- and newforms resembling the classical theory of Atkin and Lehner. Questions
of level aside, even the case of Siegel modular forms with respect to the full modular
group has many challenges remaining. For instance, it is not yet known if a Siegel
modular form for Sp4(Z), assumed to be an eigenform for all Hecke operators, is
determined by its Hecke eigenvalues (a statement known as multiplicity one). This
has to do with the difficulty of relating Hecke eigenvalues and Fourier coefficients
(unlike in the elliptic case, where the Hecke eigenvalues are the Fourier coefficients).
Indeed, the Fourier coefficients of Siegel cusp forms of degree 2 are mysterious
arithmetic objects, which are conjecturally related to central L-values of twisted
spin L-functions; see [20] for a good discussion. The precise form of this relationship
is known as Böcherer’s conjecture, and one of us has observed [74] that a version
of this conjecture implies multiplicity one.

Automorphic representations

It is well known that the theory of elliptic modular forms embeds into the more
general theory of automorphic forms on the group GL2(A). Here, A denotes the
ring of adeles of the number field Q. The details of this process are explained in
[7] and [22], and are roughly as follows. Given an elliptic cusp form f of weight k
and level N that is an eigenfunction of the Hecke operators T (p) for all but finitely
many primes p, one may associate to f a complex-valued function Φf on GL2(A)
satisfying certain invariance properties. In particular, Φf is left-invariant under the
group of rational points GL2(Q), right invariant under a compact-open subgroup
of the finite adeles depending on N , and transforms according to the character
e2πikx of the group SO(2) ∼= R/Z at the archimedean place. Let V be the space of
functions spanned by right translates of Φf . Then V carries a representation of the
group GL2(A). We denote this representation by πf and call it the automorphic
representation attached to f . Using the hypothesis that f is an eigenform, one
can prove that πf is irreducible. Like any irreducible representation of GL2(A), it
factors as a restricted tensor product ⊗vπv, where πv is an irreducible, admissible
representation of the local group GL2(Qv). The product extends over all places v
of Q, and for v = ∞ we understand that Qv = R. The original modular form f , or

constructed by Howe and Piatetski-Shapiro [34]. Such representations, however, cannot arise
from holomorphic Siegel modular forms (of any level) with weight k > 2; see Corollary 4.5 of [67].
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rather its adelic version Φf , can be recovered as a special vector in the representation
π. In fact, if f is a newform, then Φf is a pure tensor ⊗vφv, where each φp is a
local newform in πp for finite p, and φ∞ is a lowest weight vector in π∞, a discrete
series representation.

This procedure generalizes to Siegel modular forms F of degree n for the full
modular group. The group GL2 is to be replaced by the symplectic similitude
group GSp2n; see [3] for details. The resulting representation π∞ of GSp2n(R) is a
holomorphic discrete series representation with scalar minimal K-type determined
by the weight of F . Unfortunately, for Siegel modular forms with level, the corre-
sponding procedure is not quite as nice, due to the lack of a good theory of local
newforms for representations of the group GSp2n(Qp), and our lack of knowledge of
global multiplicity one. However, see [71] for a treatment of adelization for Siegel
cusp forms of arbitrary level that suffices for many applications.

Once a modular form is realized as a special vector in an automorphic rep-
resentation, can the considerable machinery available for such representations be
used to gain new insights into the classical theory? Sometimes, the answer is yes.
For example, a method of Langlands, formulated for automorphic representations,
was used in [3] to prove that the spin L-functions of Siegel modular forms of degree
three have meromorphic continuation to the entire complex plane. As an example
in the elliptic modular forms case, one might use the Langlands-Shahidi method
to deduce analytic properties of several symmetric power L-functions L(s, f, symn)
attached to an elliptic cuspidal eigenform f .

There is however a serious limiting factor to the applicability of automorphic
methods to Siegel modular forms of higher degree. Namely, if F is an eigen-cuspform
of degree n > 1, assumed to be of full level for simplicity, then the associated
automorphic representation πF of GSp2n(A) is non-generic (meaning it has no
Whittaker model). The obstruction comes from the archimedean place: If πF =
⊗vπv, then the archimedean component π∞, which is a holomorphic discrete series
representation, is not generic. If πF were generic, one could, for example, apply
the Langlands-Shahidi method, and immediately obtain the analytic properties of a
series of L-functions. Also, at least for the degree two case, questions of multiplicity
one could be answered immediately; see [40].

Functoriality

Langlands’ principle of functoriality, a central conjecture in the theory of auto-
morphic representations, describes the relationships between automorphic objects
living on two different algebraic groups. More precisely, let G and H be reductive,
algebraic groups, which for simplicity we assume to be defined over Q and split.
Attached to G and H are dual groups Ĝ and Ĥ, which are complex reductive Lie
groups whose root systems are dual to those of G and H, respectively. Then, ac-
cording to the principle, every homomorphism of Lie groups Ĝ → Ĥ should give rise
to a “lifting”, or “transfer”, of automorphic representations of G(A) to automor-
phic representations of H(A). For example, in [23], Gelbart and Jacquet proved
the existence of the symmetric square lifting for G = GL2 to H = GL3. Here,
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Ĝ = GL2(C) and Ĥ = GL3(C), and Ĝ → Ĥ is an irreducible three-dimensional

representation of Ĝ. A more recent example, and one that we will use in this work,
is Kim’s exterior square lifting [41] from G = GL4 to H = GL6. Here, Ĝ = GL4(C),

Ĥ = GL6(C), and Ĝ → Ĥ is the irreducible six-dimensional representation of Ĝ
given as the exterior square of the four-dimensional standard representation.

What exactly qualifies as a “lifting” is often formulated in terms of the L-
functions attached to automorphic representations. Let G be as above, and let
π = ⊗vπv be an automorphic representation of G(A). As additional ingredient we

need a finite-dimensional complex representation ρ of Ĝ. Attached to this data is
an Euler product

L(s, π, ρ) =
∏
v

L(s, πv, ρ),

where s is a complex parameter. We ignore for a moment the fact that in many
situations the local factors L(s, πv, ρ) may not be known; at least for almost all
primes the factors are known, and are of the form Q(p−s)−1, where Q(X) is a
polynomial of degree equal to the dimension of ρ and satisfying Q(0) = 1. It is
also known that the product converges in some right half plane. If ρ is a natural
“standard” representation, it is often omitted from the notation. Now if H is a
second group, and if ϕ : Ĝ → Ĥ is a homomorphism of Lie groups, then the associ-
ated “lifting” maps automorphic representations π = ⊗πv of G(A) to automorphic
representations Π = ⊗Πv of H(A) in such a way that

(2) L(s,Π, ρ) = L(s, π, ρ ◦ ϕ)

for all finite-dimensional representations ρ of Ĥ . Sometimes one can only prove that
the Euler products coincide for almost all primes, in which case one may speak of
a weak lifting. For example, in [41], Kim proved the equality of the relevant Euler
products for the exterior square lifting at all primes outside 2 and 3. Later, Henniart
[33] showed the equality for the remaining primes, proving that Kim’s lifting is in
fact strong.

It seems worthwhile to emphasize here that each instance of lifting discovered
so far has had numerous applications to number theory. Functoriality is a magic
wand that forces additional constraints on the automorphic representations being
lifted and allows us to prove various desirable local and global properties for them.
To give just one example, Kim’s symmetric fourth lifting [41] from GL2 to GL5 has
provided the best known bound towards the Ramanujan conjecture for cuspidal
automorphic representations of GL2. By using these bounds for the case of GL2

over a totally real field, Cogdell, Piatetski-Shapiro and Sarnak [13] were able to
confirm the last remaining case of Hilbert’s eleventh problem.

We mention that the Saito-Kurokawa lifting also fits into the framework of
Langlands functoriality. Recall that this lifting maps elliptic modular forms to
Siegel modular forms of degree 2, so one would expect the relevant groups to be
G = GL2 and H = GSp4, or rather, since all representations involved have trivial
central character, the projective groups G = PGL2 and H = PGSp4. But in fact,
one should really take G = PGL2 × PGL2; see [51] and [78]. The associated dual

groups are Ĝ = SL2(C)×SL2(C) and Ĥ = Sp4(C), and the homomorphism of dual



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

INTRODUCTION 5

groups is given by

(3)

[
a b
c d

]
,

[
a′ b′

c′ d′

]
�−→

⎡⎢⎢⎣
a b

a′ b′

c d
c′ d′

⎤⎥⎥⎦ .

The first factor PGL2 carries the representation πf associated to an elliptic eigen-
form f . The second, “hidden” factor PGL2 carries an anomalous representa-
tion πan, which is a certain constituent of a parabolically induced representa-
tion. It is clear from (3) that the lifting Π of the pair (πf , πan) has the property
L(s,Π) = L(s, π)L(s, πan). Looking only at finite places, this identity is precisely
the equality (1). Hence, it is the presence of the anomalous representation πan

that accounts for the pole in the L-function, and the violation of the Ramanujan
conjecture. Inside Π one can find (the adelization of) the Siegel modular form F
that is the Saito-Kurokawa lifting of f .

The transfer of Siegel modular forms to GL4 and GL5

Again we consider Siegel modular forms of degree 2, restricting our attention
to cusp forms and full level. If F is an eigenform, we can attach to it a cuspidal,
automorphic representation πF = ⊗vπv of GSp4(A). Now, the dual group of GSp4
is GSp4(C), which sits inside GL4(C). Interpreting the latter as the dual group of
GL4, we see that the principle of functoriality predicts the existence of a lifting from
GSp4 to GL4. In particular, we should be able to lift our modular form F (or rather
πF ) to an automorphic representation Π of GL4(A). If F is of Saito-Kurokawa type,
it is obvious, but not very exciting, how to construct the lifting; the result will be a
representation globally induced from the (2, 2)-parabolic of GL4(A). In particular,
the lifting is not cuspidal. It is much more intricate to lift non-Saito-Kurokawa
forms; this is, in fact, the main theme of this work.

Let us move our focus away from πF and consider for a moment all cuspidal
representations of GSp4(A). What is the current status of the lifting from GSp4 to
GL4 predicted by Langlands functoriality? In [4] Asgari and Shahidi have achieved
the lifting for all generic cuspidal, automorphic representations of GSp4(A). The
reason for the restriction to generic representations lies in their use of the Langlands-
Shahidi method. As emphasized already, Siegel cusp forms correspond to non-
generic representations; so this method cannot be used to lift them.

Another commonly used tool to prove functoriality is the trace formula. Trace
formula methods have the potential to prove the existence of liftings for all auto-
morphic representations. This method has been much developed by Arthur, but
for specific situations is still subject to various versions of the fundamental lemma.
At the time of this writing it is unclear to the authors whether all the necessary
ingredients for the lifting from GSp4 to GL4 are in place. Certainly, a complete
proof is not yet published.

In this work we use the Converse Theorem to prove that full-level Siegel cusp
forms of degree two can be lifted to GL4. To the best of our knowledge, the Converse
Theorem has not been used before to prove functorial transfer for a non-generic
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representation on a quasi-split group. Given F and πF as above, it is easy enough to
predict what the lifting Π = ⊗Πv to GL4 should be. In fact, we can define Πv, which
is an irreducible, admissible representation of GL4(Qv), for all places v in such a way
that the required lifting condition (2) is automatically satisfied. The only question is
then: Is the representation Π of GL4(A) thus defined automorphic? This is the kind
of question the Converse Theorem is designed to answer. According to the version of
the Converse Theorem given in [11], the answer is affirmative if the twisted (Rankin-
Selberg) L-functions L(s,Π × τ ) are “nice” for all automorphic representations τ
of GL2(A), or alternatively, for all cuspidal automorphic representations of GL2(A)
and GL1(A). The GL1 twists are not a serious problem, so our main task will be
to prove niceness for the GL2 twists. Recall that “nice” means the L-functions can
be analytically continued to entire functions, satisfy a functional equation, and are
bounded in vertical strips.

Once we establish the transfer of πF to GL4, we will go one step further and
lift πF to the group GL5 as well. Recall that πF is really a representation of the
projective group PGSp4(A), the dual group of which is Sp4(C). The lifting to
GL4 comes from the inclusion Sp4(C) → GL4(C), or, in other words, the natural
representation ρ4 of Sp4(C) on C4. The “next” irreducible representation of Sp4(C)
is five-dimensional, and we denote it by ρ5. Interpreting ρ5 as a homomorphism of
dual groups Sp4(C) → GL5(C), the principle of functoriality predicts the existence
of a lifting from PGSp4 to GL5. Using Kim’s exterior square lifting [41], one can
in fact show that the transfer of πF to GL5 exists. To summarize, we will prove
the following lifting theorem.

Theorem A: Let F be a cuspidal Siegel modular form of degree 2 with respect
to Sp4(Z). Assume that F is an eigenform for all Hecke operators, and not of Saito-
Kurokawa type. Let πF be the associated cuspidal, automorphic representation of
GSp4(A). Then πF admits a strong lifting to an automorphic representation Π4 of
GL4(A), and a strong lifting to an automorphic representation Π5 of GL5(A). Both
Π4 and Π5 are cuspidal.

For more precise statements of these results, see Theorem 5.1.2 and Theorem
5.1.5.

Bessel models

We have yet to explain how to prove “niceness” for the L-functions relevant for
the Converse Theorem. Before doing so, let us digress and explain the important
notion of Bessel model for representations of GSp4. These models can serve as
a substitute for the often missing Whittaker models. We start by explaining the
local, non-archimedean notion of Bessel model. Thus, let F be a p-adic field. We
fix a non-trivial character ψ of F . Recall that the Siegel parabolic subgroup of GSp4
is the standard maximal parabolic subgroup whose radical U is abelian. Let S
be a non-degenerate, symmetric matrix with coefficients in F . Then S defines a
character θ of U(F ) via

θ(

[
1 X
1

]
) = ψ(tr(SX)).
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Let T be the identity component of the subgroup of the Levi component of the
Siegel parabolic fixing θ. Hence, the elements t of T (F ) satisfy θ(tut−1) = θ(u) for
all u ∈ U(F ). The group T turns out to be abelian. In fact, it is a two-dimensional
torus which is split exactly if − det(S) is a square in F×. The semidirect product
R = TU is called the Bessel subgroup of GSp4 with respect to θ. Every character
Λ of T (F ) gives rise to a character Λ⊗ θ of R(F ) via (Λ⊗ θ)(tu) = Λ(t)θ(u).

Now, let (π, V ) be an irreducible, admissible representation of GSp4(F ). Let θ
and Λ be as above. We consider functionals β : V → C with the property

β(π(tu)v) = Λ(t)θ(u)β(v)

for t ∈ T (F ), u ∈ U(F ) and v ∈ V . A non-zero such functional is called a (Λ, θ)-
Bessel functional for π. It is known that, for fixed θ and Λ, there can be at most
one such functional up to multiples; see [61]. It is also known that, unless π is one-
dimensional, there always exists a Bessel functional for some choice of θ and Λ. If
θ and Λ are such that a (Λ, θ)-Bessel functional for π exists, then π can be realized
as a subspace of the space of functions B : GSp4(F ) → C with the transformation
property

(4) B(tuh) = Λ(t)θ(u)B(h) for all t ∈ T (F ), u ∈ U(F ), h ∈ GSp4(F ),

with the action of GSp4(F ) on this space given by right translation. Sugano [83]
has determined the explicit formula in the above realization for the spherical vector
in an unramified representation π.

Similar definitions can be made, and similar statements hold, in the archimedean
context. See [65] for explicit formulas for Bessel models for a class of lowest weight
representations of GSp4(R). All we will need in this work are formulas for holo-
morphic discrete series representations with scalar minimal K-type. These have
already been determined in [83].

Next, consider global Bessel models. Given S as above but with entries in Q,
we obtain a character θ of U(A) via a fixed non-trivial character ψ of Q\A. The
resulting torus T can be adelized, and is then isomorphic to the group of ideles A×

L

of a quadratic extension L of Q. We assume that − det(S) is not a square in Q×,
so that L is a field (and not isomorphic to Q ⊕ Q). Let π = ⊗πv be a cuspidal,
automorphic representation of GSp4(A), and let V be the space of automorphic
forms realizing π. Assume that a Hecke character Λ of A×

L is chosen such that the
restriction of Λ to A× coincides with the central character of π. For each φ ∈ V
consider the corresponding Bessel function

(5) Bφ(g) =

∫
ZH(A)R(Q)\R(A)

(Λ⊗ θ)(r)−1φ(rg) dr,

where ZH is the center of H := GSp4. If these integrals are non-zero, then we
obtain a model of π consisting of functions on GSp4(A) with a left transformation
property analogous to (4). In this case, we say that π has a global Bessel model
of type (S,Λ, ψ). It implies that the corresponding local Bessel models exist for
all places v of Q. The local uniqueness of Bessel models implies global uniqueness.
However, if we are given π = ⊗πv and some triple (S,Λ, ψ) such that πv has a
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local Bessel model of type (Sv,Λv, ψv) for each place v, then it does not necessarily
imply that π has a global Bessel model of type (S,Λ, ψ). Indeed, conjecturally, a
global Bessel model exists in the above case if and only if a certain central L-value
is non-vanishing; see [68] for a discussion of this point.

So, what can be said about the existence of global Bessel models for those
automorphic representations coming from Siegel modular forms? Assume that πF =
⊗πv is attached to a full level Siegel cusp form, as above. Then πp, for each prime p,
is a spherical representation. Such representations admit Bessel models for which
the character Λp is unramified. We would like our global Bessel data to be as
unramified as possible. So the question arises, can we find a global Bessel model for
which the Hecke character Λ is unramified everywhere? Not only that, we would
like L to be an imaginary quadratic extension, and would like the archimedean
component of Λ, which is a character of C×, to be trivial. The existence of such a
Λ turns out to be related to the non-vanishing of certain Fourier coefficients of F ;
see Lemma 5.1.1 for a precise statement. Using analytic methods and half-integral
weight modular forms, the second author has recently proved [75] that the required
non-vanishing condition is always satisfied. Hence, a particularly nice global Bessel
model always exists for πF . This removes assumption (0.1) of [19], and will make
our results hold unconditionally for all cuspidal Siegel eigenforms of full level.

Furusawa’s integrals

We now return from the world of Bessel models to the problem of proving
“niceness” for the L-functions relevant for the Converse Theorem. Recall that, in
order to apply the Converse Theorem for GL4, the essential task is to control the
Rankin-Selberg L-functions L(s,Π×τ ), where Π is the predicted transfer to GL4(A),
and τ is an arbitrary cuspidal, automorphic representation of GL2(A). By the very
definition of Π, this L-function equals L(s, π × τ ), where π = πF is the cuspidal
representation of GSp4(A) attached to F . For this type of Rankin-Selberg product,
Furusawa [19] has pioneered an integral representation, which we now explain. This
integral representation involves an Eisenstein series on a unitary similitude group
GU(2, 2). Unitary groups are defined with respect to a quadratic extension L.
Here, the appropriate quadratic field extension L/Q is the one coming from a global
Bessel model for π. Hence, given the cusp form F , we first find a particularly good
Bessel model for π, with the Hecke character Λ = ⊗Λv unramified everywhere, as
explained above. The quadratic extension is then L = Q(

√
− det(S)). For the

precise definition of GU(2, 2) see (19). Note that this group contains GSp4, which
we henceforth abbreviate by H.

Let us next explain the Eisenstein series E(h, s; f) appearing in Furusawa’s
integral representation. Eisenstein series come from sections in global paraboli-
cally induced representations. The relevant parabolic P of GU(2, 2) is the Klingen
parabolic subgroup, i.e., the maximal parabolic subgroup with non-abelian radical.
There is a natural map from A×

L × A×
L × GL2(A) to the adelized Levi component

of P . Therefore, via suitably chosen Hecke characters χ0 and χ of A×
L , the GL2(A)

cuspidal representation τ can be extented to a representation of the Levi compo-
nent of P (A). Parabolic induction to all of GU(2, 2)(A) then yields representations
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I(s, χ, χ0, τ ), where s is a complex parameter (see Sect. 1.1 for details). The Eisen-
stein series is constructed from an analytic section f in this family of induced
representations via a familiar summation process; see (141). By general theory,
E(h, s; f) is convergent in some right half plane, has meromorphic continuation to
all of C and satisfies a functional equation.

With the Eisenstein series in place, Furusawa considers integrals of the form

(6) Z(s, f, φ) =

∫
H(Q)ZH(A)\H(A)

E(h, s; f)φ(h) dh.

Here, as before, ZH denotes the center of H = GSp4. The function φ is a vector in
the space of automorphic forms realizing π. Furusawa’s “basic identity” (here equa-
tion (143)) shows that, if all the data are factorizable, then the integral Z(s, f, φ)
is Eulerian, i.e., it factors into a product of local zeta integrals. More precisely, as-
sume that f = ⊗fv, with fv an analytic section in the local induced representation
I(s, χv, χ0,v, τv). Assume also that φ = ⊗φv, a pure tensor in π = ⊗πv. Then the
local zeta integrals are of the form

(7) Z(s,Wfv , Bφv
) =

∫
R(Qv)\H(Qv)

Wfv(ηh, s)Bφv
(h) dh.

Here, η is a certain element in GU(2, 2)(Qv) defined in (16). The function Wfv is a
Whittaker-type function depending on fv, and Bφv

is the vector corresponding to
φv in the local (Λv, θv)-Bessel model of πv. We see how important it is that all the
local Bessel models exist. We also see the usefulness of explicit formulas for Bφv

in
order to be able to evaluate the integrals (7).

Furusawa has calculated the local integrals (7) in the non-archimedean case
when all the local data is unramified. The result is

(8) Z(s,Wfp , Bφp
) =

L(3s+ 1
2 , π̃p × τ̃p)

L(6s+ 1, χp|Q×
p
)L(3s+ 1, τp ×AI(Λp)× χp|Q×

p
)
,

where π̃ and τ̃ are the contragredient representations, and where χp and Λp are the
local components of the Hecke characters χ and Λ mentioned above. The symbol
AI denotes automorphic induction; thus, the second L-factor in the denominator
is a factor for GL2 ×GL2. By taking the product of (8) over all unramified places,
it follows that the quantity Z(s, f, φ) given by the integral (6) is essentially equal
to the global L-function L(3s + 1

2 , π̃ × τ̃) divided by some well-understood global
L-functions for GL1 and GL2 × GL2 (here, “essentially” means that we ignore a
finite number of local factors corresponding to the ramified places). Consequently,
if we can control the local factors at these bad (ramified) places, the integral (6) can
be used to study L(s, π× τ ). In the end, L(s, π× τ ) will inherit analytic properties,
like meromorphic continuation and functional equation, from the Eisenstein series
appearing in (6). This is the essence of the method of integral representations.

The art of choosing distinguished vectors in local representations

Recall that the identity (8) for the local zeta integrals holds only if all the local
ingredients are unramified, including πp, τp, Λp and χp. The representations πp



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

10 AMEYA PITALE, ABHISHEK SAHA, and RALF SCHMIDT

are always unramified since the modular form F has full level. The character Λp is
also unramified by our choice of Bessel model. But, in order to apply the Converse
Theorem, we need to be able to twist by arbitrary GL2 representations, meaning
that τp could be any irreducible, admissible, infinite-dimensional representation of
GL2(Qp).

There is a natural choice for the function φ appearing in (6), namely, the
adelization of the modular form F . The local vectors φp are then unramified at
each finite place, and a lowest weight vector at the archimedean place. By the
discussion at the end of the previous subsection, the quantity Z(s, f, φ) is equal
to a ratio of global L-functions up to a finite number of factors coming from the
bad places. We need to be able to explicitly evaluate these bad factors, and in
particular, make sure that the local zeta integrals are all non-zero. This is where
the correct choice of local data entering the zeta integrals becomes very important.
In short, for each place v where τv is not an unramified principal series, we have to
make a choice of local section fv defining the Eisenstein series, and a wrong choice
of fv may lead to integrals that are not computable, or worse, that are zero. There
are in fact two important requirements that fv must satisfy:

i) fv must be such that the local zeta integral Z(s,Wfv , Bφv
) is non-zero

and explicitly computable.
ii) fv should be uniquely characterized by right transformation properties.

This second requirement is important in view of the calculation of local intertwining
operators, which are essential for obtaining the functional equation of L(s, π × τ ).
The local intertwining operators map each fv to a vector in a similar parabolically
induced representation via an explicit integral. This integral involves left trans-
formations of fv, and hence preserves all right transformation properties. If fv is
indeed characterized by its properties on the right, we know a priori that the result
of applying an intertwining operator is the function analogous to fv. By uniqueness,
the intertwining operator can then be calculated by evaluating at a single point.

For a finite prime p, it turns out that the local induced representations admit
a local newform theory. This will be the topic of Sect. 1.2. In particular, there is a
distinguished vector in I(s, χp, χ0,p, τp), unique up to multiples and characterized
by being invariant under a certain congruence subgroup. Suitably normalized, this
vector is a good and natural choice for fp.

The choice of fv for v = ∞ is rather intricate and is the topic of Sect. 1.3. It
comes down to finding a suitable function on GU(2, 2)(C) with certain transforma-
tion properties on the left and on the right. Moreover, one has to assure that this
function is K-finite, where K is the maximal compact subgroup of GU(2, 2)(C). We
will cook up an appropriate function as a certain polynomial in matrix coefficients;
see Proposition 1.3.4.

Having defined all the local sections in this way, it is then possible to calculate
the local zeta integrals at all places. The result is a formula similar to (8), namely

(9) Z(s,Wfv , Bφv
) =

L(3s+ 1
2 , π̃v × τ̃v)

L(6s+ 1, χv|Q×
v
)L(3s+ 1, τv ×AI(Λv)× χv|Q×

v
)
Yv(s),
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with an explicitly given correction factor Yv(s). The details are given in Theorem
2.2.1 for the non-archimedean case and Corollary 2.2.3 for the archimedean case.

We would like to remark that the kind of careful selection of distinguished local
vectors as described above is quite typical when one wants to precisely understand
automorphic representations at highly ramified places. We will have to play a
similar game again later, when we prove the pullback formula.

The global integral representation

Let us summarize what we have so far. We started with a cuspidal Siegel
eigenform F for Sp4(Z). Its adelization φ generates an irreducible, cuspidal, auto-
morphic representation π = πF of GSp4(A). Using a non-vanishing theorem for the
Fourier coefficients of F , we can find a particularly nice global Bessel model for π.
The involved quadratic extension L/Q gives rise to a unitary group GU(2, 2). For
τ = ⊗τp an arbitrary cuspidal, automorphic representation of GL2(A) and some
auxiliary characters χ and χ0, we consider the representation I(s, χ, χ0, τ ) induced
from the Klingen parabolic subgroup of GU(2, 2). It is possible to choose sections
fv in the local representations I(s, χv, χ0,v, τv), for all places v, so that the iden-
tity (9) holds with an explicit factor Yv(s). Via Furusawa’s “basic identity”, the
product of all the local zeta integrals equals the integral Z(s, f, φ) in (6). Hence,
we obtain the global integral representation

(10) Z(s, f, φ) =
L(3s+ 1

2 , π̃ × τ̃)

L(6s+ 1, χ|A×)L(3s+ 1, τ ×AI(Λ)× χ|A×)
Y (s),

with an explicitly known function Y (s). At this stage we obtain our first result
about L(s, π × τ ), namely, that this L-function has meromorphic continuation to
all of C. This is because the same is true for the Eisenstein series appearing in
Z(s, f, φ), and for the other functions in (10) as well.

The integral representation (10) may also be used to prove the expected func-
tional equation satisfied by L(s, π × τ ). Since the functional equations for the
other L-functions in (10) are known, all one needs is the functional equation of the
Eisenstein series E(h, s; f). This in turn comes down to a calculation of local inter-
twining operators, which we carry out in Sects. 1.4 (non-archimedean case) and 1.5
(archimedean case). As already mentioned, the characterization of our local sec-
tions by right transformation properties means that the intertwining operators need
to be evaluated only at one specific point. We caution however that this evaluation
is very difficult, and our description in Sects. 1.4 and 1.5 is essentially an overview
that hides the actual length of the calculations involved. The determination of the
functional equation, given the results of the intertwining operator calculations, is
carried out in Sect. 2.4. The result is exactly as it should be:

Theorem B: The L-function L(s, π× τ ) has meromorphic continuation to all
of C and satisfies the functional equation

(11) L(s, π × τ ) = ε(s, π × τ )L(1− s, π̃ × τ̃ ),

where ε(s, π × τ ) is the global ε-factor attached to the representation π × τ via the
local Langlands correspondence at every place.
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In Theorem 2.4.3 this result is actually obtained under a mild hypothesis on
the ramification of τ , which however will be removed later in Theorem 5.2.2.

The pullback formula

As mentioned earlier, we need to prove that the L-functions L(s, π × τ ) are
nice, i.e., they can be analytically continued to entire functions, satisfy a functional
equation, and are bounded in vertical strips. So far, using the global integral repre-
sentation (10), we have proved meromorphic continuation and functional equation
for L(s, π × τ ). It turns out that boundedness in vertical strips follows from a
general theorem of Gelbart and Lapid [24] once entireness is known. So it all boils
down to showing that L(s, π × τ ) has no poles anywhere in the complex plane.
Unfortunately, the global integral representation (10) cannot be directly used to
control the poles of this L-function. The reason is that the analytic properties
of the Klingen-type Eisenstein series E(h, s; f) are not understood to the required
extent.

To control the poles, we will prove a pullback formula and express our Eisenstein
series E(h, s; f) as an integral of a GL2 automorphic form against a restricted
Eisenstein series on a larger group U(3, 3). Let us briefly describe the general
philosophy behind pullback formulas. Let G1, G2 and G3 be semisimple groups such
that there is an embedding G1 × G2 → G3. Suppose that we want to understand
a complicated Eisenstein series E(g2, s; f) on G2 for which the inducing data f
essentially comes from an automorphic representation σ on G1. Then, one can
often find a simpler (degenerate) Eisenstein series E(g, s; Υ) on the larger group G3

such that there is a precise formula of the form

(12)

∫
G1(Q)\G1(A)

E((g1, g2), s; Υ)Ψ(g1)dg1 = T (s)E(g2, s; f)

where Ψ is a suitable vector in the space of σ and T (s) is an explicitly determined
correction factor.

Pullback formulas have a long history. Garrett [21] used pullback formulas
for Eisenstein series on symplectic groups to study the triple product L-function,
as well as to establish the algebraicity of certain ratios of inner products of Siegel
modular forms. Pullback formulas for Eisenstein series on unitary groups were
first proved in a classical setting by Shimura [82]. Unfortunately, Shimura only
considers certain special types of Eisenstein series in his work, which do not include
ours except in the very specific case when the local data is unramified everywhere.

In Theorem 3.5.1 we prove a pullback formula in the form (12) when Gi =
U(i, i) (for i = 1, 2, 3), σ is essentially the representation χ0 × τ and E(g2, s; f) is
(the restriction from GU(2, 2) to U(2, 2) of) the Eisenstein series involved in (6).
This results in a second global integral representation for L(s, π × τ ) involving
E((g1, g2), s; Υ); see Theorem 3.6.1. Since E((g1, g2), s; Υ) is a degenerate Siegel
type Eisenstein series on U(3, 3), its analytic properties are better understood. In-
deed, by the work of Tan [85], we deduce that L(s, π× τ ) has at most one possible
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pole in Re(s) ≥ 1/2, namely at the point s = 1 (Proposition 4.1.4). The proof of
holomorphy at this point requires additional arguments.

We have not yet discussed how one goes about proving a formula like (12).
There are two main ingredients involved. The first ingredient is combinatorial and
involves the computation of a certain double coset space. In our case, this has
already been done by Shimura [82]; see the proof of Theorem 3.5.1. The second
ingredient is local and involves a careful choice of vectors in local representations.
Indeed, the double coset computation reduces the task of proving the pullback for-
mula to making a delicate choice for the local sections Υv at all archimedean and
non-archimedean places, and then proving certain identities (“local pullback formu-
las”) involving local zeta integrals. See Sect. 3.1 for the definition of local sections
in the non-archimedean case(s) and Sect. 3.3 for the definition in the archimedean
case. The local zeta integrals are calculated in Sect. 3.2 (non-archimedean case)
and Sect. 3.4 (archimedean case).

The Siegel-Weil formula, entireness, functoriality

We have so far proved that L(s, π×τ ) has only one possible pole in Re(s) ≥ 1/2,
namely at the point s = 1. In order to prove the holomorphy at this point, it
suffices to show (because of the second integral representation) that the residue of
the U(3, 3) Eisenstein series E((g1, g2), s; Υ) at a relevant point s0, when integrated
against the adelization φ of our Siegel cusp form F , vanishes.

To do this, we employ the regularized Siegel-Weil formula for U(n, n) due to
Ichino [35], which asserts that this residue of E((g1, g2), s; Υ) at s0 is equal to a
regularized theta integral. Consequently, if L(s, π× τ ) has a pole, then the integral
of the (adelized) Siegel modular form F against a regularized theta integral is non-
zero (Proposition 4.3.2). An argument using the seesaw diagram

U(2, 2)

��
��

��
��

�
O(2, 2)

Sp(4)

���������
U(1, 1)

then shows that π1, the cuspidal, automorphic representation of Sp4(A) gener-
ated by F , participates in the theta correspondence with a split orthogonal group
O(2, 2). But this is impossible by explicit knowledge of the archimedean local theta
correspondence [69]. This proves the holomorphy of L(s, π× τ ) at the point s = 1.

Thus, L(s, π × τ ) has no poles in the region Re(s) ≥ 1/2. By the functional
equation, it follows that it has no poles in the region Re(s) ≤ 1/2. We thus
obtain Theorem 4.1.1, which states that L(s, π × τ ) is an entire function. As
observed earlier, the theorem of Gelbart and Lapid [24] now implies boundedness
in vertical strips. We have finally achieved our goal of proving the “niceness” —
analytic continuation to an entire function that satisfies the functional equation
and is bounded in vertical strips — of L(s, π × τ ). By the Converse Theorem and
Kim’s exterior square lifting, our main lifting theorem (Theorem A) now follows.
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Applications

Having established the liftings, we now turn to applications. Applying a back-
wards lifting from GL4 to SO5(A) ∼= PGSp4(A), we prove in Theorem 5.1.4 the
existence of a globally generic representation on GSp4(A) in the same L-packet
as π. Also thanks to our liftings, the machinery of Rankin-Selberg L-functions
on GLn × GLm is available for the study of L-functions related to Siegel modular
forms.

All this is exploited in Sect. 5.2. We obtain the niceness of a host of L-functions
associated to Siegel cusp forms, including L-functions for GSp4 × GLn for any n,
and for GSp4 × GSp4; here, on the GSp4-factors, we can have the 4-dimensional
or the 5-dimensional representation of the dual group. We also obtain niceness for
the degree 10 (adjoint) L-function of Siegel modular forms, as well as some analytic
properties for the degree 14 and the degree 16 L-functions. For the precise results,
see Theorems 5.2.1, 5.2.2 and 5.2.3.

To give a flavor of the results obtained, we restate below part of the GSp4×GSp4
result in classical language.

Theorem C: Let F and G be Siegel cusp forms of full level and weights k,
l respectively, and suppose that neither of them is a Saito-Kurokawa lift. Assume
further that F and G are eigenfunctions for all the Hecke operators T (n), with
eigenvalues λF (n) and λG(n) respectively. Let L(s, F, spin) and L(s,G, spin) denote
their spin L-functions, normalized so that the functional equation takes s to 1− s.
Concretely, these L-functions are defined by Dirichlet series

L(s, F, spin) = ζ(2s+ 1)

∞∑
n=1

λF (n)

ns+k−3/2
, L(s,G, spin) = ζ(2s+ 1)

∞∑
n=1

λG(n)

ns+l−3/2
,

that analytically continue to entire functions, and possess Euler products,

L(s, F, spin) =
∏
p

4∏
i=1

(
1− β

(i)
F,p p

−s
)−1

, L(s,G, spin) =
∏
p

4∏
i=1

(
1− β

(i)
F,p p

−s
)−1

.

Define the degree 16 convolution L-function L(s, F × G) by the following Euler
product:

L(s, F ×G) =
∏
p

4∏
i=1

4∏
j=1

(
1− β

(i)
F,pβ

(j)
G,p p

−s
)−1

.

Then L(s, F ×G) is absolutely convergent for Re(s) > 1, has meromorphic contin-
uation to the entire complex plane, and is non-vanishing on Re(s) = 1. Moreover,
L(s, F ×G) is entire, except in the special case k = l and λF (n) = λG(n) for all n,
when it has a simple pole at s = 1.

By combining our lifting results with the results of [53], we also prove that
L(1/2, F, spin) ≥ 0. We prove similar non-negativity results for the “spin× standard”
L-function as well as for suitable L-functions on GSp4 ×GL2 and GSp4 ×GL3; see
Theorem 5.2.4 for the precise statement.
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We also obtain critical value results in the spirit of Deligne’s conjecture for
GSp4 ×GL1 (Theorem 5.3.3) and for GSp4 ×GL2 (Theorem 5.3.7). Theorem 5.3.3
follows by combining our lifting theorem with a critical value result for GL4 ×GL1

proved by Grobner and Raghuram [30]. Theorem 5.3.7, on the other hand, follows
directly from the second global integral representation (Theorem 3.6.1) using the
methods of [73].

Further remarks

As for related works, the transfer from GSp4 to GL4 for all cuspidal, auto-
morphic representations should eventually follow from the trace formula. At the
time of this writing, we do not know whether all the necessary elements for this
far reaching program of Arthur’s have been completed. The existence of a globally
generic representation of GSp4(A) in the same L-packet as π (Theorem 5.1.4) is
also proved in [89] using theta liftings and the topological trace formula. We hope,
however, that our present work is of independent interest, both because it provides
a “proof of concept” that certain cases of non-generic transfer can be established
without resorting to trace formula arguments, and because the explicit nature of
our integral representation makes it a useful tool to attack other problems related
to Siegel cusp forms. As an example of the latter, we would like to mention Gross-
Prasad type questions for GSp4 ×GL2 as a potential future application. Also, the
above mentioned special value result for GSp4 × GL2, which is an application of
our integral representation, does not immediately follow from the transfer obtained
via the trace formula.
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Notation

Basic objects.

i) The symbols Z, Z≥0, Q, R, C, Zp and Qp have the usual meanings. The
symbol AF denotes the ring of adeles of an algebraic number field F , and
A×

F denotes its group of ideles. The symbols A and A× will always denote

AQ and A×
Q respectively.

ii) For any commutative ring R and positive integer n, let Matn,n(R) denote
the ring of n × n matrices with entries in R, and let GLn(R) denote the
group of invertible elements in Matn,n(R). We use R× to denote GL1(R).
If A ∈ Matn,n(R), we let tA denote its transpose.

iii) Define Jn ∈ Matn,n(Z) by

Jn =

[
0 In

−In 0

]
.

iv) In this paper, all non-archimedean local fields will be understood to be of
characteristic zero. If F is such a field, let o be its ring of integers and p

be the maximal ideal of o. Let � be a generator of p, and let q be the
cardinality of the residue class field o/p.

v) Let F be as above. If L is a quadratic field extension of F , or L = F ⊕F ,
let

(
L
p

)
be the Legendre symbol. By definition,

(
L
p

)
= −1 if L/F is an

unramified field extension (the inert case),
(
L
p

)
= 0 if L/F is a ramified

field extension (the ramified case), and
(
L
p

)
= 1 if L = F ⊕ F (the split

case). In the field case, let x̄ denote the Galois conjugate of x ∈ L.

In the split case, let (x, y) = (y, x). In all cases, the norm is defined by
N(x) = xx̄. If L is a field, then let oL be its ring of integers. If L = F ⊕F ,
then let oL = o ⊕ o. Let �L be a generator of pL if L is a field, and set
�L = (�, 1) if L is not a field. We fix the following ideal in oL,

(13) P := poL =

⎧⎪⎪⎨⎪⎪⎩
pL if

(
L
p

)
= −1,

p2L if
(
L
p

)
= 0,

p⊕ p if
(
L
p

)
= 1.

Here, pL is the maximal ideal of oL when L is a field extension. Note that
P is prime only if

(
L
p

)
= −1. We have Pn ∩ o = pn for all n ≥ 0.

vi) We fix additive characters once and for all, as follows. If F is a non-
archimedean local field, ψ is required to have conductor o. If F = R, then
ψ(x) = e−2πix. For any a ∈ F , let ψa(x) = ψ(ax).

The quadratic extension. Let F be a non-archimedean local field of character-
istic zero, or F = R. The unitary groups we shall be working with are defined with

17
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respect to a quadratic extension L/F . We shall now explain the conventions for this
quadratic extension. We fix three elements a,b, c ∈ F such that d := b2−4ac �= 0.
Then let

(14) L =

{
F (

√
d) if d /∈ F×2,

F ⊕ F if d ∈ F×2.

We shall make the following assumptions.

• If F is non-archimedean, assume that a,b ∈ o and c ∈ o×. Assume
moreover that if d /∈ F×2, then d is the generator of the discriminant of
L/F , and if d ∈ F×2, then d ∈ o×.

• If F = R, assume that S =

[
a b/2

b/2 c

]
∈ Mat2,2(R) is a positive definite

matrix. Equivalently, c > 0 and d < 0.

Hence, if F = R, we always assume that L = C. In all cases let

(15) α =

⎧⎪⎪⎨⎪⎪⎩
b+

√
d

2c
if L is a field,(b+

√
d

2c
,
b−

√
d

2c

)
if L= F ⊕ F.

An important role will be played by the matrix

(16) η =

⎡⎢⎢⎣
1 0
α 1

1 −ᾱ
0 1

⎤⎥⎥⎦ .

We further define

(17) η0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η if F is p-adic,

1√
2

⎡⎢⎢⎣
1 i
i 1

1 i
i 1

⎤⎥⎥⎦ if F = R.

Algebraic groups. For simplicity we will make all definitions over the local field
F , but it is clear how to define the corresponding global objects.

i) Let H = GSp4 and Gj = GU(j, j;L) be the algebraic F -groups whose
F -points are given by

H(F ) = {g ∈ GL4(F ) | tgJ2g = μ2(g)J2, μ2(g) ∈ F×},(18)

Gj(F ) = {g ∈ GL2j(L) | tḡJjg = μj(g)Jj , μj(g) ∈ F×}.(19)

ii) We define, for ζ ∈ L× and

[
a b
c d

]
∈ G1(F ),

(20) m1(ζ) =

⎡⎢⎢⎣
ζ

1
ζ̄−1

1

⎤⎥⎥⎦ , m2(

[
a b
c d

]
) =

⎡⎢⎢⎣
1

a b
ād− bc̄

c d

⎤⎥⎥⎦ .
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iii) Let P be the standard maximal parabolic subgroup of G2(F ) with a non-
abelian unipotent radical. Let P = MN be the Levi decomposition of P .
We have M = M (1)M (2), where

M (1)(F ) = {m1(ζ) | ζ ∈ L×},(21)

M (2)(F ) = {m2(g) | g ∈ G1(F )},(22)

N(F ) = {

⎡⎢⎢⎣
1 z

1
1
−z 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 x y

1 y
1

1

⎤⎥⎥⎦ | x ∈ F, y, z ∈ L}.(23)

The modular factor of the parabolic P is given by

(24) δP (m1(ζ)m2(g)) = |N(ζ)μ−1
1 (g)|3,

where | · | is the normalized absolute value on F .
iv) Let P12 be the maximal parabolic subgroup of G3, defined by

(25) P12 = G3 ∩

⎡⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎦ .

Let P12 = M12N12 be the Levi decomposition, with

M12(F ) :=

{
m(A, v) =

[
A 0
0 v tĀ−1

] ∣∣ A ∈ GL3(L), v ∈ F×
}
,

N12(F ) :=

{[
1 b
0 1

] ∣∣ b ∈ Mat3,3(L),
tb̄ = b

}
.

The modular function of P12 is given by

(26) δ12(

[
A

v tĀ−1

]
) = |v−3N(det(A))|3, v ∈ F×, A ∈ GL3(L).

v) Let ι be the embedding of {(g1, g2) ∈ G1(F )×G2(F ) : μ1(g1) = μ2(g2)}
into G3(F ) defined by

(27) ι
([a b

c d

]
,

[
A B
C D

])
=

⎡⎢⎢⎣
A B

a −b
C D

−c d

⎤⎥⎥⎦ .

Congruence subgroups. Assuming that F is p-adic, we will use the following
notation for congruence subgroups,

K(0)(Pn) = G1(o) ∩
[
oL oL

Pn oL

]
,

(28)

K(1)(Pn) = G1(o) ∩
[
1 +Pn oL

Pn oL

]
,

(29)

K
(1)
1 (Pn) = U(1, 1;L)(o) ∩K(1)(Pn)
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= U(1, 1;L)(o) ∩
[
1 +Pn oL

Pn oL

]
= U(1, 1;L)(o) ∩

[
1 +Pn oL

Pn 1 +Pn

]
,(30)

K(1)(pn) = GL2(o) ∩
[
1 + pn o

pn o

]
.

(31)

If τ is an irreducible, admissible representation of GLn(F ), we let a(τ ) be the
non-negative integer such that pa(τ) is the conductor of τ ; see Theorem 1.2.2 for a
characterization in the GL2 case. If χ is a character of F×, then a(χ) is the smallest
non-negative integer such that χ is trivial on o× ∩ (1 + pa(χ)).

Representations of GL2(R). If p is a positive integer and μ ∈ C, we let Dp,μ

be the irreducible representation of GL2(R) with minimal weight p+ 1 and central
character satisfying a �→ a2μ for a > 0. Every other irreducible, admissible repre-
sentation of GL2(R) is of the form β1 × β2 with characters β1, β2 of R×; see (37).
Note that, if μ ∈ iR, then Dp,μ is a discrete series representation.
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CHAPTER 1

Distinguished vectors in local representations

In this section we will develop some local theory, both archimedean and non-
archimedean, which will be utilized in subsequent sections on global integral rep-
resentations. Recall the definitions of the groups Gj = GU(j, j;L) from (19). The
local theory will exhibit distinguished vectors in certain parabolically induced rep-
resentations of G2(F ), where F = R or F is p-adic. We will also study the behavior
of these vectors under local intertwining operators. Since the distinguished vectors
are characterized by right transformation properties, the intertwining operators
map distinguished vectors to distinguished vectors. This fact will later be applied
to obtain the functional equation of global L-functions.

Unless otherwise noted, F is a non-archimedean local field of characteristic
zero, or F = R. We let L, α, η be as in (14), (15), (16), respectively.

1.1. Parabolic induction to GU(2, 2)

Let (τ, Vτ ) be an irreducible, admissible, infinite-dimensional representation of
GL2(F ), and let χ0 be a character of L× such that χ0

∣∣
F× coincides with ωτ , the

central character of τ . Then the pair (χ0, τ ) defines a representation of G1(F ) ∼=
M (2)(F ) on the same space Vτ via

(32) τ (λg) = χ0(λ)τ (g), λ ∈ L×, g ∈ GL2(F ).

We denote this representation by χ0 × τ . Every irreducible, admissible representa-
tion of G1(F ) is of the form (32). If Vτ is a space of functions on GL2(F ) on which
GL2(F ) acts by right translation, then χ0×τ can be realized as a space of functions
on M (2)(F ) on which M (2)(F ) acts by right translation. This is accomplished by
extending every W ∈ Vτ to a function on M (2)(F ) via

(33) W (λg) = χ0(λ)W (g), λ ∈ L×, g ∈ GL2(F ).

If s is a complex parameter, χ is any character of L× and χ0×τ is a representation of
M (2)(F ) as above, we denote by I(s, χ, χ0, τ ) the induced representation of G2(F )
consisting of functions f : G2(F ) → Vτ with the transformation property

(34) f(m1(ζ)m2(b)ng) =
∣∣N(ζ)μ−1

1 (b)
∣∣3(s+ 1

2 )χ(ζ)(χ0 × τ )(b)f(g)

for ζ ∈ L× and b ∈ G1(F ).
Now taking Vτ to be the Whittaker model of τ with respect to the character ψ,

if we associate to each f as above the function on G2(F ) given by Wf (g) = f(g)(1),
then we obtain another model IW (s, χ, χ0, τ ) of I(s, χ, χ0, τ ) consisting of functions
W : G2(F ) → C. These functions satisfy

(35) W (m1(ζ)m2(

[
λ
λ

]
)g) = |N(ζλ−1)|3(s+ 1

2 )χ(ζ)χ0(λ)W (g), ζ, λ ∈ L×,

21
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and

(36) W (

⎡⎢⎢⎣
1 z

1
1
−z 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 x y

1 y w
1

1

⎤⎥⎥⎦ g) = ψ(w)W (g), w, x ∈ F, y, z ∈ L.

Assume on the other hand that τ is a parabolically induced representation β1×β2,
not necessarily irreducible, with characters β1, β2 : F× → C×. The standard model
of β1 × β2 consists of functions ϕ : GL2(F ) → C with the transformation property
(37)

ϕ(

[
a b
d

]
g) = |ad−1|1/2β1(a)β2(d)ϕ(g) for all a, d ∈ F×, b ∈ F, g ∈ GL2(F ).

If we associate to f as in (34), now taking values in the standard model of β1 × β2,
the function Φf on G2(F ) given by Φf (g) = f(g)(1), then we obtain another
model of I(s, χ, χ0, τ ), which we denote by IΦ(s, χ, χ0, τ ). It consists of functions
Φ : G2(F ) → C with the transformation property

Φ(

⎡⎢⎢⎣
ζ ∗ ∗ ∗

λ ∗ ∗
ζ̄−1N(λ)

∗ λ

⎤⎥⎥⎦
⎡⎢⎢⎣
1

a
ad

d

⎤⎥⎥⎦ g)

= |N(ζλ−1)|3(s+ 1
2 )|a|−3s−1|d|−3s−2χ(ζ)χ0(λ)β1(a)β2(d)Φ(g)

(38)

for all ζ, λ ∈ L×, a, d ∈ F×.
Intertwining operators. Assume that τ is generic, and let χ, χ0 be as above.

For f ∈ I(s, χ, χ0, τ ) with Re(s) large enough, the local intertwining operator is
defined by

(39) (M(s)f)(g) =

∫
N(F )

f(w1ng) dn, w1 =

⎡⎢⎢⎣
1

1
−1

1

⎤⎥⎥⎦ .

Calculations show that M(s) defines an intertwining map

(40) M(s) : I(s, χ, χ0, τ ) −→ I(−s, χ̄−1, χχ̄χ0, χτ ),

where by χτ we mean the twist (χ
∣∣
F×) ⊗ τ . It is easily checked that the above

formula (39) also defines intertwining operators M(s) from IΦ(s, χ, χ0, τ ) to
IΦ(−s, χ̄−1, χχ̄χ0, χτ ) and from IW (s, χ, χ0, τ ) to IW (−s, χ̄−1, χχ̄χ0, χτ ). In Corol-
lary 1.2.4 (non-archimedean case) and Corollary 1.3.7 (archimedean case) we will
identify a distinguished element

W# = W#( · , s, χ, χ0, τ )

in IW (s, χ, χ0, τ ). This distinguished function will have the property

(41) M(s)W#( · , s, χ, χ0, τ ) = K(s)W#( · ,−s, χ̄−1, χχ̄χ0, χτ ).

with a “constant”K(s) (independent of g ∈ G2(F ), but dependent on s, as well as χ,
χ0 and τ ). In most cases K(s) exists because W# is characterized, up to scalars, by
right transformation properties. An exception is the archimedean “different parity”
Case C, defined in Sect. 1.3, in which case said right transformation properties
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characterize a two-dimensional space. In this case the existence of the functionK(s)
such that (41) holds will follow from explicit calculations. Note that if η0 ∈ G2(F )
is such that W#(η0) = 1, then we obtain the formula

(42) K(s) =

∫
N(F )

W#(w1nη0, s, χ, χ0, τ ) dn

by evaluating at η0. Explicitly,

(43) K(s) =

∫
L

∫
L

∫
F

W#(w1

⎡⎢⎢⎣
1 z

1
1
−z̄ 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 x y

1 ȳ
1

1

⎤⎥⎥⎦ η0) dx dy dz.

Our goal in Sects. 1.4 and 1.5 will be to calculate the function K(s). We will then
also be more precise about the measures on F and L used in (43).

1.2. Distinguished vectors: non-archimedean case

In this section let F be a non-archimedean local field of characteristic zero. Let
τ be any irreducible, admissible representation of GL2(F ), and let χ0 be a character
of L× such that χ0|F× = ωτ , the central character of τ . Let Λ be an unramified
character of L×, and let χ be the character of L× defined by

(44) χ(ζ) = Λ(ζ̄)−1χ0(ζ̄)
−1.

For a complex parameter s, let I(s, χ, χ0, τ ) be as in Sect. 1.1. Let KG2 =
G2(F ) ∩ GL4(oL), a maximal compact subgroup. We define the principal con-
gruence subgroups Γ(Pr) := {g ∈ G2(F ) | g ≡ 1 (mod Pr)} with P as in (13). For
r = 0 we understand that Γ(Pr) = KG2 . For any m ≥ 0, we let

(45) ηm =

⎡⎢⎢⎣
1 0

α�m 1
1 −ᾱ�m

0 1

⎤⎥⎥⎦ .

For systematic reasons, we let η∞ be the identity matrix. Note that η0 = η; see
(16).

Proposition 1.2.1. For any r ≥ 0 the following disjoint double coset decom-
positions hold,

(46) G2(F ) =
⊔

0≤m≤∞
P (F )ηmKH =

⊔
0≤m≤r

P (F )ηmKHΓ(Pr).

Moreover, for any 0 ≤ m < r, we have

(47) P (F )ηmKHΓ(Pr) = P (F )ηmKH .

Proof. Using the Iwasawa decomposition, (46) follows from

(48) KG2 =
⊔

0≤m≤∞
P (o)ηmKH =

⊔
0≤m≤r

P (o)ηmKHΓ(Pr).

One can show that the double cosets on the right hand side of (48) are disjoint by
observing that the function

KG2 � g �→ min
(
v((gJ tg)3,2), v((gJ

tg)3,4)
)
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takes different values on the double cosets. We take the above function modulo Pr

for the disjointness of the double cosets involving Γ(Pr). Knowing disjointness, one
obtains the second equality in (48) by multiplying the double cosets by Γ(Pr) on the
right. We only sketch a proof of the first equality in (48). The first step consists in
showing that KG2 = P (o)KHΓ(P) � P (o)ηKHΓ(P), which can be done explicitly
by considering the three cases – inert, ramified and split – separately. Then, for
g ∈ P (o)γ0K

H with γ0 ∈ Γ(P) or γ0 ∈ ηΓ(P), observe that

γ0 ∈ G2(F ) ∩

⎡⎢⎢⎣
o
×
L P oL oL

oL o
×
L oL oL

P P o
×
L oL

P P P o
×
L

⎤⎥⎥⎦ .

Using appropriate matrix identities one can show, for any γ0 in this set, that there
exist p ∈ P (o), h ∈ KH and a unique m ∈ {0, 1, 2, · · · ,∞} such that γ0 = pηmh;
this completes the proof of (46).

To prove (47), we rewrite (46) as

G2(F ) =
⊔

0≤m<r

P (F )ηmKH �X, X =
⊔

r≤m≤∞
P (F )ηmKH ,

and also

G2(F ) =
⊔

0≤m<r

P (F )ηmKHΓ(Pr) � Y, Y = P (F ) ηrK
HΓ(Pr).

For m ≥ r, we have ηm ∈ P (F )KHΓ(Pr) = P (F )ηrK
HΓ(Pr). Hence X ⊂ Y .

Evidently, for m < r, we have P (F )ηmKH ⊂ P (F )ηmKHΓ(Pr). It follows that
P (F )ηmKH = P (F )ηmKHΓ(Pr). �

We recall the standard newform theory for GL2. Let the congruence subgroup
K(1)(pn) be as in (31). The following result is well known (see [9], [14]).

Theorem 1.2.2. Let (τ, Vτ ) be a generic, irreducible, admissible representation
of GL2(F ). Then the spaces

Vτ (n) = {v ∈ Vτ | τ (g)v = v for all g ∈ K(1)(pn)}

are non-zero for n large enough. If n is minimal with Vτ (n) �= 0, then dim(Vτ (n)) =
1. For r ≥ n, we have dim(Vτ (r)) = r − n+ 1.

If n is minimal such that Vτ (n) �= 0, then pn is called the conductor of τ , and
we write n = a(τ ). Any non-zero vector in Vτ (a(τ )) is called a local newform.
The following theorem is a local newforms result for the induced representations
I(s, χ, χ0, τ ) with respect to the congruence subgroups KHΓ(Pr).

Theorem 1.2.3. Let (τ, Vτ ) be a generic, irreducible, admissible representation
of GL2(F ) with central character ωτ and conductor pn. Let χ0 be a character of
L× such that χ0

∣∣
F× = ωτ and χ0((1+Pn)∩ o

×
L ) = 1, and let χ be the character of

L× defined by ( 44), where Λ is unramified. Let

V (r) := {φ ∈ I(s, χ, χ0, τ ) | φ(gγ, s) = φ(g, s) for all g ∈ G(F ), γ ∈ KHΓ(Pr)}
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for a non-negative integer r. Then

dim(V (r)) =

{
(r − n+ 1)(r − n+ 2)

2
if r ≥ n,

0 if r < n.

Proof. Let φ ∈ V (r). By Proposition 1.2.1, φ is completely determined by its

values on ηm, 0 ≤ m ≤ r. For such m, and any g =

[
a b
c d

]
∈ K(1)(pr−m), we have

A := m2(g) ∈ M(F )N(F ) ∩ ηmKHΓ(Pr)η−1
m . It follows that φ(ηm) = φ(Aηm) =

τ (g)φ(ηm). Hence, for 0 ≤ m ≤ r, the vector vm := φ(ηm) lies in Vτ (r − m).
Since the conductor of τ is pn, we conclude that vm = 0 if r −m < n. Therefore
dim(V (r)) = 0 for all r < n.

Now suppose that r ≥ n. We will show that, for any m such that r−m ≥ n, if
vm is chosen to be any vector in Vτ (r−m), then we obtain a well-defined function
φ in V (r). For m = r this is easy to check, since in this case n = 0 and all
the data is unramified. Assume therefore that r > m. We have to show that
for m1n1ηmk1γ1 = m2n2ηmk2γ2, with mi ∈ M(F ), ni ∈ N(F ), ki ∈ KH and
γi ∈ Γ(Pr),
(49)

|N(ζ1)·μ−1
1 |3(s+1/2)χ(ζ1) (χ0×τ)(

[
a1 b1
c1 d1

]
)vm = |N(ζ2)·μ−1

2 |3(s+1/2)χ(ζ2) (χ0×τ)(

[
a2 b2
c2 d2

]
)vm.

We have η−1
m m−1

2 m1n
∗ηm ∈ KHΓ(Pr), where n∗ ∈ N(F ) depends onm1,m2, n1, n2.

Write

m−1
2 m1 =

⎡⎢⎢⎣
ζ

ã b̃
μζ̄−1

c̃ d̃

⎤⎥⎥⎦ .

By definition, ζ1 = ζ2ζ and μ1 = μ2μ. We have ζ ∈ o
×
L and μ ∈ o×. Hence (49) is

equivalent to

(50) χ(ζ) (χ0 × τ )(

[
a1 b1
c1 d1

]
)vm = (χ0 × τ )(

[
a2 b2
c2 d2

]
)vm.

One can check that ãζ̄−1 ∈ 1 +Pr−m and c̃ ∈ Pr−m. Hence, using the definition
of χ, χ0 (with unramified Λ) and the fact that vm ∈ Vτ (r −m),

χ(ζ) (χ0 × τ )(

[
a1 b1
c1 d1

]
)vm = χ(ζ) (χ0 × τ )(

[
a2 b2
c2 d2

][
ã b̃

c̃ d̃

]
)vm

= χ(ζ)χ0(ã) (χ0 × τ )(

[
a2 b2
c2 d2

][
1 b̃/ã

c̃/ã d̃/ã

]
)vm

= χ0(ζ̄
−1)χ0(ã) (χ0 × τ )(

[
a2 b2
c2 d2

]
)vm

= (χ0 × τ )(

[
a2 b2
c2 d2

]
)vm,

as claimed. Now, using the formula for dim(Vτ (r −m)) from Theorem 1.2.2 com-
pletes the proof of the theorem. �

Assume that W (0) is the newform in the Whittaker model of τ with respect to
an additive character of conductor o. Then it is known that W (0)(1) �= 0, so that
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this function can be normalized by W (0)(1) = 1. The following is an immediate
consequence of the above theorem (and its proof).

Corollary 1.2.4. There exists a unique element W#( · , s) in IW (s, χ, χ0, τ )
with the properties

(51) W#(gk, s) = W#(g, s) for g ∈ G2(F ), k ∈ KHΓ(Pn),

and

(52) W#(η0, s) = 1,

where η0 = η as in ( 17). The function W#( · , s) is supported on P (F )η0K
HΓ(Pn).

On this double coset,

(53) W#(m1(ζ)m2(g)η0, s) = |N(ζ) · μ−1
1 (g)|3(s+1/2)χ(ζ)W (0)(g),

where ζ ∈ L×, g ∈ G1(F ), and W (0) is the newform in Vτ , normalized by W (0)(1) =
1, and extended to a function on G1(F ) via the character χ0 (see ( 33)).

1.3. Distinguished vectors: archimedean case

Let F = R and L = C, and G2 = GU(2, 2;C) as in the notations. Consider
the symmetric domains H2 := {Z ∈ Mat2,2(C) | i( tZ̄ − Z) is positive definite} and
h2 := {Z ∈ H2 | tZ = Z}. The group G+

2 (R) := {g ∈ G2(R) | μ2(g) > 0} acts on
H2 via (g, Z) �→ g〈Z〉, where

g〈Z〉 = (AZ +B)(CZ +D)−1, for g =

[
A B
C D

]
∈ G+

2 (R), Z ∈ H2.

Under this action, h2 is stable by H+(R) = GSp+4 (R). The group KG2
∞ = {g ∈

G+
2 (R) : μ2(g) = 1, g〈i2〉 = i2} is a maximal compact subgroup of G+

2 (R). Here,

i2 =

[
i
i

]
∈ H2. By the Iwasawa decomposition

(54) G2(R) = M (1)(R)M (2)(R)N(R)KG2
∞ ,

where M (1)(R), M (2)(R) and N(R) are as defined in (21), (22) and (23). For
g ∈ G+

2 (R) and Z ∈ H2, let J(g, Z) = CZ + D be the automorphy factor. Then,
for any integer l, the map

(55) k �−→ det(J(k, i2))
l

defines a character KG2
∞ → C×. Let KH

∞ = K∞ ∩H+(R). Then KH
∞ is a maximal

compact subgroup of H+(R).

Let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(R) with
central character ωτ . Let l2 be an integer of the same parity as the weights of
τ (the precise value of l2 is largely irrelevant, and we will later make a specific
choice). Let χ0 be the character of C× such that χ0

∣∣
R× = ωτ and χ0(ζ) = ζl2 for

ζ ∈ C×, |ζ| = 1. Let χ be the character of C× given by

(56) χ(ζ) = χ0(ζ̄)
−1.

We interpret χ as a character of M (1)(R) ∼= C×. We extend τ to a representa-
tion of G1(R) as in (32). In the archimedean case, we can always realize τ as a
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subrepresentation of a parabolically induced representation β1 ×β2, with characters
β1, β2 : R× → C× (see (37)). We define the complex numbers t1, t2, p, q by

(57) β1(a) = at1 , β2(a) = at2 , p = t1 − t2, q = t1 + t2

for a > 0.

Remark: Evidently, q is related to the central character of τ via ωτ (a) = aq

for a > 0. The number p could also be more intrinsically defined via the eigenvalue
of the Laplace operator. Note that if τ belongs to the principal series and β1 and
β2 are interchanged, then p changes sign; this ambiguity will be irrelevant. We also
note that if τ is a discrete series representation of lowest weight l1, then p = l1 − 1.

The induced representation IΦ(s, χ, χ0, τ ) is now a subrepresentation of
IΦ(s, χ, χ0, β1 × β2). Any Φ ∈ IΦ(s, χ, χ0, τ ) satisfies the transformation prop-
erty (38); in view of the Iwasawa decomposition, Φ is determined by its restriction
to KG2

∞ . Conversely, given a function Φ : KG2
∞ → C, it can be extented to a function

on G2(R) with the property (38) if and only if

(58) Φ(ζ̂1k) = ζl2 Φ(k), Φ(ζ̂2k) = ζl2 Φ(k),

for all ζ ∈ S1 and k ∈ KG2
∞ . Here, we used the notation

ζ̂1 =

⎡⎢⎢⎣
ζ

1
ζ

1

⎤⎥⎥⎦ , ζ̂2 =

⎡⎢⎢⎣
1

ζ
1

ζ

⎤⎥⎥⎦ .

We will therefore study certain spaces of functions on KG2
∞ with the property (58).

The spaces WΔ
m,l,l2

. We begin by describing the Lie algebra and the finite-

dimensional representations of KG2
∞ . Let g be the Lie algebra of U(2, 2). Let

X �→ − tX̄ be the Cartan involution on g. Let k be the +1 eigenspace and let
p be the −1 eigenspace of the Cartan involution. We denote by kC and pC the
complexifications of k and p, respectively. Then

kC = {
[

A B
−B A

]
| A,B ∈ Mat2,2(C)}, pC = {

[
A B
B −A

]
| A,B ∈ Mat2,2(C)}.

Hence gC = kC⊕pC = gl(4,C). The following eight elements constitute a convenient
basis for kC.

U1 = 1
2

[ 1 −i
0

i 1
0

]
, U2 = 1

2

[ 0
1 −i

0
i 1

]
, V1 = 1

2

[
−1 −i

0
i −1

0

]
, V2 = 1

2

[
0

−1 −i
0

i −1

]
,

P+ = 1
2

[ 0 1 −i
0
i 0 1

0

]
, P− = 1

2

[ 0
1 0 −i

0
i 1 0

]
, Q+ = 1

2

[
0
−1 0 −i

0
i −1 0

]
, Q− = 1

2

[
0 −1 −i

0
i 0 −1

0

]
.

We have

(59) kC = 〈U1, U2, P+, P−〉 ⊕ 〈V1, V2, Q+, Q−〉 ∼= gl(2,C)⊕ gl(2,C).

The center of k is 2-dimensional, spanned by

(60) i(U1+U2+V1+V2) =

[
1
1

−1
−1

]
and i(U1+U2−V1−V2) =

[
i
i
i
i

]
.

The Casimir operators for the two copies of sl(2,C) are given by

Δ1 = (U1 − U2)
2 + 2(P+P− + P−P+), Δ2 = (V1 − V2)

2 + 2(Q+Q− +Q−Q+).
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The irreducible representations of kC which lift to representations of KG2
∞ are

parametrized by four integers,

m1: highest weight of 〈U1 − U2, P+, P−〉, n1: eigenvalue of U1 + U2,

m2: highest weight of 〈V1 − V2, Q+, Q−〉, n2: eigenvalue of V1 + V2,

subject to the condition that they all have the same parity and that m1,m2 ≥
0. The parity condition is a consequence of overlapping one-parameter subgroups
generated by U1±U2 and V1±V2. Let ρm1,n1,m2,n2

be the irreducible representation
of KG2

∞ corresponding to (m1, n1,m2, n2). Then dim ρm1,n1,m2,n2
= (m1 +1)(m2 +

1), and the contragredient representation is given by ρ̃m1,n1,m2,n2
= ρm1,−n1,m2,−n2

.

Lemma 1.3.1. Let m1, n1,m2, n2 be integers of the same parity with m1,m2 ≥
0.

i) Any vector v in ρm1,n1,m2,n2
satisfies

(61)
Δ1v = m1(m1+2)v, Δ2v = m2(m2+2)v, (U1+U2)v = n1v, (V1+V2)v = n2v.

ii) The representation ρm1,n1,m2,n2
of KG2

∞ contains the trivial representation
of KH

∞ if and only if m1 = m2 and n1 = −n2. If these conditions are
satisfied, then the trivial representation of KH

∞ appears in ρm1,n1,m2,n2

exactly once.

Proof. Equation (61) holds by definition of ρm1,n1,m2,n2
and because the Casimir

operator acts as the scalar m(m + 2) on the irreducible representation of sl(2,C)
of dimension m + 1. The complexification of the Lie algebra of KH

∞ is given by
kHC = 〈U1 + V1, U2 + V2, P+ + Q+, P− + Q−〉. This Lie algebra is isomorphic to
gl(2,C) and sits diagonally in the product of the two copies of gl(2,C) in (59).
It follows that the restriction of the representation ρm1,n1,m2,n2

to kHC is given by
ρm1,n2

⊗ ρm2,n2
, with each factor being a representation of kHC

∼= gl(2,C). Such a
tensor product contains the trivial representation (and then with multiplicity one)
if and only if the second factor is the contragredient of the first, i.e., if and only if
(m2, n2) = (m1,−n1). �

Let m be a non-negative integer, and l and l2 be any integers. Recall that l2
determines the extension of the central character of τ to C×. In our later appli-
cations l will indicate the scalar minimal K-type of a lowest weight representation
of GSp4(R), but for now l is just an integer. Let WΔ

m,l,l2
be the space of smooth,

KG2
∞ -finite functions Φ : KG2

∞ → C with the properties

Φ(ζ̂1g) = Φ(ζ̂2g) = ζl2Φ(g) for g ∈ KG2
∞ , ζ ∈ S1,(62)

Φ(gk) = det(J(k, i2))
−lΦ(g) for g ∈ KG2

∞ , k ∈ KH
∞,(63)

Δ1Φ = Δ2Φ = m(m+ 2)Φ.(64)

In (64), the Casimir elements Δi are understood to act by right translation. As
noted above, property (62) is required to extend Φ to an element of IΦ(s, χ, χ0, τ ).
Property (63) will become important when we evaluate local zeta integrals in Sect.
2.2. Imposing the additional condition (64) will result in a certain uniqueness which
is useful for calculating intertwining operators; see Sect. 1.5. Evidently, the group
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consisting of all elements

r̂(θ) := m2(

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
), θ ∈ R,

acts on WΔ
m,l,l2

by left translation. Let WΔ
m,l,l2,l1

be the subspace of WΔ
m,l,l2

con-
sisting of Φ with the additional property

(65) Φ(r̂(θ)g) = eil1θΦ(g) for g ∈ G2(R), θ ∈ R.

Then

(66) WΔ
m,l,l2 =

⊕
l1∈Z

WΔ
m,l,l2,l1 .

Let D be the function on KG2
∞ given by D(g) = det(J(g, i2)). It is easily verified

that

(U1 − U2)D = (V1 − V2)D = P±D = Q±D = 0.

Hence ΔiD = 0 for i = 1, 2, and consequently Δi(fD
l) = (Δif)D

l for any smooth
function f on KG2

∞ . It is then easy to see that the map Φ �→ ΦDl provides isomor-
phisms

(67) WΔ
m,l,l2

∼−→ WΔ
m,0,l2+l and WΔ

m,l,l2,l1

∼−→ WΔ
m,0,l2+l,l1−l.

Let L2(KG2
∞ )fin be the space of smooth, KG2

∞ -finite functions KG2
∞ → C. It is

a module for KG2
∞ × KG2

∞ via ((g1, g2).f)(h) = f(g−1
1 hg2). By the Peter-Weyl

theorem, as KG2
∞ ×KG2

∞ -modules,

L2(KG2
∞ )fin ∼=

⊕
ρ

(ρ̃⊗ ρ) (algebraic direct sum),

where ρ runs through all equivalence classes of irreducible representations of KG2
∞ ,

and where ρ̃ denotes the contragredient. Evidently,

(68) WΔ
m,0,l2+l,l1−l =

⊕
ρ

(
WΔ

m,0,l2+l,l1−l ∩ (ρ̃⊗ ρ)
)
,

and analogously for WΔ
m,0,l2+l.

Lemma 1.3.2. Let m be a non-negative integer, and l and l2 be any integers.

i) Let ρ = ρm1,n1,m2,n2
. Then, for l1 ∈ Z,

dim
(
WΔ

m,0,l2+l,l1−l∩(ρ̃⊗ρ)
)
=

⎧⎨⎩
1 if m1 = m2 = m, n1 = l2 + l, n2 = −(l2 + l),

|l1 − l| ≤ m, l1 − l ≡ l2 + l ≡ m mod 2,
0 otherwise.

ii) For l1 ∈ Z,

dim
(
WΔ

m,0,l2+l,l1−l

)
=

{
1 if |l1 − l| ≤ m, l1 − l ≡ l2 + l ≡ m mod 2,
0 otherwise.

iii)

dim
(
WΔ

m,l,l2

)
=

{
m+ 1 if l2 + l ≡ m mod 2,
0 otherwise.
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Proof. i) By the right KH
∞-invariance of functions in WΔ

m,0,l1−l,l2+l and Lemma

1.3.1 ii), if ρ̃ ⊗ ρ contributes to WΔ
m,0,l2+l,l1−l, then necessarily m1 = m2 and

n1 = −n2. Condition (64) forces m1 = m2 = m. Assume all of this is satisfied,
say ρ = ρm,n,m,−n. Then, by Lemma 1.3.1 ii), there exists a non-zero vector
v0 ∈ ρ, unique up to multiples, such that v0 is fixed by KH . Hence, any element
w ∈ WΔ

m,0,l2+l,l1−l ∩ (ρ̃⊗ ρ) is of the form w = v ⊗ v0 for some v ∈ ρ̃ = ρm,−n,m,n.

Taking into account that the first element of the center of kC in (60) acts trivially
on WΔ

m,0,l2+l,l1−l, any element Φ of this space has the following transformation
properties under left translation L,

L(U1 − U2)Φ = (l1 − l)Φ, L(V1 − V2)Φ = (l1 − l)Φ,(69)

L(U1 + U2)Φ = −(l2 + l)Φ, L(V1 + V2)Φ = (l2 + l)Φ.(70)

Since U1+U2 and V1+V2 are in the center, (70) implies that R(U1+U2)Φ = (l2+l)Φ
and R(V1+V2)Φ = −(l2+l)Φ, where R is right translation. It follows that n = l2+l.
This number must have the same parity as m. From (69) we conclude that v is a
vector of weight (l1 − l, l1 − l) in ρ̃. There exists such a vector v in ρ̃ if and only if
−m ≤ l1− l ≤ m and l1− l ≡ m mod 2, and in this case v is unique up to multiples.

ii) follows from i) and (68).

iii) For l = 0 the statement follows from ii) and (66). For other values of l, it
follows from the l = 0 case and (67). �

Our next task will be to find an explicit formula for the function spanning the
one-dimensional space WΔ

m,l,l2,l1
. We define, for g ∈ KG2

∞ ,

â(g) = (1, 1)–coefficient of J(g tg, i2), b̂(g) = (1, 2)–coefficient of J(g tg, i2),

ĉ(g) = (2, 1)–coefficient of J(g tg, i2), d̂(g) = (2, 2)–coefficient of J(g tg, i2).

Since they can be written in terms of matrix coefficients, these are KG2
∞ -finite

functions. It is not difficult to calculate the action of P±, Q±, the torus elements

and the Casimir elements on the functions â, b̂, ĉ, d̂ under left and right translation
explicitly. The following lemma summarizes the results.

Lemma 1.3.3. Let m be a non-negative integer.

i) If f = âi1 b̂i2 ĉi3 d̂i4 with non-negative integers i1, . . . , i4 such that i1+ i2+
i3 + i4 = m, then, under right translation,

Δif
m = m(m+ 2)fm for i = 1, 2.

ii) The functions f as in i) are contained in ρ̃ ⊗ ρ with ρ = ρm,m,m,−m and
are right invariant under KH

∞.

iii) Let f = b̂m−j ĉj with 0 ≤ j ≤ m. Then, with L being left translation,

L(U1 − U2)f = (m− 2j)f, L(V1 − V2)f = (m− 2j)f,(71)

L(U1 + U2)f = −mf, L(V1 + V2)f = mf.(72)

Using this lemma, it is easy to verify that the function

b̂
m+l1−l

2 ĉ
m−l1+l

2 (âd̂− b̂ĉ)
l2+l−m

2

lies in WΔ
m,0,l2+l,l1−l, provided all exponents are integers and the first two are non-

negative. In view of (67), we obtain the following result.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1.3. DISTINGUISHED VECTORS: ARCHIMEDEAN CASE 31

Proposition 1.3.4. Let m be a non-negative integer, and l, l1, l2 be any inte-
gers. We assume that |l1 − l| ≤ m and l1 − l ≡ l2 + l ≡ m mod 2, so that the space
WΔ

m,l,l2,l1
is one-dimensional. Then this space is spanned by the function

(73) Φ#
m,l,l2,l1

:= (−i)m b̂
m+l1−l

2 ĉ
m−l1+l

2 (âd̂− b̂ĉ)
l2+l−m

2 D−l,

where D(g) = det(J(g, i2)). This function has the property that

(74) Φ#
m,l,l2,l1

(η0) = 1,

with η0 as in ( 17).

Special vectors in I(s, χ, χ0, τ ). We return to the induced representation
IΦ(s, χ, χ0, τ ), considered a subspace of the Borel induced representation

IΦ(s, χ, χ0, β1 × β2). Since the functions Φ#
m,l,l2,l1

defined in Proposition 1.3.4 sat-

isfy condition (58), they extend to elements of IΦ(s, χ, χ0, β1 × β2). We use the
same notation for the extended functions.

Lemma 1.3.5. The function Φ#
m,l,l2,l1

belongs to IΦ(s, χ, χ0, τ ) if and only if the
weight l1 occurs in τ .

Proof. As a subspace of IΦ(s, χ, χ0, β1 × β2), the representation IΦ(s, χ, χ0, τ )
consists of all functions Φ : G2 → C of the form

Φ(m1m2nk) = δP (m1m2)
s+1/2χ(m1)ϕ(m2)J(k), mi ∈ Mi(R), n ∈ N(R), k ∈ KG2

∞ ,

where ϕ lies in χ0 × τ , and where J is an appropriate function on KG2
∞ . It follows

that Φ ∈ IΦ(s, χ, χ0, β1 × β2) lies in IΦ(s, χ, χ0, τ ) if and only if the function

M2(R) � m2 �−→ Φ(m2)δP (m2)
−s−1/2

belongs to χ0 × τ . Since Φ#
m,l,l2,l1

satisfies (65), the function m2 �→ Φ#
m,l,l2,l1

(m2)
has weight l1. The assertion follows. �

For simplicity, we will from now on let c = 1 for the rest of this section; this is
all we need for the global application. Let the classical Whittaker function Wk,m

be the same as in [7, p. 244] or [58, 7.1.1]. We fix a point t+ ∈ R>0, depending on
p, such that

(75) W± l1
2 , p2

(t+) �= 0 for all l1 ∈ Z.

Note that, if p is a positive integer (corresponding to τ being a discrete series
representation), we can choose t+ = 1, since W± l1

2 , p2
is essentially an exponential

function. Let Wl1 be the vector of weight l1 in the ψ−1 Whittaker model of τ .
Using differential operators and solving differential equations, one can show that
there exist constants a+, a− ∈ C such that

(76) Wl1(

[
t 0
0 1

]
) =

⎧⎨⎩ a+ωτ ((4πt)
1/2)W l1

2 , p2
(4πt) if t > 0,

a−ωτ ((−4πt)1/2)W− l1
2 , p2

(−4πt) if t < 0.

Our choice of additive character implies that a+ is non-zero as long as l1 > 0. We
will normalize the constant a+ = a+l1,p,q such that

Wl1(

[
t+

1

]
) = 1.
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i.e.,
(77)

a+ = a+l1,p,q =
(
ωτ ((4πt

+)1/2)W l1
2 , p2

(4πt+)
)−1

= (4πt+)−q/2 W l1
2 , p2

(4πt+)−1.

Consider the Whittaker realization IW (s, χ, χ0, τ ) of I(s, χ, χ0, τ ), with τ given in
its ψ−1 Whittaker model (see (35), (36)). We extent Wl1 to a function on G1(R) via
the character χ0; see (33). Using the Iwasawa decomposition, we define a function

W#
m,l,l2,l1

in IW (s, χ, χ0, τ ) by

(78) W#
m,l,l2,l1

(m1m2nk, s) = (t+)q/2δ
s+1/2
P (m1m2)χ(m1)Wl1(m2) Φ

#
m,l,l2,l1

(k),

where m1 ∈ M (1)(R), m2 ∈ M (2)(R), n ∈ N(R) and k ∈ KG2
∞ , and where Φ#

m,l,l2,l1

is the same function as in (73); this is well-defined by the transformation properties

of Wl1 and Φ#
m,l,l2,l1

. Note that

W#
m,l,l2,l1

(diag(
√
t+, t+,

√
t+, 1)η0, s) = 1.

There is an intertwining operator Φ �→ WΦ from IΦ(s, χ, χ0, τ ) to IW (s, χ, χ0, τ ),
which, in the region of convergence, is given by

(79) WΦ(g) =

∫
R

e−2πix Φ(

⎡⎢⎢⎣
1

1
1

−1

⎤⎥⎥⎦
⎡⎢⎢⎣
1

1 x
1

1

⎤⎥⎥⎦ g) dx.

Outside the region of convergence the intertwining operator is given by the analytic
continuation of this integral. This operator is simply an extension of a standard
intertwining operator for the underlying GL2(R) representation β1×β2. It is easy to

see that under this intertwining operator the function Φ#
m,l,l2,l1

maps to a multiple

of W#
m,l,l2,l1

. Let κl1,p,q be the constant such that

(80) WΦ#
m,l,l2,l1

= κl1,p,q W
#
m,l,l2,l1

We will distinguish three disjoint cases A, B, C according to the type of τ and the
constellation of its weights relative to the integer l (which later will be a minimal
GSp4 weight).

• Case A: Neither the weight l nor the weight l − 1 occur in τ .

• Case B: The weight l occurs in τ .(81)

• Case C: The weight l − 1 occurs in τ .

Note that in Case A necessarily τ = Dp,q/2, a discrete series representation with
Harish-Chandra parameter p ≥ l (and central character satisfying a �→ aq for
a > 0). In this case let us set l1 = p + 1, which is the minimal weight. It satisfies
l1 ≥ 2. In each of the three cases we will define a non-negative integer m and a

distinguished function Φ# as a linear combination of certain Φ#
m,l,l2,l1

as in (73).

The definition is as in the following table. The last column of the table shows W#,
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by definition the image of Φ# under the intertwining operator Φ �→ WΦ.
(82)

Case m Φ# W#

A l1 − l Φ#
m,l,l2,l1

κl1,p,qW
#
m,l,l2,l1

B 0 Φ#
m,l,l2,l

κl,p,qW
#
m,l,l2,l

C 1 Φ#
m,l,l2,l+1 +

(
3s− p+q

2

)
Φ#

m,l,l2,l−1 κl+1,p,qW
#
m,l,l2,l+1

+
(
3s− p+q

2

)
κl−1,p,qW

#
m,l,l2,l−1

In all cases, by Lemma 1.3.5, the function Φ# lies in IΦ(s, χ, χ0, τ ).

Theorem 1.3.6. Let (τ, Vτ ) be a generic, irreducible, admissible representation
of GL2(R) with central character ωτ . We realize τ as a subrepresentation of an
induced representation β1 × β2, and define p, q ∈ C by ( 57). Let l2 be an integer
of the same parity as the weights of τ . Let χ0 be the character of C× such that
χ0

∣∣
R× = ωτ and χ0(ζ) = ζl2 for ζ ∈ S1, and let χ be the character of C× defined

by ( 56). Assume that l is a positive integer. Let m and Φ# be chosen according to
table ( 82).

i) The function Φ# satisfies

(83) Φ#(gk) = det(J(k, i2))
−lΦ#(g) for g ∈ G2(R), k ∈ KH

∞

and

(84) Δ1Φ
# = Δ2Φ

# = m(m+ 2)Φ#.

ii) Assume we are in Case A or B. Then, up to scalars, Φ# is the unique
KG2

∞ -finite element of IΦ(s, χ, χ0, τ ) with the properties ( 83) and ( 84).
iii) Assume we are in Case C. Then the space of KG2

∞ -finite functions in
IΦ(s, χ, χ0, τ ) with the properties ( 83) and ( 84) is two-dimensional,

spanned by Φ#
m,l,l2,l−1 and Φ#

m,l,l2,l+1.

Proof. i) is obvious, since Φ# lies in WΔ
m,l,l2

.

ii) Assume first we are in Case A. By our hypotheses, 0 < l < l1. Assume that
Φ ∈ IΦ(s, χ, χ0, τ ) is KG2

∞ -finite and satisfies (83) and (84). Then, evidently, the
restriction of Φ to KG2

∞ lies in WΔ
m,l,l2

. By (66) and Proposition 1.3.4,

WΔ
m,l,l2 =

⊕
j∈Z

|j−l|≤m
j−l≡m mod 2

CΦ#
m,l,l2,j

.

If a Φ#
m,l,l2,j

occurring in this direct sum is an element of IΦ(s, χ, χ0, τ ), then, by
Lemma 1.3.5, the weight j occurs in τ . Since τ has minimal weight l1, this implies
j ≤ −l1 or j ≥ l1. The first inequality leads to a contradiction, and the second
inequality implies j = l1. This proves the uniqueness in Case A. In Case B, as
before, the restriction of any KG2

∞ -finite Φ ∈ IΦ(s, χ, χ0, τ ) satisfying (83) and (84)
to KG2

∞ lies in WΔ
m,l,l2

. By Lemma 1.3.2, this space is one-dimensional.
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iii) Again, the restriction of any KG2
∞ -finite Φ ∈ IΦ(s, χ, χ0, τ ) satisfying (83)

and (84) to KG2
∞ lies in WΔ

m,l,l2
. By Lemma 1.3.2, this space is two-dimensional.

�

Since the functions Φ# and W# have the same right transformation properties,
the following is an immediate consequence of Theorem 1.3.6.

Corollary 1.3.7. Let the non-negative integer m and the function W# in
IW (s, χ, χ0, τ ) be chosen according to table ( 82).

i) The function W# satisfies

(85) W#(gk) = det(J(k, i2))
−lW#(g) for g ∈ G2(R), k ∈ KH

∞

and

(86) Δ1W
# = Δ2W

# = m(m+ 2)W#.

ii) Assume we are in Case A or B. Then, up to scalars, W# is the unique
KG2

∞ -finite element of IW (s, χ, χ0, τ ) with the properties ( 85) and ( 86).
iii) Assume we are in Case C. Then the space of KG2

∞ -finite functions in
IW (s, χ, χ0, τ ) with the properties ( 85) and ( 86) is two-dimensional,

spanned by W#
m,l,l2,l−1 and W#

m,l,l2,l+1.

A relation between unknown constants. In this section we defined the constants
κl1,p,q and a+l1,p,q; see (80) and (77). Note that these constants also depend on the

choice of the point t+, which is not reflected in the notation. We do not know the
explicit value of any of these constants. However, the following lemma describes
a relation between these constants which will become important in the proof of
Lemma 2.4.2.

Lemma 1.3.8. Let β1 and β2 be characters of R× such that the induced repre-
sentation β1 × β2 is irreducible. Let p, q ∈ C be as in ( 57). Then, for any integer l
whose parity is different from the parity of the weights of β1 × β2,

(87)
κl−1,p,q a

+
l−1,p,q

κl+1,p,q a
+
l+1,p,q

= −1

2
(p+ l).

Proof. We consider the intertwining operator ϕ �→ Wϕ from τ to the Whittaker
model W(β1 × β2, ψ

−c) which, in the region of convergence, is given by

(88) Wϕ(g) =

∫
R

e−2πixϕ(

[
1

−1

][
1 x
1

]
g) dx.

For a weight k occurring in β1 × β2 let ϕk be the element of β1 × β2 of weight k
satisfying ϕk(1) = 1, and let Wk be the element of W(β1 × β2, ψ

−1) of weight k

satisfying Wk(

[
t+

1

]
) = 1. Then Wϕk

= κk,p,q(t
+)q/2 Wk with the same κk,p,q as

in (80).

Recall that the constants a+k,p,q defined in (77) were designed so that

(89) wk(t) := Wk(

[
t
1

]
) = a+k,p,q (4πt)

q/2W k
2 ,

p
2
(4πt)
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satisfies wk(t
+) = 1. If L denotes the Lie algebra element 1

2

[
1 −i
−i −1

]
, then straight-

forward calculations show that
(90)

τ (L)ϕk =
p+ 1− k

2
ϕk−2, (τ (L)Wk)(

[
t
1

]
) =

(
− q

2
− k

2
+ 2πt

)
wk(t) + tw′

k(t)

(where τ stands for the right translation action on both β1 × β2 and its Whittaker
model). For k one of the weights appearing in β1 × β2, define constants λk,p,q and
μk,p,q by

τ (L)ϕk = λk,p,q ϕk−2 and τ (L)Wk = μk,p,qWk−2.

By our normalizations, λk,p,q = (τ (L)ϕk)(1) and μk,p,q = (τ (L)Wk)(

[
t+

1

]
).

Hence, by (90),

(91) λk,p,q =
p+ 1− k

2
, μk,p,q = −q

2
− k

2
+ 2πt+ + t+w′

k(t
+).

Following the function ϕk through the commutative diagram

β1 × β2
τ(L)−−−−→ β1 × β2⏐⏐� ⏐⏐�

W(τ, ψ−1) −−−−→
τ(L)

W(τ, ψ−1)

we get the identity

(92) κk,p,q μk,p,q = λk,p,q κk−2,p,q.

To further calculate the constant μk,p,q, we will take the derivative of the func-
tion wk defined in (89). We will make use of the following identity for Whittaker
functions,

(93) zW ′
k,b(z) =

(
k − z

2

)
Wk,b(z)−

(
b2 −

(
k − 1

2

)2)
Wk−1,b(z)

(see [58, 7.2.1]). Using this, one obtains from (77), (89) and (91) that

μk,p,q = −p2 − (k − 1)2

4

a+k,p,q

a+k−2,p,q

.

Substituting the values of λk,p,q and μk,p,q into (92) and setting k = l + 1 proves
the asserted identity. �

1.4. Intertwining operator: non-archimedean case

In this section let F be p-adic. We use the notation from Theorem 1.2.3.
In addition, we will assume that Λ

∣∣
F× = 1; this will be sufficient for our global

applications. In this section we will calculate the function K(s) given in (42).

Let us be precise about the measure on N(F ). Recall that N(F ) consists of one
copy of F and two copies of L. The measure on F is the one that is self-dual with
respect to the character ψ, and the measure on L is the one that is self-dual with
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respect to the character ψ ◦ trL/F . Since we are assuming that ψ has conductor o,
it follows (see Sect. 2.2 of [86]) that

(94) vol(o) = 1 and vol(oL) = N(d)−1/2.

Recall here that the norm of the different is the discriminant, and that d = b2−4ac
generates the discriminant of L/F by our conventions. If we let do = �δo (where
δ = 0 unless L/F is a ramified field extension), then vol(oL) = q−δ/2. This explains
the factor q−δ in the following result.

Proposition 1.4.1 (Gindikin-Karpelevich Formula). Let δ be the valuation of
the discriminant of L/F if L/F is a ramified field extension, and δ = 0 otherwise.
If τ is unramified, then

K(s) = q−δ
L(6s, χ

∣∣
F×)L(3s, τ ×AI(Λ)× χ

∣∣
F×)

L(6s+ 1, χ
∣∣
F×)L(3s+ 1, τ ×AI(Λ)× χ

∣∣
F×)

.

This formula can be obtained by a straightforward integral calculation; we omit
the details. For non-spherical τ it will be necessary to distinguish the inert, split
and ramified cases. For our global applications it turns out that explicit knowledge
of K(s) at finitely many finite places is not necessary. Thus, we will only calculate
K(s) in the inert and split cases.

We will first assume that L/F is an unramified field extension. We write the
explicit formula (43) as I1 + I2, where in I1 the z-integration is restricted to the
set oL, and in I2 the z-integration is restricted to L \ oL. After some changes of
variables, we get

(95) I1 =

∫
oL

∫
L

∫
F

W#(

⎡⎢⎢⎣
1
y 1
x 1 −ȳ

1

⎤⎥⎥⎦w1

⎡⎢⎢⎣
1 z

1
1
−z̄ 1

⎤⎥⎥⎦ η, s) dz dy dx

and

I2 =

∫
L\oL

∫
L

∫
F

|zz̄|W#(

⎡⎢⎢⎣
z̄−1 1

z−1 1
z

z̄

⎤⎥⎥⎦
⎡⎢⎢⎣
1

1 xzz̄ − ȳz − yz̄
1

1

⎤⎥⎥⎦

×

⎡⎢⎢⎣
1
y 1
x 1 −ȳ

1

⎤⎥⎥⎦
⎡⎢⎢⎣

1
−1

−1
−1

⎤⎥⎥⎦
⎡⎢⎢⎣

1
z−1 1

1 −z̄−1

1

⎤⎥⎥⎦ η, s) dx dy dz.

(96)

The argument of W# needs to be written as pk, where p ∈ P (F ) and k ∈ KG2 .

For both I1 and I2 the key is decomposing the matrix g =

⎡⎢⎢⎣
1
y 1
x 1 −ȳ

1

⎤⎥⎥⎦ in this

way. There are five cases depending on the values of x and y. For instance, if
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x ∈ o, y ∈ oL then g already lies in KG2 . On the other hand if x ∈ o, y �∈ oL then

(97) g =

⎡⎢⎢⎣
−y−1 −1

−y
−ȳ
1 −ȳ−1

⎤⎥⎥⎦
⎡⎢⎢⎣

1
−1 −y−1

−xȳ−1 −ȳ−1 1
−x −1

⎤⎥⎥⎦ .

Similar matrix identities (which we omit for reasons of brevity) exist in the three
remaining cases

x /∈ o, y ∈ oL, x /∈ o, y �∈ oL, yx
−1 ∈ oL, x /∈ o, y �∈ oL, yx

−1 �∈ oL.

We now have ten cases, five for z ∈ oL and five for z ∈ L \ oL. In each case let
k denote the KG2 component of the argument of W#. Using the fact that W# is
supported on P (F )η0K

HΓ(Pn) gives the following conditions on k. The notation
is such that y = y1 + αy2 and z = z1 + αz2 with y1, y2, z1, z2 ∈ o.

case x y z yx−1 condition for k to be in the support of W#

i) ∈ o ∈ oL ∈ oL y2 + (x+ yz + ȳz̄) ∈ o× or z2 − zz̄ ∈ o×

ii) ∈ o /∈ oL ∈ oL z2 − zz̄ ∈ o×

iii) /∈ o ∈ oL ∈ oL always
iv) /∈ o /∈ oL ∈ oL ∈ oL

y2

x − yȳ
x2 z2 +

(
x+yz

x

)(
x+ȳz̄

x

)
∈ o×

v) /∈ o /∈ oL ∈ oL /∈ oL
1

α−ᾱ

(
x
ȳ − x

y

)
− z2 +

(
x
y + z

)(
x
ȳ + z̄

)
∈ o×

vi) ∈ o ∈ oL /∈ oL always
vii) ∈ o /∈ oL /∈ oL always
viii) /∈ o ∈ oL /∈ oL never
ix) /∈ o /∈ oL /∈ oL ∈ oL

yȳ
x2 + y2

x ∈ o×

x) /∈ o /∈ oL /∈ oL /∈ oL always

According to these cases, K(s) is the sum of ten integrals Ii), . . . , Ix). By the
support conditions, Iviii) = 0. We split the first case up into i)a, the case where

z2 − zz̄ ∈ o×, and i)b, the case where z2 − zz̄ ∈ p and y2 + (x+ yz + ȳz̄) ∈ o×. To
evaluate the function W# in I1 and I2, we will write the argument of W# as pηκ
with p ∈ P (F ) and κ ∈ KH . Only the p part is important for the evaluation. Once
the argument of W# is written as pηκ, it is straightforward to perform an initial
evaluation of the integrals. We list only the results.

Ii)a =
( ∫

oL

z2−zz̄∈o
×

χ0(z2 − zz̄) dz
)
W (0)(

[
1

1

]
)

Ii)b =

∫
oL

z2−zz̄∈p

∫
o×

W (0)(

[
x
1

][
1

z2 − zz̄ 1

]
) dx dz

Iii) =

∫
oL

z2−zz̄∈o×

∫
L\oL

|y|−3(s+ 1
2
)

L χ
( 1

z2 − zz̄

)
Λ(ȳ)W (0)(

[
yȳ y2 + yz + ȳz̄

1

][
−1

1

]
) dy dz

Iiii) =

∫
oL

∫
oL

∫
F\o

|x|−6(s+ 1
2
)χ(x−1)W (0)(

[ y2+x+yz+ȳz̄
x

1

][
1

z2−zz̄
x

1

]
) dx dy dz

Iiv) =

∫
oL

∫
oL

u∈o
×

∫
F\o

yx/∈oL

|x|−6s−1χ(x−1)

W (0)(

[
1 yȳx

1

][
y2 − yȳz2 + (1 + yz)(1 + ȳz̄)

1

][
1

z2−zz̄
x

1

]
) dx dy dz
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Iv) =

∫
oL

z2−zz̄∈o
×

∫
L\oL

∫
F\o

|x|−6s−1χ(x−1) |y|−3(s+ 1
2
)

L Λ(ȳ)

W (0)(

[
1 yȳx

1

][
y2 − yȳz2 + (1 + yz)(1 + ȳz̄)

1

][
1

z2−zz̄
x

1

]
) dx dy dz

Ivi) =

∫
L\oL

|z|−3s− 1
2

L Λ(z)W (0)(

[
1

zz̄(1− z2
zz̄

)

][
1

−1

]
) dz

Ivii) =

∫
L\oL

∫
L\oL

|y|−3(s+ 1
2
)

L |z|−3s− 1
2

L Λ(ȳz)

ψ−c
(
− y

z
− ȳ

z̄
+

y2

z2 − zz̄

)
W (0)(

[
yȳ

zz̄

][
1

z2−zz̄
zz̄

][
1

−1

]
) dy dz

Iix) =

∫
L\oL

∫
o
×
L

y2−yȳ∈o
×

∫
F\o

|z|−3s− 1
2

L Λ(z)|x|−6s−1χ(−x−1)ψ−c
(x(yȳ + zz̄ + ȳz + yz̄)

zz̄

)

W (0)(

[
1
zz̄

][
y2 − yȳ + yȳz2

zz̄
1

][
1

− z2−zz̄
xzz̄

1

]
) dx dy dz

Ix) =

∫
L\oL

∫
L\oL

∫
F\o

|y|−3(s+ 1
2
)

L |z|−3s− 1
2

L Λ(ȳz)|x|−6s−1χ0(x)

W (0)(

[
1
zz̄

][
1 x(yȳ + zz̄ − ȳz − yz̄)

1

][
yȳ(1 + y2

yȳ
− z2

zz̄
)

1

][
1

z2−zz̄
xzz̄

1

]
) dx dy dz.

These integrals can be calculated further, using standard p-adic techniques and
known properties of the GL2 Whittaker function W (0). We will omit the details of
the calculation for reasons of brevity.

The calculations for the split case (when L = F ⊕ F ) are similar. In this case
the explicit formula (43) gives us an integral over five F -variables (coming from the
two L-variables and one F -variable). Also, note that in the split case, we have the
isomorphism

GU(2, 2;F ⊕ F ) ∼= GL4(F )×GL1(F )

g := (g1, g2) → (g1, μ(g)).

Using this, we can break up the integral (43) into several smaller integrals, which we
evaluate in a manner similar to the inert case. After all the integrals are computed
and combined, one obtains the following result, which is true in the inert as well as
the split case.

Theorem 1.4.2. Let (τ, Vτ ) be an irreducible, admissible, generic represen-
tation of GL2(F ). Assume that L/F is either an unramified field extension or
L = F ⊕ F . Assume also that the conductor pn of τ satisfies n ≥ 1. Let the
character χ0 of L× be such that χ0

∣∣
F× = ωτ and χ0((1 + Pn) ∩ o

×
L ) = 1. Let

Λ be an unramified character of L× such that Λ
∣∣
F× = 1. Let the character χ of

L× be defined by ( 44). Let W#( · , s) be the distinguished function in I(s, χ, χ0, τ )
from Corollary 1.2.4, normalized such that W#(η0, s) = 1. Then the function K(s)
defined by ( 41) is given by

K(s) = χL/F (�)nωτ (c
2/d)

ε(3s+ 1, τ̃ , ψ−c)2

ε(6s, ω−1
τ , ψ−c)

L(6s, χ
∣∣
F× )L(3s, τ ×AI(Λ)× χ

∣∣
F× )

L(1− 6s, χ−1
∣∣
F× )L(3s+ 1, τ ×AI(Λ)× χ

∣∣
F×)

.
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1.5. Intertwining operator: archimedean case

In this section let F = R. We use the notation and setup from Sect. 1.3.
Hence, (τ, Vτ ) is an irreducible, admissible, generic representation of GL2(R), and
l2 ∈ Z has the same parity as the weights of τ . The character χ0 of C× is such
that χ0

∣∣
R× = ωτ and χ0(ζ) = ζl2 for ζ ∈ C×, |ζ| = 1, and χ(ζ) = χ0(ζ̄)

−1. We
realize τ as a subrepresentation of some β1 ×β2, and the quantities p, q are defined
by (57). Let W# be the distinguished function in IW (s, χ, χ0, τ ) defined in table
(82). In this section we calculate the function K(s) defined by (41). It is easily
checked that the operator M(s), defined by the same integral formula (39), defines
an intertwining map from IΦ(s, χ, χ0, τ ) to IΦ(−s, χ̄−1, χχ̄χ0, χτ ). In fact, there is
a commutative diagram

IΦ(s, χ, χ0, τ )
M(s)−−−−→ IΦ(−s, χ̄−1, χχ̄χ0, χτ )⏐⏐� ⏐⏐�

IW (s, χ, χ0, τ ) −−−−→
M(s)

IW (−s, χ̄−1, χχ̄χ0, χτ )

in which the vertical maps are the intertwining operators Φ �→ WΦ given, in the
region of convergence, by formula (79). The commutativity follows from a straight-
forward calculation in the region of convergence, and by analytic continuation out-
side this region. It follows that the function K(s), instead of (41), can also be
determined from the equation

(98) M(s)Φ#( · , s, χ, χ0, τ ) = K(s) Φ#( · ,−s, χ̄−1, χχ̄χ0, χτ ).

Here, Φ# ∈ IΦ(s, χ, χ0, τ ) is defined in table (82). At this point, we do not yet
know in all cases that a function K(s) with the property (98) actually exists. We do
know that it exists in the Cases A and B defined in (81); since M(s) preserves right
transformation properties, this follows from the uniqueness statement in Theorem
1.3.6 ii) and iii). In view of the normalization (74), we have the formula

(99) K(s) =

∫
N(R)

Φ#(w1nη0, s, χ, χ0, τ ) dn

in Cases A and B. In Case C, part iv) of Theorem 1.3.6 assures that the left side of

(98) is a linear combination of Φ#
m,l,l2,l+1 and Φ#

m,l,l2,l−1. It would be more precise
to write these functions as

Φ#
m,l,l2,l±1( · ,−s, χ̄−1, χχ̄χ0, χτ ) or Φ#

m,l,l2,l±1( · ,−s, β−1
2 × β−1

1 )

since they are defined with respect to the data (−s, χ̄−1, χχ̄χ0, χτ ), and χτ is a sub-
representation of β−1

2 ×β−1
1 . The calculation will show that this linear combination

is precisely a functionK(s) times the distinguished vector Φ#( · ,−s, χ̄−1, χχ̄χ0, χτ )
for the data (−s, χ̄−1, χχ̄χ0, χτ ). This will establish the existence of K(s) with the
property (98) in all cases.

Concerning the measure on N(R), similar remarks as in the p-adic case apply.
As a measure space, N(R) ∼= R× C× C. The measure on R is the usual Lebesgue
measure, but the measure on C is twice the usual Lebesgue measure; see Sect. 2.2
of [86].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

40 AMEYA PITALE, ABHISHEK SAHA, and RALF SCHMIDT

Remark: The reason we are calculating K(s) from equation (98) and not from
equation (41) is that the relevant archimedean integrals are much easier to handle
in the induced model than in the Whittaker model. The price one has to pay for
this procedure are the non-explicit constants κl1,p,q defined in (80). They will not
appear any further in this section, but later in Sect. 2.2 when we calculate local
zeta integrals; see Corollary 2.2.3. In our application to the functional equation in
Sect. 2.4, the unknown constants κl1,p,q will cancel out with the constants al1,p,q
defined in (77), via the identity given in Lemma 1.3.8.

Theorem 1.5.1. Let (τ, Vτ ) be a generic, irreducible, admissible representation
of GL2(R) with central character ωτ . We assume that τ is isomorphic to a subrep-
resentation of β1×β2 with characters β1, β2 of R×. Let the complex numbers p and
q be as defined in ( 57). Let l be a fixed positive integer. Let l2 = −l1 in Case A,
l2 = −l in Case B, and l2 = 1 − l in Case C. Let χ0 be the character of C× such
that χ0

∣∣
R× = ωτ and χ0(ζ) = ζl2 for ζ ∈ C×, |ζ| = 1. Let χ be the character of C×

given by ( 56). Let W# ∈ IW (s, χ, χ0, τ ) be the distinguished function defined in
table ( 82). Then the identity ( 41) holds with the function K(s) given as follows.

i) In Case A,
(100)

K(s) = 4π5/2 i2l−l1
Γ(3s− q

2 + 1
2 )Γ(3s−

q
2 )

(3s− q
2 + l1

2 − 1
2 )

2Γ(3s− q
2 + l1

2 + 3
2 − l)Γ(3s− q

2 + l − l1
2 − 1

2 )
.

ii) In Case B,
(101)

K(s) = 4π5/2 il
Γ(3s− q

2 + 1
2 )Γ(3s−

q
2 )

(3s− q
2 + p

2 )(3s−
q
2 − p

2 )Γ(3s−
q
2 − l

2 + 1
2 )Γ(3s−

q
2 + l

2 + 1
2 )

.

iii) In Case C,

K(s) = −4π5/2il+1 (3s− q
2 − l

2 )(3s−
q
2 − 1− p

2 )

(3s− q
2 + 1 + p

2 )(3s−
q
2 + p

2 )(3s−
q
2 − p

2 )

×
Γ(3s− q

2 + 1
2 )Γ(3s−

q
2 )

Γ(3s− q
2 + 1− l

2 )Γ(3s−
q
2 + 1 + l

2 )
.(102)

Proof. i) In Case A, by (82), we have Φ# = Φ#
m,l,l2,l1

, where m = l1 − l and

l1 is the lowest weight of the representation τ . The function Φ#
m,l,l2,l1

is given in

Proposition 1.3.4. By (99), we have to calculate

(103) K(s) =

∫
N(R)

Φ#
m,l,−l1,l1

(w1nη0, s, χ, χ0, τ ) dn.

We abbreviate

u =
√
1 + x2, v =

√
1 + yȳ, w =

√
1 + zz̄,

and

r1 =

⎡⎢⎢⎣
w−1 zw−1

−z̄w−1 w−1

w−1 zw−1

−z̄w−1 w−1

⎤⎥⎥⎦ , r2 =

⎡⎢⎢⎣
u−1 xu−1

1
−xu−1 u−1

1

⎤⎥⎥⎦ ,
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r3 =

⎡⎢⎢⎣
v−1 yv−1

v−1 ȳv−1

−yv−1 v−1

−ȳv−1 v−1

⎤⎥⎥⎦ .

The elements r1, r2, r3 lie in KG2
∞ . Starting from (103), it is not difficult to show

that

(104) K(s) =

∫
C

∫
C

∫
R

u(uvw)q−6s−2(vw−1)p Φ#
m,l,−l1,l1

(w1r3r2r1η0) dx dy dz.

A calculation verifies that, with k = w1r3r2r1η0,

det(J(k, i2)) = −i
1− ix

u
, det(J( tk, i2)) = i

1 + ix

u
,

and

b̂(k) = (1− zz̄)
(v2 − ix(1− yȳ)

uv2w2

)
+ 2i

(yz̄ + ȳz)

v2w2
.

Hence

Φ#
m,l,−l1,l1

(k) = (−i)m b̂(k)l1−l det(J( tk, i2))
l−l1 det(J(k, i2))

−l1

= i2l−l1

(
(1− zz̄)

(v2 − ix(1− yȳ)

uv2w2

)
+ 2i

(yz̄ + ȳz)

v2w2

)l1−l(1 + ix

u

)l
,

so that

K(s) = i2l−l1

∫
C

∫
C

∫
R

u(uvw)q−6s−2(vw−1)p

(
(1− zz̄)

(v2 − ix(1− yȳ)

uv2w2

)
+ 2i

(yz̄ + ȳz)

v2w2

)l1−l(1 + ix

u

)l
dx dy dz.

We now introduce polar coordinates for y and z. More precisely, put y =
√
feiθ1 ,

z =
√
geiθ2 , and let θ = θ1 − θ2. Also, put s0 = 3s + 1

2 + l1−l
2 − q

2 . With these
substitutions, and using the fact that p = l1 − 1, the intertwining integral becomes

K(s) = i2l−l12π

2π∫
0

∫
R

∞∫
0

∞∫
0

(1 + x2)−s0(1 + f)−s0−1+ l
2 (1 + g)−s0+

l
2−l1

(1 + ix

u

)l
(
(1− g)(2− (1− f)(1 + ix)) + 4iu

√
fg cos θ

)l1−l

df dg dx dθ.

Note here that the measure on C is twice the usual Lebesgue measure. By Lemma
1.5.2 further below, we get the result.

ii) Next we evaluate the intertwining integral in the case where τ contains
the weight l. As in the previous case, K(s) is given by formula (99). The same
calculation that led to (104) now shows that

(105) K(s) =

∫
C

∫
C

∫
R

u(uvw)q−6s−2(vw−1)p Φ#
m,l,−l,l(w1r3r2r1η0) dx dy dz.
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This time Φ#
m,l,−l,l = il

(
1+ix
u

)l
, so that

K(s) = il
∫
C

∫
C

∫
R

u(uvw)q−6s−2(vw−1)p
(1 + ix

u

)l
dx dy dz.

This integral can be calculated as before by using polar coordinates. The result
follows.

iii) This case is the most complicated one, since we do not yet know that a
function K(s) with the property (98) exists. We do know, however, by part iv) of
Theorem 1.3.6, that there exist functions K1(s) and K2(s) such that

M(s)Φ#( · , s, χ, χ0, τ ) = K1(s) Φ
#
1,l,l2,l+1( · ,−s, χ̄−1, χχ̄χ0, χτ )

+K2(s) Φ
#
1,l,l2,l−1( · ,−s, χ̄−1, χχ̄χ0, χτ ).(106)

The calculation of K1(s) and K2(s) is in the same spirit as in Cases A and B, and
we omit the details. Eventually it turns out that (98) holds with K(s) as in (102).

�

We would like to thank Paul-Olivier Dehaye for his help with the proof of the
following lemma, which was used in the above calculations.

Lemma 1.5.2. For non-negative integers l and t, and for all s ∈ C with Re(s)
large enough,

2π∫
0

∫
R

∞∫
0

∞∫
0

(1 + x2)−s(1 + f)−s−1+ l
2 (1 + g)−s− l

2−t
(1 + ix

u

)l
(
(1− g)(2− (1− f)(1 + ix)) + 4iu

√
fg cos θ

)t
df dg dx dθ

=
2π3/2Γ(s− t

2 )Γ(s−
t
2 − 1

2 )

(s+ l
2 − 1)2Γ(s− l

2 + 1)Γ(s+ l
2 − t− 1)

.

Proof. Let LHS denote the quantity on the left hand side of the asserted formula.

We start off by completely expanding
(
(1− g)(2− (1−f)(1+ ix))+4iu

√
fg cos θ

)t
using the bimomial theorem. Then, using (6.16), (6.17) of [7] and the following
well-known formulas,

2π∫
0

cos(θ)k dθ =

⎧⎪⎨⎪⎩
0 if k is odd,

2
√
π
Γ(k+1

2 )

Γ(k+2
2 )

if k is even,

∞∫
0

rt1(1 + r)−t2 dr =
Γ(1 + t1)Γ(−1 + t2 − t1)

Γ(t2)
,

we arrive at (using the multinomial symbol)

LHS =
∑

k,j,r,v

(
(−1)k+r+v+j22k+t−j+1

( t

2k, j, t− 2k − j

)(t− 2k

v

)(j
v

)Γ(k + 1
2
)Γ(1 + k + r)

Γ(k + 1)Γ(s+ l
2
+ t)

π

Γ(−1 + s+ t− k − r + l
2
)Γ(s− v − k − l

2
)Γ(1 + k + v)Γ(s− k − j

2
)Γ(s− k − j

2
− 1

2
)

Γ(s− l
2
− k − j)Γ(s+ l

2
− k)Γ(s− l

2
+ 1)

)
,
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where the sum is taken over non-negative integers k, j, r, v satisfying 2k + j ≤ t,
r + 2k ≤ t and v ≤ j. Next, using well-known summation formulas for the gamma
functions and algebraic manipulations (we omit the details of this step, which were
performed with the aid of Mathematica), it turns out that the above expression
simplifies significantly. As a result, the lemma reduces to proving a certain algebraic
identity. Let x(n) = x(x+1) . . . (x+ n− 1) denote the Pochhammer symbol. Then
the identity we are reduced to proving is

T∑
k=0

∑
v≥0, n≥0

v+n≤4T+1

4k
(−1)k+v

n!v!(2T − 2k)!
· (x+ k − n)(n)(x− k + 1)(v)

(x− 2T + v)(k+1)(x+ 2T − k − n)(k+1)
= − 1

x2(2T )!
,

where T is any non-negative integer, and x is an indeterminate. To prove this
identity, observe that each summand above can be written using the partial fraction
decomposition as a sum of rational functions, where each numerator is a rational
number and the denominators are terms of the form (x − a)b with b equal to 1 or
2, and −3T − 1 ≤ a ≤ 3T + 1. So to prove the identity, it is enough to show that
the sum of the numerators coincide on both sides for each such denominator. This
is straightforward combinatorics, and we omit the details. �
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CHAPTER 2

Global L-functions for GSp4 ×GL2

In this section, we will use the integral defined by Furusawa in [19] to obtain
an integral representation of the L-function L(s, π × τ ), where π is a cuspidal,
automorphic representation of GSp4(A) of the type corresponding to full level Siegel
cusp forms, and where τ is an arbitrary cuspidal, automorphic representation of
GL2(A). We will use this to obtain the functional equation of the L-function, with
some restriction on the GL2 representation. We will first do the non-archimedean
calculation, followed by the archimedean calculation and put it all together to get
the global result.

2.1. Bessel models for GSp4

Let F be an algebraic number field and AF its ring of adeles. We fix three
elements a,b, c ∈ F such that d = b2−4ac is a non-square in F×. Then L = F (

√
d)

is a quadratic field extension of F . Let

S =

[
a b

2
b
2 c

]
, ξ =

[
b
2 c
−a −b

2

]
.

Then F (ξ) = F + Fξ is a two-dimensional F -algebra isomorphic to L, an isomor-

phism being given by x+yξ �→ x+y
√
d
2 . The determinant map on F (ξ) corresponds

to the norm map on L. Let

(107) T = {g ∈ GL2 | tgSg = det(g)S}.

This is an algebraic F -group with T (F ) = F (ξ)× ∼= L× and T (AF ) ∼= A×
L . We

consider T a subgroup of H = GSp4 via

T � g �−→
[
g
det(g) tg−1

]
∈ H.

Let

U = {
[
12 X

12

]
∈ H | tX = X}

and R = TU . We call R the Bessel subgroup of H (with respect to the given data
a,b, c). Let ψ be a non-trivial character F\AF → C×, chosen once and for all. Let
θ : U(AF ) → C× be the character given by

(108) θ(

[
1 X
1

]
) = ψ(tr(SX)).

We have θ(t−1ut) = θ(u) for all u ∈ U(AF ) and t ∈ T (AF ). Hence, if Λ is any
character of T (AF ) ∼= A×

L , then the map tu �→ Λ(t)θ(u) defines a character of
R(AF ). We denote this character by Λ⊗ θ.

45
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Analogous definitions can be made over any local field F . In this case, let
π be an irreducible, admissible representation of H(F ). Let Λ be a character of
T (F ) ∼= L× such that the restriction of Λ to F× coincides with the central character
of π. Let Λ⊗ θ be the character of R(F ) defined above. We say that π has a Bessel
model of type (S,Λ, ψ) if π is isomorphic to a space of functions B : H(F ) → C
with the transformation property

B(tuh) = Λ(t)θ(u)B(h) for all t ∈ T (F ), u ∈ U(F ), h ∈ H(F ),

with the action of H(F ) on this space given by right translation. Such a model, if
it exists, is known to be unique; we denote it by BS,Λ,ψ(π).

Now let F be global, and let π = ⊗πv be a cuspidal, automorphic representation
of H(AF ). Let Vπ be the space of automorphic forms realizing π. Assume that a
Hecke character Λ as above is chosen such that the restriction of Λ to A×

F coincides
with ωπ, the central character of π. For each φ ∈ Vπ consider the corresponding
Bessel function

(109) Bφ(g) =

∫
ZH (AF )R(F )\R(AF )

(Λ⊗ θ)(r)−1φ(rg) dr,

where ZH is the center of H. If one of these integrals is non-zero, then all are
non-zero, and we obtain a model BS,Λ,ψ(π) of π consisting of functions on H(AF )
with the obvious transformation property on the left with respect to R(AF ). In
this case, we say that π has a global Bessel model of type (S,Λ, ψ). It implies that
the local Bessel model BS,Λv,ψv

(πv) exists for every place v of F . In fact, there is a
canonical isomorphism ⊗

v

BS,Λv,ψv
(πv) ∼= BS,Λ,ψ(π).

If (Bv)v is a collection of local Bessel functions Bv ∈ BS,Λv ,ψv
(πv) such that

Bv

∣∣
H(ov)

= 1 for almost all v, then this isomorphism is such that ⊗vBv corre-

sponds to the global function

(110) B(g) =
∏
v

Bv(gv), g = (gv)v ∈ H(AF ).

Explicit formulas: the spherical Bessel function. Explicit formulas for local
Bessel functions are only known in a few cases. One of these is the p-adic unramified
case, which we review next. Hence, let F be a non-archimedean local field of
characteristic zero. Let the character ψ of F have conductor o, the ring of integers.
Let (π, Vπ) be an unramified, irreducible, admissible representation of H(F ). Let
Λ be an unramified character of T (F ) ∼= L×. We assume that Vπ = BS,Λ,ψ(π) is
the Bessel model with respect to the character Λ ⊗ θ of R(F ). Let B ∈ Vπ be a
spherical vector. By [83], Proposition 2-5, we have B(1) �= 0. For l,m ∈ Z let

(111) h(l,m) =

⎡⎢⎢⎣
�2m+l

�m+l

1
�m

⎤⎥⎥⎦ .
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Then, as in (3.4.2) of [19],

(112) H(F ) =
⊔
l∈Z

⊔
m≥0

R(F )h(l,m)KH , KH = H(o).

By Lemma (3.4.4) of [19] we have B(h(l,m)) = 0 for l < 0, so that B is determined
by the values B(h(l,m)) for l,m ≥ 0. In [83], 2-4, Sugano has given a formula for
B(h(l,m)) in terms of a generating function. The full formula is required only in
the case where the GL2 representation τ is unramified; this case has been treated
in [19]. For other cases we only require the values B(h(l, 0)), which are given by

(113)
∑
l≥0

B(h(l, 0))yl =
H(y)

Q(y)
,

where

Q(y) =
4∏

i=1

(
1− γ(i)(�)q−3/2y

)
(114)

and

(115) H(y) =

⎧⎪⎪⎨⎪⎪⎩
1− q−4Λ(�)y2 if

(
L
p

)
= −1,

1− q−2Λ(�L)y if
(
L
p

)
= 0,

1− q−2
(
Λ(�L) + Λ(��−1

L )
)
y + q−4Λ(�)y2 if

(
L
p

)
= 1.

The γ(i) are the Satake parameters of π, as in Sect. (3.6) of [19].
Explicit formulas: the highest weight case. Another situation where an explicit

formula for a Bessel function is known is the archimedean lowest weight case. Hence,
let F = R. Let l be an integer such that l ≥ 2. Let π be the discrete series
representation (or limit of such if l = 2) of PGSp4(R) with minimal K-type (l, l);
here, we write elements of the weight lattice as pairs of integers, precisely as in [65],
Sect. 2.1. Such representations π appear as the archimedean components of the
automorphic representations of H(A) attached to (scalar valued) Siegel modular
forms of weight l. Recall that S is a positive definite matrix. Let the function
B : H(R) → C be defined by

(116) B(h) :=

{
μ2(h)

l det(J(h, i2))−l e−2πi tr(Sh〈i2〉) if h ∈ H+(R),

0 if h /∈ H+(R),

where i2 =

[
i
i

]
. One can check that B satisfies the Bessel transformation property

with the character Λ⊗ θ of R(R), where Λ is trivial. Also

(117) B(hk) = det(J(k, i2))
lB(h) for h ∈ H(R), k ∈ KH

∞.

In fact, by the considerations in [83] 1-3, or by [65] Theorem 3.4, B is the highest
weight vector (weight (−l,−l)) in BS,Λ,ψ(π). Note that the functionB is determined
by its values on a set of representatives for R(R)\H(R)/KH

∞. Such a set can be ob-

tained as follows. Let T 1(R) = T (R)∩SL(2,R). Then T (R) = T 1(R) · {
[
ζ
ζ

]
| ζ >

0}. As in [19], p. 211, let t0 ∈ GL2(R)
+ be such that T 1(R) = t0SO(2)t−1

0 . (We
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will make a specific choice of t0 when we choose the matrix S below.) It is not hard
to see that

(118) H(R) = R(R) ·
{⎡⎢⎢⎣λt0

[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦ | λ ∈ R×, ζ ≥ 1

}
·KH

∞.

One can check that the double cosets in (118) are pairwise disjoint.

2.2. Local zeta integrals

Let F be a non-archimedean local field of characteristic zero, or F = R.
Let a,b, c ∈ F and L, α, η be according to our conventions; see (14), (15), (16).
Let τ, χ0, χ be as in Corollary 1.2.4 (non-archimedean case) resp. Corollary 1.3.6
(archimedean case). Let W#( · , s) be the unique vector in I(s, χ, χ0, τ ) exhibited
in these corollaries. The calculation in the proof of Theorem (2.4) of [19] shows
that
(119)
W#(ηtuh, s) = Λ(t)−1θ(u)−1W#(ηh, s) for all t ∈ T (F ), u ∈ U(F ), h ∈ H(F ).

Here, Λ is an unramified character of L× in the non-archimedean case, and Λ = 1
in the archimedean case; we always have χ(ζ) = Λ(ζ̄)−1χ0(ζ̄)

−1. Let π be an
irreducible, admissible representation of H(F ) which has a Bessel model of type
(S,Λ, ψ). Then, for any B ∈ BS,Λ,ψ(π), equation (119) shows that the integral

(120) Z(s,W#, B) =

∫
R(F )\H(F )

W#(ηh, s)B(h) dh

makes sense. We shall now explicitly calculate these integrals in the case of B
being the spherical vector in an unramified p-adic representation π, and B being
the highest weight vector in an archimedean (limit of) discrete series representation
with scalar minimal K-type.

The non-archimedean case. Assume that F is non-archimedean. Recall the ex-
plicit formula for the distinguished functionW#( · , s) given in Corollary 1.2.4. It in-
volves W (0), the normalized local newform in the Whittaker model of τ with respect
to the character ψ−c(x) = ψ(−cx). Since this character has conductor o, the values

W (0)(

[
�l

1

]
) are zero for negative l. For non-negative l, one can use formulas for

the local newform with respect to the congruence subgroup GL2(o) ∩
[
o o

pn 1 + pn

]
(given, amongst other places, in [77]), together with the local functional equation,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2.2. LOCAL ZETA INTEGRALS 49

to obtain the following.
(121)

τ W (0)(

[
�l

1

]
) (l ≥ 0)

β1 × β2 with β1, β2 unramified, β1β
−1
2 �= | |±1 q−l/2

∑l
k=0 β1(�)kβ2(�)l−k

β1 × β2 with β1 unramified, β2 ramified β2(�
l)q−

l
2

ΩStGL2 with Ω unramified Ω(�l)q−l

supercuspidal OR ramified twist of Steinberg 1 if l = 0

OR β1 × β2 with β1, β2 ramified, β1β
−1
2 �= | |±1 0 if l > 0

Assume that π is an unramified representation and that B ∈ BS,Λ,ψ(π) is the
spherical Bessel function as in (113). In the following we shall assume that the
conductor pn of τ satisfies n > 0, since for unramified τ the local integral has been
computed by Furusawa; see Theorem (3.7) in [19]. Since both functions B and W#

are right KH-invariant, it follows from (112) that the integral (120) is given by

(122) Z(s,W#, B) =
∑

l,m≥0

B(h(l,m))W#(ηh(l,m), s)Vmq3m+3l.

Here, as in Sect. 3.5 of [19], Vm = vol
(
T (F )\T (F )

[
�m

1

]
GL2(o)

)
. Calculations

confirm that ηh(l,m) lies in the support of W#( · , s) if and only if m = 0. It follows
that the sum (122) reduces to

(123) Z(s,W#, B) =
∑
l≥0

B(h(l, 0))W#(ηh(l, 0), s)q3l.

By (53),

(124) W#(ηh(l, 0), s) = q−3(s+1/2)lωπ(�
−l)ωτ (�

−l)W (0)(

[
�l

1

]
).

Substituting the values of W (0)(

[
�l

1

]
) from the table above and the values of

B(h(l, 0)) from (113), we get the following result.

Theorem 2.2.1. Let τ, χ, χ0,Λ and W#( · , s) be as in Corollary 1.2.4. Let
π be an irreducible, admissible, unramified representation of H(F ), and let B be
the unramified Bessel function given by formula ( 113). Then the local zeta integral
Z(s,W#, B) defined in ( 120) is given by

(125) Z(s,W#, B) =
L(3s + 1

2 , π̃ × τ̃)

L(6s + 1, χ|F× )L(3s + 1, τ × AI(Λ) × χ|F× )
Y (s),
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where

Y (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if τ = β1 × β2, β1, β2 unramified,
L(6s + 1, χ|F× ) if τ = β1 × β2, β1 unram., β2 ram.,

(
L
p

)
= ±1,

OR τ = β1 × β2, β1 unram., β2 ram.,(
L
p

)
= 0 and β2χL/F ramified,

OR τ = ΩStGL(2), Ω unramified,
L(6s + 1, χ|F× )

1 − Λ(
L)(ωπβ2)−1(
)q−3s−1
if τ = β1 × β2, β1 unram., β2 ram.,

(
L
p

)
= 0,

and β2χL/F unramified,

L(6s + 1, χ|F× )L(3s + 1, τ × AI(Λ) × χ|F× ) if τ = β1 × β2, β1, β2 ramified,
OR τ = ΩStGL(2), Ω ramified,
OR τ supercuspidal.

In ( 125), π̃ and τ̃ denote the contragredient of π and τ , respectively. The symbol
AI(Λ) stands for the GL2(F ) representation attached to the character Λ of L×

via automorphic induction, and χL/F stands for the quadratic character of F×

associated with the extension L/F . The function L(3s+ 1, τ ×AI(Λ)× χ|F×) is a
standard L-factor for GL2 ×GL2 ×GL1.

Proof. If τ = β1 × β2 with unramified β1 and β2, then this is Theorem (3.7)
in Furusawa’s paper [19]. If τ = β1 × β2 with unramified β1 and ramified β2,
then, from the local Langlands correspondence, we have the following L-functions
attached to the representations π̃× τ̃ of GSp4(F )×GL2(F ) and τ ×AI(Λ)×χ|F×

of GL2(F )×GL2(F )×GL1(F ),

(126) L(s, π̃ × τ̃ ) =

4∏
i=1

(
1− (γ(i)β1)

−1(�)q−s
)−1

,

where γ(i) are the Satake parameters of π, as in Sect. (3.6) of [19], and

1

L(s, τ ×AI(Λ)× χ|F×)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
(
Λ(ωπβ1)−2

)
(�)q−2s if

(
L
p

)
= −1,

1− Λ(�L)(ωπβ1)−1(�)q−s if
(
L
p

)
= 0 and β2χL/F ram.,

(1− Λ(�L)(ωπβ1)−1(�)q−s)

(1− Λ(�L)(ωπβ2)−1(�)q−s) if
(
L
p

)
= 0 and β2χL/F unram.,

(1− Λ(�L)(ωπβ1)−1(�)q−s)

(1− Λ(��−1
L )(ωπβ1)−1(�)q−s) if

(
L
p

)
= 1.

The desired result therefore follows from (114) and (115). If τ is an unramified
twist of the Steinberg representation, then the result was proved in Theorem 3.8.1
of [66]. In all remaining cases we have L(s, π̃ × τ̃) = 1 and Z(s,W#, B) = 1, so
that the asserted formula holds. �

The archimedean case. Now let F = R. We will calculate the zeta integral
(120) for the distinguished function W# given in Theorem 1.3.6. It is enough to

calculate these integrals for the functions W#
m,l,l2,l1

, where l1 is one of the weights
occurring in τ , and where l2 ∈ Z has the same parity as l1. Recall the explicit
formula (78) for these functions.

As for the Bessel function ingredient in (120), let π be a (limit of) discrete
series representation of PGSp4(R) with scalar minimal K-type (l, l), where l ≥ 2.
Let B : H(R) → C be the function defined in (116). Then B is a vector of
weight (−l,−l) in BS,Λ,ψ(π), where Λ = 1 and ψ(x) = e−2πix. By (85) and (117),
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the function W#(ηh, s)B(h) is right invariant under KH
∞. Using this fact and the

disjoint double coset decomposition (118), we obtain

Z(s,W#
m,l,l2,l1

, B) = π

∫
R×

∞∫
1

W#
m,l,l2,l1

(
η

⎡⎢⎢⎣λt0
[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦ , s

)

B
(⎡⎢⎢⎣λt0

[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦)(ζ − ζ−3)λ−4 dζ dλ;(127)

see (4.6) of [19] for the relevant integration formulas. The above calculations are

valid for any choice of a,b, c as long as S =

[
a b/2

b/2 c

]
is positive definite. We will

compute (127), in two special cases, namely when S is of the form S =

[
D/4

1

]
or

S =

[
(1 +D)/4 1/2

1/2 1

]
with a positive number D. By the argument in Sect. 4.4 of

[66], we may assume that S is of the first kind. Then η =

⎡⎢⎢⎣
1√
−D
2 1

1
√
−D
2
1

⎤⎥⎥⎦,
and we can choose t0 =

[
21/2D−1/4

2−1/2D1/4

]
. From formula (116),

(128) B
(⎡⎢⎢⎣λt0

[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦) =

{
λle−2πλD1/2 ζ2+ζ−2

2 if λ > 0,

0 if λ < 0.

Next, the argument of W#
m,l,l2,l1

can be rewritten as an element of MNKG2
∞ as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λD
− 1

4
(

ζ2+ζ−2

2

)− 1
2

λD
1
4
(

ζ2+ζ−2

2

) 1
2

D
1
4
(

ζ2+ζ−2

2

) 1
2

D
− 1

4
(

ζ2+ζ−2

2

)− 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
1 −iζ2

0 1
1 0

−iζ2 1

⎤
⎥⎥⎦ k,

where k =

[
k0

k0

]
with k0 = (ζ2 + ζ−2)−1/2

[
ζ−1 iζ
iζ ζ−1

]
∈ SU(2). From now on

assume that m = |l − l1|. We have

Φ#
m,l,l2,l1

(

[
k0

k0

]
) =

(ζ2 + ζ−2

2

)−m

,

and hence

W#
m,l,l2,l1

(
η

⎡⎢⎢⎣λt0
[
ζ
ζ−1

]
t−1
0

[
ζ−1

ζ

]
⎤⎥⎥⎦ , s

)
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=
( ζ2 + ζ−2

2

)−|l−l1|∣∣∣λD− 1
2
( ζ2 + ζ−2

2

)−1
∣∣∣3(s+ 1

2
)

ωτ (λ)
−1Wl1(

[
λD

1
2
(
ζ2+ζ−2

2

)
1

]
).

(129)

If q ∈ C is as in (57), then ωτ (y) = yq for y > 0. It follows from (76), (128) and
(129) that

Z(s,W#
m,l,l2,l1

, B) = a+πD− 3s
2

− 3
4
+ q

4 (4π)
q
2

∞∫
0

∞∫
1

λ3s+ 3
2
+l− q

2

(ζ2 + ζ−2

2

)−3s− 3
2
+ q

2
−|l−l1|

W l1
2

, p
2

(
4πλD1/2 ζ

2 + ζ−2

2

)
e−2πλD1/2 ζ2+ζ−2

2 (ζ − ζ−3)λ−4 dζ dλ.(130)

Using the substitutions u = (ζ2 + ζ−2)/2 and x = 4πλD1/2u, together with the
integral formula for the Whittaker function from [58, p. 316], we get

Z(s,W#
m,l,l2,l1

, B) = a+π
D−3s− l

2
+ q

2 (4π)−3s+ 3
2
−l+q

6s+ l + |l− l1| − q − 1

Γ(3s+ l− 1 + p
2
− q

2
)Γ(3s+ l− 1− p

2
− q

2
)

Γ(3s+ l− l1
2

− 1
2
− q

2
)

.

Here, for the calculation of the u-integral, we have assumed that Re(6s+ l + |l −
l1| − q − 1) > 0. We summarize our result in the following theorem. We will use
the notation

(131) ΓR(s) = π−s/2 Γ
(s
2

)
, ΓC(s) = 2(2π)−s Γ(s).

The proof of (134) below follows from the tables at the end of this section.

Theorem 2.2.2. Assume that the matrix S is of the form

(132) S =

[
D/4

1

]
or S =

[
(1 +D)/4 1/2

1/2 1

]
with a positive number D. Let l ≥ 2 be an integer, and let π be the (limit of)
discrete series representation of PGSp4(R) with scalar minimal K-type (l, l). Let
l2 ∈ Z and τ , χ0, χ be as in Corollary 1.3.7. Let l1 be one of the weights occurring

in τ , and let W#
|l−l1|,l,l2,l1 be the function defined in ( 78). Let B : H(R) → C be

the function defined in ( 116). Then, for Re(6s+ l + |l − l1| − q − 1) > 0, with the
local archimedean integral as in ( 120),

Z(s,W
#
|l−l1|,l,l2,l1

, B) = a
+
l1,p,qD

−3s− l
2
+

q
2 2

−3s+1
2
−l+

3q
2

+
l1
2 π

1+
q
2
+

l1
2

×
1

6s + l + |l − l1| − q − 1

ΓC(3s + l − 1 + p
2 − q

2 )ΓC(3s + l − 1 − p
2 − q

2 )

ΓC(3s + l − l1
2 − 1

2 − q
2 )

.(133)

Here, a+l1,p,q is as defined in ( 77). The numbers p, q ∈ C are defined in ( 57). With

Λ being the trivial character, we can rewrite formula ( 133) as
(134)

Z(s,W#
|l−l1|,l,l2,l1 , B) =

L(3s+ 1
2 , π̃ × τ̃)

L(6s+ 1, χ|R×)L(3s+ 1, τ ×AI(Λ)× χ|R×)
Yl,l1,p,q(s),
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where, with u = 0 if l1 is even and u = 1/2 if l1 is odd,

Yl,l1,p,q(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a+l1,p,q
D−3s− l

2
+ q

2 2q−l+
l1
2

+uπ1+ q
2
+

l1
2 (3s− q

2
+ p

2
)

3s+
l+|l−l1|

2
− 1

2
− q

2

×
ΓC

(
3s+ l− 1− p

2
− q

2

)
ΓC

(
3s+ 1

2
− q

2
+ u

)
ΓC

(
3s+ 1

2
− q

2
+ |l− 3

2
− p

2
|
)
ΓC

(
3s+ l− l1

2
− 1

2
− q

2

) if τ = Dp, q
2
, p ≥ 1,

a+l1,p,qD
−3s− l

2
+ q

2 2q−1−l+
l1
2

+uπ1+ q
2
+

l1
2 ΓC

(
3s+ 1

2
− q

2
+ u

)
(
3s+

l+|l−l1|
2

− 1
2
− q

2

)
ΓC

(
3s+ l− l1

2
− 1

2
− q

2

) if τ = β1 × β2.

Remarks: a) The factor Yl,l1,p,q(s) is of the form D−3s times a rational func-
tion in s.

b) For l = l1 we recover Theorem 4.4.1 of [66]. We point out that in our present
approach the number l1 (the GL2 weight) can be chosen independently of l (the
GSp4 weight), including the case of different parity.

c) In one of our later applications, the number D will be a fundamental discrim-
inant satisfying D ≡ 0 mod 4 or D ≡ 3 mod 4. Having the above theorem available
for the two cases of S in (132) assures that S can be chosen to be a half-integral
matrix.

Corollary 2.2.3. Let all hypotheses be as in Theorem 2.2.2. Let W# ∈
IW (s, χ, χ0, τ ) be the distinguished function defined in table ( 82). Then

(135) Z(s,W#, B) =
L(3s+ 1

2 , π̃ × τ̃)

L(6s+ 1, χ|R×)L(3s+ 1, τ ×AI(Λ)× χ|R×)
Y (s),

with
(136)

Y (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κp+1,p Yl,p+1,p,q(s) in Case A,

κl,p Yl,l,p,q(s) in Case B,

κl+1,p Yl,l+1,p,q(s) +
(
3s− p+ q

2

)
κl−1,p Yl,l−1,p,q(s) in Case C.

Here, the constants κ∗,p are defined in ( 80), and the factors Yl,∗,p,q(s) are defined
in Theorem 2.2.2.

Tables for archimedean factors. The archimedean Euler factors appearing in
(134) can be easily calculated via the archimedean local Langlands correspondence.
We omit the details and simply show the results in the following tables. For the

principal series case β1 × β2, the numbers p, q ∈ C are such that β1(a) = a
q+p
2 and

β2(a) = a
q−p
2 .

τ L(s, π × τ̃) ε(s, π × τ̃ , ψ−1)

Dp,μ, p ≥ 1, μ ∈ C ΓC

(
s− μ+ p

2
+ 1

2

)
ΓC

(
s− μ+ p

2
− 1

2

)
i2l+3p−3+|2l−3−p|

ΓC

(
s− μ+ l − 3

2
+ p

2

)
ΓC

(
s− μ+

∣∣l − 3
2
− p

2

∣∣)
β1 × β2 ΓC

(
s+ 1−q−p

2

)
ΓC

(
s+ 1−q+p

2

)
1

ΓC

(
s+ l − q+p+3

2

)
ΓC

(
s+ l − q−p+3

2

)
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The next table shows L- and ε-factors for τ ×AI(Λ)× χ|R× .

τ L(s, τ ×AI(Λ)× χ|R×) ε(s, τ ×AI(Λ)× χ|R× , ψ−1)

Dp,μ, p ≥ 1, μ ∈ C ΓC

(
s− μ+ p

2

)2
(−1)p+1

β1 × β2 ΓC

(
s− q+p

2

)
ΓC

(
s− q−p

2

)
−1

2.3. The global integral representation

Let F be an algebraic number field and AF its ring of adeles. Let L be a
quadratic field extension of F ; the extension L/F defines the unitary group G2.
The Eisenstein series E(h, s; f) entering into the global integral (142) below will be
defined from a section f in a global induced representation of G2(AF ). We therefore
start by discussing various models of such induced representations.

Global induced representations. Let (τ, Vτ ) be a cuspidal, automorphic repre-
sentation of GL2(AF ). Let χ0 be a character of L×\A×

L such that the restriction

of χ0 to A×
F concides with ωτ , the central character of τ . Then, as in (32) in the

local case, χ0 can be used to extend τ to a representation of M (2)(AF ), denoted
by χ0 × τ . Let χ be another character of L×\A×

L , considered as a character of

M (1)(AF ). This data defines a family of induced representations I(s, χ, χ0, τ ) of
G2(AF ) depending on a complex parameter s. The space of I(s, χ, χ0, τ ) consists
of functions ϕ : G2(AF ) → Vτ with the transformation property

ϕ(m1m2ng) = δP (m1m2)
s+1/2χ(m1)(χ0 × τ )(m2)ϕ(g)

for all m1 ∈ M (1)(AF ), m2 ∈ M (2)(AF ) and n ∈ N(AF ). Since the representation
τ is given as a space of automorphic forms, we may realize I(s, χ, χ0, τ ) as a space
of C-valued functions on G2(AF ). More precisely, to each ϕ as above we may attach
the function fϕ on G2(AF ) given by fϕ(g) = (ϕ(g))(1). Each function fϕ has the
property that GL2(AF ) � h �→ fϕ(hg) is an element of Vτ , for each g ∈ G2(AF ).
Let IC(s, χ, χ0, τ ) be the model of I(s, χ, χ0, τ ) thus obtained. A third model of the
same representation is obtained by attaching to f ∈ IC(s, χ, χ0, τ ) the function

(137) Wf (g) =

∫
F\AF

f
(⎡⎢⎢⎣

1
1 x

1
1

⎤⎥⎥⎦ g
)
ψ(cx)dx, g ∈ G2(AF ).

Here, c ∈ F× is a fixed element. The map f �→ Wf is injective since τ is cuspidal.
Let IW (s, χ, χ0, τ ) be the space of all functions Wf . Now write τ ∼= ⊗τv with local
representations τv of GL2(Fv). We also factor χ = ⊗χv and χ0 = ⊗χ0,v, where χv

and χ0,v are characters of
∏

w|v L
×
w . Then there are isomorphisms

(138)

I(s, χ, χ0, τ )
∼−−−−→ ⊗vI(s, χv, χ0,v, τv)

∼
⏐⏐� ⏐⏐�=

IC(s, χ, χ0, τ )
∼−−−−→ ⊗vI(s, χv, χ0,v, τv)

∼
⏐⏐� ⏐⏐�∼

IW (s, χ, χ0, τ )
∼−−−−→ ⊗vIW (s, χv, χ0,v, τv)
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Here, the local induced representation I(s, χv, χ0,v, τv) consists of functions taking
values in a model Vτv of τv; see Sect. 1.1 for the precise definition. Assume that
Vτv = W(τv, ψ

−c
v ) is the Whittaker model of Vτv with respect to the additive charac-

ter ψ−c
v . If we attach to each fv ∈ I(s, χv, χ0,v, τv) the function Wfv(g) = fv(g)(1),

then we obtain the model IW (s, χv, χ0,v, τv) of the same induced representation.
The bottom isomorphism in diagram (138) is such that if Wv ∈ IW (s, χv, χ0,v, τv)
are given, with the property that Wv

∣∣
G2(ov)

= 1 for almost all v, then the corre-

sponding element of IW (s, χ, χ0, τ ) is the function

(139) W (g) =
∏
v≤∞

Wv(gv), g = (gv)v ∈ G2(AF ).

The global integral and the basic identity. Now let a,b, c,d, S, L,Λ be as in
Sect. 2.1. Let (π, Vπ) be a cuspidal, automorphic representation of H(AF ) which
has a global Bessel model of type (S,Λ, ψ). Let further (τ, Vτ ) be a cuspidal,
automorphic representation of GL2(AF ), extended to a representation of M (2)(AF )
via a character χ0 of L×\A×

L . Define the character χ of L×\A×
L by

(140) χ(y) = Λ(ȳ)−1χ0(ȳ)
−1, y ∈ A×

L .

Let f(g, s) be an analytic family in IC(s, χ, χ0, τ ). For Re(s) large enough we can
form the Eisenstein series

(141) E(g, s; f) =
∑

γ∈P (F )\G2(F )

f(γg, s).

In fact, E(g, s; f) has a meromorphic continuation to the entire complex plane. In
[19] Furusawa studied integrals of the form

(142) Z(s, f, φ) =

∫
H(F )ZH(AF )\H(AF )

E(h, s; f)φ(h) dh,

where φ ∈ Vπ. Theorem (2.4) of [19], the “Basic Identity”, states that
(143)

Z(s, f, φ) = Z(s,Wf , Bφ) :=

∫
R(AF )\H(AF )

Wf (ηh, s)Bφ(h) dh, η as in (16),

where R(AF ) is the Bessel subgroup determined by (S,Λ, ψ), and Bφ is the Bessel
function corresponding to φ; see (109). The function Wf ( · , s) appearing in (143)
is the element of IW (s, χ, χ0, τ ) corresponding to f( · , s) ∈ IC(s, χ, χ0, τ ); see (137)
for the formula relating f and Wf .

The importance of the basic identity lies in the fact that the integral on the right
side of (143) is Eulerian. Namely, assume that f( · , s) corresponds to a pure tensor
⊗fv via the middle isomorphism in (138). Assume that Wv ∈ IW (s, χv, χ0,v, τv)
corresponds to fv ∈ I(s, χv, χ0,v, τv). Then

Wf (g, s) =
∏
v≤∞

Wv(gv, s), g = (gv)v ∈ G2(AF ),
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see (139). Assume further that the global Bessel function Bφ factorizes as in (110).
Then it follows from (143) that

(144) Z(s, f, φ) =
∏
v≤∞

Zv(s,Wv, Bv),

with the local zeta integrals

(145) Zv(s,Wv, Bv) =

∫
R(Fv)\H(Fv)

Wv(ηh, s)Bv(h) dh.

Furusawa has calculated the local integrals (145) in the case where all the data is
unramified. In our non-archimedean Theorem 2.2.1 we calculated these integrals
in the case where the GSp4 data is still unramified, but the GL2 data is arbitrary.
Here, we took for Wv the distinguished vector W# from Corollary 1.2.4. In our
archimedean Corollary 2.2.3 we calculated these integrals in the case where the
GSp4 data is a scalar minimal K-type lowest weight representation, and the GL2

data is arbitrary. Here, we took for Wv the distinguished vector W# defined in
table (82).

The global integral representation over Q. The important fact in the theory
outlined above is that the local functions Wv can be chosen such that the integrals
(145) are all non-zero. We have to make sure, however, that the data entering the
local theorems, in particular the characters χ, χ0 and Λ, fit into a global situation.
For simplicity, we assume from now on that the number field is F = Q (this,
however, is not essential).

Lemma 2.3.1. Let L be an imaginary quadratic field extension of Q. Let ω =
⊗ωp be a character of Q×\A×. Let l2 be an integer such that (−1)l2 = ω∞(−1).
Then there exists a character χ0 = ⊗χ0,v of L×\A×

L such that

i) the restriction of χ0 to A× coincides with ω, and
ii) χ0,∞(ζ) = ζl2 for all ζ ∈ S1.

Proof. Since ω is trivial on L× ∩ A× = Q×, we can extend ω to a character of
L×A× in such a way that ω

∣∣
L× = 1. Since S1 ∩ (L×A×) = {±1}, we can further

extend ω to a character of S1L×A× in such a way that ω(ζ) = ζl2 for all ζ ∈ S1.
For each finite place v of L we will choose a compact subgroup Uv of o×L,v such

that ω can be extended to S1L×A×(∏
v<∞ Uv

)
, with ω trivial on

∏
v<∞ Uv and

Uv = o
×
L,v for almost all v. Hence, the Uv should be chosen such that ω is trivial

on
(∏

v<∞ Uv

)
∩ S1L×A×. We consider the intersection

(146)
( ∏
v<∞

Uv

)
∩ S1L×A× =

( ∏
v<∞

Uv

)
∩ C×L×( ∏

p<∞
Z×
p

)
.

Let zax be an element of this intersection, where z ∈ C×, a ∈ L× and x ∈∏
p<∞ Z×

p . We have a ∈ L×∩
∏

v<∞ o
×
L,v = o

×
L , which is a finite set, say {a1, . . . , am}.

For i such that ai /∈ Q, choose a prime p such that ai /∈ Z×
p . Then choose a place v

lying above p, and choose Uv so small that ai /∈ UvZ
×
p . Then the intersection (146)

equals

(147)
( ∏
v<∞

Uv

)
∩ C×Q×( ∏

p<∞
Z×
p

)
.
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We can choose Uv even smaller, so that ω is trivial on this intersection. We can
therefore extend ω to a character of

(148) S1L×A×( ∏
v<∞

Uv

)
= C×L×( ∏

v<∞
Uv

)( ∏
p<∞

Z×
p

)
.

in such a way that ω is trivial on
∏

v<∞ Uv. The group (148) is of finite index in

C×L×(∏
v<∞ o

×
L,v

)
, and therefore of finite index in A×

L (using the finiteness of the

class number). By Pontrjagin duality, we can now extend ω to a character χ0 of
A×

L with the desired properties. �

We now explain the setup for the global integral representation. For simplicity
we will work over the rational numbers. We require the following ingredients.

• ψ =
∏

v ψv is a character of Q\A such that ψ∞(x) = e−2πix. Also, we
require that ψp has conductor Zp for all finite p. There is exactly one such
character ψ.

• Let D > 0 be such that −D is a fundamental discriminant, and define
a,b, c ∈ Q and the matrix S by

(149) S = S(−D) :=

[
a b/2

b/2 c

]
=

⎧⎪⎪⎨⎪⎪⎩
[
D/4

1

]
if D ≡ 0 mod 4,[

(1 +D)/4 1/2
1/2 1

]
if D ≡ 3 mod 4.

• Let L be the imaginary quadratic field Q(
√
−D). The unitary groups Gi

are defined with respect to the extension L/Q.
• Let π = ⊗πv be a cuspidal, automorphic representation of H(A) with
the following properties. The archimedean component π∞ is a (limit of)
discrete series representation with minimal K-type (l, l), where l ≥ 2,
and trivial central character. If v is a non-archimedean place, then πv is
unramified and has trivial central character.

• Let τ = ⊗τv be a cuspidal, automorphic representation of GL2(A) with
central character ωτ .

• Let χ0 be a character of L×\A×
L such that χ0

∣∣
A× = ωτ and χ0,∞(ζ) = ζl2

for ζ ∈ S1. Here, l2 is any integer of the same parity as the weights of τ .
Such a character exists by Lemma 2.3.1.

• Let Λ = ⊗Λv be a character of L×\A×
L such that Λ∞ = 1 and such that

Λv is unramified for all finite v. Hence, Λ is a character of the ideal class
group

(150)
(
L×C×(∏

v�∞
o
×
v

))∖
A×

L .

• Let χ be the character of A×
L defined by (140).

Let l1 be any weight occurring in τ∞. Let Ψ be the unique cusp form in the space
of τ that is a newform at all non-archimedean places and corresponds to a vector of
weight l1 at the archimedean place. We normalize Ψ such that the corresponding
Whittaker function

(151) WΨ(g) =

∫
Q\A

Ψ(

[
1 x

1

]
g)ψ(x) dx
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satisfies WΨ(

[
t+

1

]
) = 1, where t+ is the positive real number chosen in (75), con-

sidered as an idele with trivial non-archimedean components. Let Ψ be extended
to a function on G1(A) via Ψ(ag) = χ0(a)Ψ(g) for a ∈ A×

L , g ∈ GL2(A). Let us ex-
plicitly describe a section f|l1−l|,l,l2,l1(g, s) ∈ IC(s, χ, χ0, τ ). For a non-archimedean

place v, let τv have conductor pn and let Jv be the function on KG2
v = G2(ov)

defined by

(152) Jv(k) =

{
1 if k ∈ P (o)η0K

HΓ(Pn),

0 otherwise

(see (45) for the definition of η0). For n = 0 this is the characteristic function of
KG2

v . Define

J|l1−l|,l,l2,l1(k, s) = Φ#
|l1−l|,l,l2,l1(k∞, s)·

∏
v<∞

Jv(kv), where k = (kv)v ∈
∏
v

KG2
v ;

see (73). Finally, let

(153) f|l1−l|,l,l2,l1(g, s) = δP (m1m2)
s+ 1

2χ(m1)Ψ(m2)J|l1−l|,l,l2,l1(k, s)

for g = m1m2nk with m1 ∈ M (1)(A), m2 ∈ M (2)(A), n ∈ N(A), k ∈
∏

v K
G2
v .

It is easy to see that f = f|l1−l|,l,l2,l1 belongs to IC(s, χ, χ0, τ ) and that (Wf )v
corresponds to the vector in Corollary 1.2.4 if v is non-archimedean, and to the

vector W#
|l1−l|,l,l2,l1 given by (78) if v = ∞. In view of Theorem 2.2.1 and Corollary

2.2.3, the following important result is now immediate.

Theorem 2.3.2 (Global Integral Representation). Let ψ,D, S and π, τ, χ0, χ,Λ
be as above. Let f = f|l1−l|,l,l2,l1 be the section in IC(s, χ, χ0, τ ) defined above, and
φ = ⊗φv be a vector in the space of π such that φv is unramified for all finite v and
such that φ∞ is a vector of weight (−l,−l) in π∞. Then the global zeta integral
Z(s, f, φ) defined in ( 142) is given by
(154)

Z(s, f, φ) =
L(3s+ 1

2 , π̃ × τ̃)

L(6s+ 1, χ|A×)L(3s+ 1, τ ×AI(Λ)× χ|A×)
·Bφ(1)·Yl,l1,p,q(s)·

∏
v<∞

Yv(s),

with Bφ as in ( 109), with the factors Yv(s) for non-archimedean v given by Theorem
2.2.1, and with the archimedean factor Yl,l1,p,q(s) given by Theorem 2.2.2. In ( 154),
π̃ and τ̃ denote the contragredient of π and τ , respectively. The symbol AI(Λ) stands
for the GL2(A) representation attached to the character Λ of A×

L via automorphic
induction, and L(3s+1, τ ×AI(Λ)×χ|A×) is a standard L-factor for GL2×GL2×
GL1.

Next, we state a second version of the above theorem where we choose the
distinguished vector at all places, including the archimedean ones. Recall the Cases
A,B,C defined in (81). Let l2 be as in Theorem 1.5.1. The following result is also
an immediate consequence of Theorem 2.2.1 and Corollary 2.2.3 and will be key for
the functional equation.

Theorem 2.3.3. Let ψ,D, S and π, τ, χ0, χ,Λ be as above. Let Bv be the un-
ramified Bessel function given by formula ( 113) if v is non-archimedean, and let
Bv be the function defined in ( 116) if v is archimedean. Let W#

v ( · , s) be as in
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Corollary 1.2.4 if v is non-archimedean, and as in table ( 82) if v is archimedean.
Let

W#(g, s) =
∏
v

W#
v (gv, s), B(h) =

∏
v

Bv(hv),

for g = (gv)v ∈ G2(A) and h = (hv)v ∈ H(A). Then the global zeta integral
Z(s,W#, B) defined in ( 143) is given by

(155) Z(s,W#, B) =
L(3s+ 1

2 , π̃ × τ̃)

L(6s+ 1, χ|A×)L(3s+ 1, τ ×AI(Λ)× χ|A×)
Y (s),

where Y (s) =
∏

v Yv(s), a finite product, with the local factors given in Theorem
2.2.1 (non-archimedean case) and Corollary 2.2.3 (archimedean case).

2.4. The functional equation

In this section we prove that, in the setting of Theorem 2.3.3, the global L-
function L(s, π× τ ) satisfies the expected functional equation. We begin with some
local preparations.

The X factor. Assume that F is a non-archimedean local field of characteristic
zero, or F = R. Let τ, χ, χ0,Λ and π be as in Theorem 2.2.1 (non-archimedean
case) and Theorem 2.2.2 (archimedean case). We will calculate the function

X(s) = K(s)
L(6s+ 1, χ|F×)L(3s+ 1, τ ×AI(Λ)× χ|F×)

L(6s, χ|F×)L(3s, τ ×AI(Λ)× χ|F×)

× ε(6s, χ|F× , ψ−1) ε(3s, τ ×AI(Λ)× χ|F× , ψ−1)
Ŷ (−s)

Y (s)
,(156)

which will be relevant for the functional equation. Here, K(s) is the factor resulting
from the local intertwining operator, defined in (41) and explicitly given in Proposi-
tion 1.4.1 (non-archimedean case with n = 0), Theorem 1.4.2 (non-archimedean case
with n > 0) and Theorem 1.5.1 (archimedean case). The factor Y (s) results from
the local zeta integral calculation and is given in Theorem 2.2.1 (non-archimedean

case) and Corollary 2.2.3 (archimedean case). The factor Ŷ (s) is similar to Y (s),
but with the data (χ, χ0, τ ) replaced by (χ̄−1, χχ̄χ0, χτ ).

Lemma 2.4.1. Assume that F is p-adic. Let δ be the valuation of the discrimi-
nant of L/F if L/F is a ramified field extension, and δ = 0 otherwise. Let X(s) be
as in ( 156). Let pn be the conductor of τ . Assume that the restriction of Λ to F×

is trivial1, so that χ
∣∣
F× = ω−1

τ .

i) If τ = β1 × β2 with unramified characters β1 and β2 of F×, then

(157) X(s) = χ(�)δχL/F (−1)q−6δs.

ii) If L/F is an unramified field extension or L = F ⊕ F , then

(158) X(s) = ωτ (c
2/d)ε(1/2, τ̃ , ψ−1)4q−12ns.

Proof. i) By Proposition 1.4.1,

X(s) = q−δ ε(6s, χ|F× , ψ−1) ε(3s, τ ×AI(Λ)× χ|F× , ψ−1)
Ŷ (−s)

Y (s)
.

1If the GSp4(F ) representation π has a (S,Λ, ψ) Bessel model, this means that the central

character of π is trivial.
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For unramified τ we have Y (s) = 1, and the character χ|F× is unramified. Hence

X(s) = q−δ ε(3s, χτ ×AI(Λ), ψ−1) = χ(�)δχL/F (−1)q−6δs.

ii) In the case of τ being a spherical representation, (158) follows from (157). We
may therefore assume that n > 0. Using standard properties of the ε-factors, we
can check that

ε(6s, χ|F× , ψ−1) ε(3s, τ ×AI(Λ)× χ|F× , ψ−1)

equals

χL/F (�)nq−(6s−1)(n+a(ωτ ))− a(ωτ )
2 ε(

1

2
, χ|F× , ψ−1) ε(

1

2
, τ̃ , ψ−1).

Now the lemma follows directly from Theorem 1.4.2 and Theorem 2.2.1. We note
here that, in the case under consideration, we have n > 0 and

(
L
p

)
= ±1, so that

Y (s) = L(6s+ 1, χ|F×) . �

Lemma 2.4.2. Assume that F = R. Let X(s) be as in ( 156). Assume that π
is the lowest weight representation of PGSp4(R) with scalar minimal K-type (l, l),
where l ≥ 2. We assume that Λ = 1, so that χ

∣∣
R× = ω−1

τ . Then

X(s) = −ωτ (−D)−1 ε(s, π̃ × τ̃ , ψ−1)D6s.

Proof. The ingredients in the definition (156) of the X-factor are all known;
see Theorem 1.5.1 for the factor K(s), Corollary 2.2.3 for the factor Y (s), and
the tables in Sect. 2.2 for the L- and ε-factors of τ × AI(Λ) × χ|R× and π̃ × τ̃ .
The asserted formula is then obtained by going through the various possibilities for
the type of representation τ and the parity of l, substituting the ingredients and
simplifying. This is where Lemma 1.3.8 is used. We omit the details. �

The global functional equation. We can now prove the global functional equa-
tion for many of the L-functions L(s, π×τ ), provided that the GSp4 representation
π is of the type considered before and has an appropriate global Bessel model. Once
we complete the transfer to GL4, we will be able to remove all restrictions on the
GL2 representation τ ; see Theorem 5.2.2.

Theorem 2.4.3 (Functional Equation). Assume that the positive integer D is
such that −D is the discriminant of the number field L := Q(

√
−D). Let S(−D)

be as in ( 149). Let Λ = ⊗Λw be a character of L×\A×
L such that Λ∞ = 1 and such

that Λv is unramified for all finite places v. Let π = ⊗πv be a cuspidal, automorphic
representation of GSp4(A) with the following properties.

i) π has trivial central character;
ii) There exists an integer l ≥ 2 such that π∞ is the (limit of) discrete series

representation of PGSp4(R) with scalar minimal K-type (l, l);
iii) πp is unramified for all primes p;
iv) π has a global Bessel model of type (S(−D),Λ, ψ) (see Sect. 2.1).

Let τ = ⊗τv be a cuspidal, automorphic representation of GL2(A) such that τp
is unramified for the primes p dividing D. Then L(s, π × τ ) has meromorphic
continuation to all of C and satisfies the functional equation

(159) L(s, π × τ ) = ε(s, π × τ )L(1− s, π̃ × τ̃ ).
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Here, ε(s, π×τ ) =
∏

v ε(s, πv×τv, ψ
−1
v ), and the local ε-factors are the ones attached

to πv × τv via the local Langlands correspondence.

Remark: The hypothesis on τ will be removed later; see Theorem 5.2.2 for a
statement where τ is any cuspidal representation on any GLn.

Proof. Note that D = −d. Let the characters χ0, χ and Λ of L×\A×
L be as in

Theorem 2.3.3. Let f = ⊗fv ∈ IC(s, χ, χ0, τ ) be the function corresponding to the
distinguished vector W# = ⊗W#

v ; see the diagram (138). Let E(g, s; f) be the
Eisenstein series defined in (141). By the general theory of Eisenstein series,

(160) E(g, s; f) = E(g,−s;M(s)f),

where M(s) is the global intertwining operator given by a formula similar to (39)
in the local case. Note that the Eisenstein series on the right hand side of (160)
is defined with respect to the data (χ̄−1, χχ̄χ0, χτ ) instead of (χ, χ0, τ ); see (40).
By our uniqueness results Corollary 1.2.4 and Corollary 1.3.7, and the explicit
archimedean calculations resulting in Theorem 1.5.1,

(161) M(s)f( · , s, χ, χ0, τ ) = K(s)f( · ,−s, χ̄−1, χχ̄χ0, χτ ),

where K(s) =
∏

v Kv(s), and the local functions Kv(s) are the same as in (41).
Hence

(162) E(g, s; f) = K(s)E(g,−s; f̂),

where f̂ abbreviates f( · ,−s, χ̄−1, χχ̄χ0, χτ ). For the global zeta integrals defined
in (142) it follows that

(163) Z(s, f, φ) = K(s)Z(−s, f̂ , φ).

By the basic identity (143),

(164) Z(s,W#, Bφ) = K(s)Z(−s, Ŵ#, Bφ),

where Ŵ# abbreviates W#( · ,−s, χ̄−1, χχ̄χ0, χτ ). Now we let Bφ be the distin-
guished Bessel vector as in Theorem 2.3.3, and apply this theorem to both sides of
(164). The result is

L(3s+ 1
2 , π̃ × τ̃)

L(6s+ 1, χ|A×)L(3s+ 1, τ ×AI(Λ)× χ|A×)
Y (s)

= K(s)
L(−3s+ 1

2 , π̃ × χ̃τ)

L(−6s+ 1, χ−1|A×)L(−3s+ 1, χτ ×AI(Λ)× χ−1|A×)
Ŷ (−s).

(165)

Note that Λ(ζ) = χ0(ζ)
−1χ(ζ̄)−1, and this character does not change under (χ, χ0) �→

(χ̄−1, χχ̄χ0). However, since Λ−1 = Λ̄, we haveAI(Λ) = AI(Λ̄) = AI(Λ−1). Using
χτ ∼= τ̃ and the global functional equations for characters and for representations
of GL2 ×GL2 (see [38]), we can rewrite (165) as

L(3s+ 1
2 , π̃ × τ̃ )

L(−3s+ 1
2 , π̃ × τ )

= K(s)
L(6s+ 1, χ|A×)L(3s+ 1, τ ×AI(Λ)× χ|A×)

L(6s, χ|A×)L(3s, τ ×AI(Λ)× χ|A×)

× ε(6s, χ|A×) ε(3s, τ ×AI(Λ)× χ|A×)
Ŷ (−s)

Y (s)
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=
∏
v

Xv(s),(166)

with local quantities Xv(s) as in (156). These quantities were calculated in Lemmas
2.4.1 and 2.4.2. For a prime p let δp be the p-valuation of D, so that D =

∏
p p

δp .
Let np be the conductor of τp. Let S be the finite set of primes p such that τp is not
unramified. By hypothesis, if p ∈ S, then p � D, i.e., Lp/Qp is not a ramified field
extension. Using Lemmas 2.4.1 and 2.4.2, and the fact that ε(s, π̃p × τ̃p, ψ

−1
p ) =

ε(s, τ̃p, ψ
−1
p )4 for all finite places p, a straightforward calculation shows that∏

v

Xv(s) = ε(3s+ 1/2, π̃ × τ̃).

Replacing s by 1
3s−

1
6 and τ by τ̃ , and observing that π is self-contragredient, we

obtain the claim of the theorem. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 3

The pullback formula

In this section, we prove a second integral representation for our L-function.
This is achieved via the “pullback formula”, which expresses the (relatively com-
plicated) Eisenstein series E(g, s; f), defined in (141), as the inner product of an
automorphic form in the space of τ with the pullback of a simple Siegel-type Eisen-
stein series on G3.

We will first prove a local version of the pullback formula. This is the key
technical ingredient behind the (global) pullback formula, which, when coupled with
the results of the previous sections, will lead to the second integral representation.
This will be crucial for proving the entireness of the GSp4×GL2 L-function L(s, π×
τ ).

3.1. Local sections: non-archimedean case

Let F be p-adic. We use the notation from Theorem 1.2.3. In addition, we will
assume that Λ

∣∣
F× = 1. We define the principal congruence subgroup

(167) Γ(3)(Pn) = {g ∈ G3(o) | g ≡ 1 mod Pn},
and consider the subgroup

(168) N1(o) = ι(

[
1 o

1

]
, 1)

(see (27) for the definition of the embedding ι). The group N1(o) is normalized by
the group

R̃(o) =
{
ι(

[
1

λ

]
, h) | h ∈ H(o), λ = μ2(h)

}
.

As before, let n be such that pn is the conductor of τ . Define the congruence
subgroup C(Pn) of G3(o) by

(169) C(Pn) := R̃(o)N1(o)Γ
(3)(Pn).

Note that this is really a group, since Γ(3)(Pn) is normal in the maximal compact
subgroup G3(o).

We note here an alternate description of C(Pn) that will be useful: It consists
of precisely the matrices g ∈ G3(o) that satisfy

(170) g ≡

⎡⎢⎢⎢⎢⎢⎢⎣
o o o o

o o o o

1 o

o o o o

o o o o

o×

⎤⎥⎥⎥⎥⎥⎥⎦ (mod Pn).

63
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We define χ̃ to be the character on P12 (see (25)) given by

(171) χ̃(m(A, v)n) = χ(v−1 det(A)).

For s ∈ C, we form the induced representation

(172) I(χ̃, s) = Ind
G3(F )
P12(F )

(
χ̃ δs12

)
(see (26)), consisting of smooth functions Ξ on G3(F ) such that

(173) Ξ(n0m(A, v)g, s) = |v|−9(s+ 1
2 )|N(detA)|3(s+ 1

2 )χ(v−1 detA) Ξ(g, s)

for n0 ∈ N12(F ), m(A, v) ∈ M12(F ), g ∈ G3(F ). For any t ∈ L, set

Ω(t) :=

⎡⎢⎢⎢⎢⎢⎢⎣
1

1
1

α t 1
ᾱ 1
t̄ 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where α is the element defined in (15). We define

IL =

⎧⎪⎪⎨⎪⎪⎩
{�r | 0 ≤ r ≤ n} if

(
L
p

)
= −1,

{(�r1 , �r2) | 0 ≤ r1, r2 ≤ n} if
(
L
p

)
= 1,

{�r
L | 0 ≤ r ≤ 2n} if

(
L
p

)
= 0.

From Lemma 3.1.1 below it follows that there exists, for each t ∈ IL, a unique
well-defined section Υt ∈ I(χ̃, s) satisfying all of the following,

i) Υt(Ω(t), s) = 1,
ii) Υt(gk, s) = Υt(g, s) for all g ∈ G3(F ), k ∈ C(Pn),
iii) Υt(g, s) = 0 if g /∈ P12(F )Ω(t)C(Pn).

We define Υ ∈ I(χ̃, s) by

(174) Υ =
∑
t∈IL

Υt.

Lemma 3.1.1. Let A ∈ GL3(F ), v ∈ F×, n0 ∈ N12(F ) and t ∈ oL be such that

Ω(t)−1n0m(A, v)Ω(t) ∈ C(Pn).

Then

v−1 det(A) ∈ (1 +Pn) ∩ o
×
L .

Proof. Since the statement is trivial for n = 0, we will assume n > 0. Let

P = n0m(A, v) =

[
A B
0 v tĀ−1

]
with A =

⎡⎣a1 a2 a3
a4 a5 a6
a7 a8 a9

⎤⎦ and B =

⎡⎣b1 b2 b3
b4 b5 b6
b7 b8 b9

⎤⎦.
Note that A−1B is self-adjoint; however we won’t use this. Suppose M :=
Ω(t)−1n0m(A, v)Ω(t) ∈ C(Pn). This implies that A ∈ GL3(oL), v ∈ o× and
n0 ∈ N12(o). Let us set d := det(A) ∈ o

×
L . We will use the description given in

(170) for a matrix in C(Pn). Since the (1, 6), (2, 6), (3, 4), (3, 5) entries of M are
in Pn, we obtain b3, b6, b7, b8 ∈ Pn. Looking at the (3, 2), (3, 3) entries of M , we
obtain a8 ∈ Pn and a9 ∈ 1 +Pn. Looking at the (5, 6) entry of M and using the
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fact that v, d ∈ o
×
L we deduce that a2a7 ∈ Pn. Calculating the determinant of A

along the third row, we obtain

d = a7(a2a6−a3a5)−a8(a1a6−a3a4)+a9(a1a5−a2a4) ≡ a1a5−a2a4−a7a3a5 (mod P
n).

Since d ∈ o
×
L , it follows that either a2 or a5 is a unit. Set

g2 :=

[
a2 + αb1 b1

−ᾱ(a2 + αb1)− αā2
v
d

−ᾱb1 − ā2
v
d

]
, g5 :=

[
a5 + αb4 b4

α(−a5 − αb4 + ā5
v
d
) −αb4 + ā5

v
d

]
.

Since g2 and g5 are submatrices of M mod Pn, they have entries in o+Pn. The
following simple fact,

(175) If x ∈ o+P
n, then x ≡ x̄ (mod (α− ᾱ)Pn),

applied to the entries of g2 resp. g5, leads to the desired conclusion. �

3.2. The local pullback formula: non-archimedean case

In this subsection, we will prove the local pullback formula in the non-archimedean
case. Recall the congruence subgroups defined in (28) – (31). We note that

(176) Υ(g · ι(k1, k2), s) = Υ(g, s)

for any pair of elements k1 ∈ K(1)(Pn), k2 ∈ KHΓ(Pn), satisfying μ1(k1) = μ2(k2).
This follows from the right-invariance of Υ by C(Pn). Let Q be the element

(177) Q =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1
1 0

0 −1
0 1 −1
1 0

1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ G3(F ).

For g =

[
a b
c d

]
and m2(g) as in (20),

(178) Q · ι(g,m2(g)) ·Q−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
a −b b

1
−c d c

d c
μ1(g)

b a

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the matrix on the right side lies in P12. It follows that if g ∈ G1(o), then for
any h ∈ G3(F ),

(179) Υ(Q · ι(g,m2(g))h, s) = χ(μ1(g)
−1 det(g))Υ(Qh, s).

Let W (0) be the local newform for τ , as in Corollary 1.2.4. For each 0 ≤ m ≤ n,
let the elements ηm be as in (45). The main object of study for the local pullback
formula is the following local zeta integral,

(180) Z(g, s; g2) = q(n)

∫
U(1,1)(F )

Υ(Q · ι(h, g2), s)W (0)(gh)χ−1(det(h)) dh,

where g ∈ G1(F ), g2 ∈ U(2, 2)(F ) and q(n) is a normalizing factor equal to [G1(o) :
K(0)(Pn)]−1. The above integral converges absolutely for Re(s) sufficiently large.
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Theorem 3.2.1 (Non-archimedean Local Pullback Formula). Let 0 ≤ m ≤ n.
Then, for Re(s) sufficiently large,

Z(g, s; ηm) =

{
0 if 0 < m ≤ n,

T (s)W (0)(g) if m = 0,

where the factor T (s) satisfies

T (s)Z(s,W#, B) =

⎧⎪⎪⎨⎪⎪⎩
L(3s+ 1

2 , π̃ × τ̃)

L(6s+ 1, χ|F×)L(6s+ 2, χL/Fχ|F×)L(6s+ 3, χ|F×)
if n = 0,

L(3s+ 1
2 , π̃ × τ̃) if n > 0.

Here, Z(s,W#, B) is the local integral computed in Theorem 2.2.1.

The proof of Theorem 3.2.1 will require the following lemmas.

Lemma 3.2.2. As a function of h, the quantity Υ(Q · ι(h, ηm), s) depends only

on the double coset K
(1)
1 (Pn)hK

(1)
1 (Pn).

Proof. The right invariance by K
(1)
1 (Pn) follows easily from the right invariance

of Υ by C(Pn). On the other hand, given k ∈ K
(1)
1 (Pn), we have

Υ(Q · ι(kh, ηm), s) = Υ(Q · ι(kh,m2(k)m2(k)
−1ηm), s)

= Υ(Q · ι(h,m2(k)
−1ηm), s)

= Υ(Q · ι(h, ηmη−1
m m2(k)

−1ηm), s)

= Υ(Q · ι(h, ηm), s)

Note that we have used (176), (179) and the fact that η−1
m m2(k)ηm ∈ KHΓ(Pn).

�

Next, we note down the Cartan decompositions for U(1, 1)(F ). These follow
directly from the Cartan decomposition for GL2(F ). Suppose

(
L
p

)
= −1. Then

(181) U(1, 1;L)(F ) =
⊔
t≥0

K
(1)
1 (1)AtK

(1)
1 (1), where At =

[
�t 0
0 �−t

]
.

Suppose
(
L
p

)
= 1. Then

(182)

U(1, 1;L)(F ) =
⊔

t1≥t2

K
(1)
1 (1)At1,t2K

(1)
1 (1), where At1,t2 =

[
�t1

L �̄−t2
L

�t2
L �̄−t1

L

]
.

Suppose
(
L
p

)
= 0. Then

(183) U(1, 1;L)(F ) =
⊔
t≥0

K
(1)
1 (1)AtK

(1)
1 (1), where At =

[
�t

L

�̄−t
L

]
.

Lemma 3.2.3. For each 0 ≤ m ≤ n, there exists a function Lm(s), depending on
the local data (F , L, χ0, χ, τ) but independent of g, such that, for Re(s) sufficiently
large,

Z(g, s; ηm) = Lm(s)W (0)(g)

for all g ∈ G1(F ).
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Proof. We will only give the proof for the cases
(
L
p

)
= −1 or 0; the proof for the

split case
(
L
p

)
= 1 is obtained by replacing At by At1,t2 everywhere below. Recall

that Vτ is the space of Whittaker functions on GL2(F ) realizing the representation
τ with respect to the character ψ−c. W (0)(g) is (up to a constant) the unique
function in Vτ that is right-invariant by K(1)(pn). Observe that, by (181) resp.
(183), we can write
(184)

q(n)−1Z(g, s; ηm) =
∑
t≥0

∫
K

(1)
1 (1)AtK

(1)
1 (1)

Υ(Q · ι(h, ηm), s)W (0)(gh)χ−1(deth) dh.

For g ∈ G1(F ), denote

(185) It(g; s) =

∫
K

(1)
1 (1)AtK

(1)
1 (1)

Υ(Q · ι(h, ηm), s)W (0)(gh)χ−1(deth) dh.

By writing K
(1)
1 (1)AtK

(1)
1 (1) as a finite disjoint union

⊔
γ γK

(1)
1 (Pn) and using

Lemma 3.2.2, we see that It is a finite sum of right translates of W (0). Thus,
It lies in Vτ for each t. In fact, we will show that It is a multiple of W (0). Let

k ∈ K
(1)
1 (Pn). By a change of variables, and using Lemma 3.2.2, we see that

(186) It(gk, s) = It(g, s).

Next, let l ∈ o× and put kl =

[
1

l

]
. Then

It(gkl, s) =

∫
K

(1)
1 (1)AtK

(1)
1 (1)

Υ(Q · ι(h, ηm), s)W (0)(gklh)χ
−1(deth) dh

=

∫
K

(1)
1 (1)AtK

(1)
1 (1)

Υ(Q · ι(k−1
l hkl,m2(kl)

−1(m2(kl)ηmm2(kl)
−1)m2(kl)), s)

×W (0)(gh)χ−1(deth) dh

=

∫
K

(1)
1 (1)AtK

(1)
1 (1)

Υ(Q · ι(h, ηm), s)W (0)(gh)χ−1(deth) dh.(187)

In the last step above we used (179) and the fact that m2(kl)ηmm2(kl)
−1 = ηm.

The above calculations show that

(188) It(gkl, s) = It(g, s)

for all l ∈ o×. From this and (186), we conclude that It(gk, s) = It(g, s) for all
k ∈ K(1)(Pn). The fact that the conductor of τ equals pn implies that, for each s,
the function It(·, s) is a multiple of W (0). Now the assertion follows immediately
from (184) and (185). �

Proof of Theorem 3.2.1. Let us first prove that Z(g, s; ηm) = 0 for 0 < m ≤ n.
We assume n > 0 as otherwise the assertion is vacuous. Recall from Lemma 3.2.3
that, for each s, the function Z(g, s; ηm) restricted to GL2(F ) lies in Vτ . Using
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η−1
m m2(k)ηm ∈ KHΓ(Pn) for k ∈ K(1)(pn−m), and a similar calculation as in
(187), we get

Z(gk, s; ηm) = Z(g, s; ηm)

for any k ∈ K(1)(pn−m) ∩ SL2(o). Together with (188) it follows that Z(g, s; ηm)
is right invariant under K(1)(pn−m). However, because the conductor of τ is n, Vτ

does not contain any non-zero function that is right invariant under K(1)(pn−m)
for m > 0. This proves that Z(g, s; ηm) = 0 whenever m > 0.

For the rest of this proof, we assume that m = 0, so ηm = η. Our task
is to evaluate Z(g, s; η). We first consider the case

(
L
p

)
= −1. For l ∈ L, we

use l̃ to denote the element

[
l

l̄−1

]
. It is not hard to prove that the following

decomposition holds,

U(1, 1)(F ) =
⊔

l∈o
×
L
/(1+P)

K
(1)
1 (P)l̃K

(1)
1 (P) �

⊔
l∈o

×
L
/(1+P)

K
(1)
1 (P)wl̃K

(1)
1 (P)

�
⊔
t>0

l∈o
×
L
/(1+P)

K
(1)
1 (P)At l̃K

(1)
1 (P) �

⊔
t>0

l∈o
×
L
/(1+P)

K
(1)
1 (P)Atwl̃K

(1)
1 (P)

�
⊔
t>0

l∈o
×
L /(1+P)

K
(1)
1 (P)wAt l̃K

(1)
1 (P) �

⊔
t>0

l∈o
×
L /(1+P)

K
(1)
1 (P)wAtwl̃K

(1)
1 (P),

(189)

where w =

[
1

−1

]
. We have the following facts about the support of Υ,

Q · ι(W, η) /∈ P12(F )Ω(u)C(P), for W ∈ {Atwl̃, wAt l̃, wAtwl̃ | t ∈ Z>0}, u ∈ IL,

(190)

Q · ι(wl̃, η) /∈ P12(F )Ω(u)C(P), for u ∈ IL.

(191)

The statements (190) and (191) are proved by direct computations involving the rel-
evant 6×6 matrices; we omit the details. From the above statements, Lemma 3.2.3,
and (189), we see that

Z(g, s; η) = q(n)
W (0)(g)

W (0)(1)

∑
t≥0

∑
l∈o

×
L /(1+P)

∫
K

(1)
1 (P)At l̃K

(1)
1 (P)

Υ(Q·ι(At l̃, η), s)W
(0)(h)χ−1(deth) dh.

Now, we have the non-disjoint double coset decomposition
(192)⊔
l∈o

×
L
/(1+P)

K
(1)
1 (P)At l̃K

(1)
1 (P) =

n⊔
k=1

⊔
l∈o

×
L
/(1+Pn)

⋃
y∈p/pn

v(y)=k

K
(1)
1 (Pn)At

[
1
y 1

]
l̃K

(1)
1 (Pn).
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Again, by explicit calculation, one verifies that Q · ι(At

[
1
y 1

]
l̃, η) does not belong

to any of the sets P12(F )ΩrC(Pn) if v(y) < n. It follows that

Z(g, s; η) = q(n)
W (0)(g)

W (0)(1)

∑
t≥0

∑
l∈o

×
L

/(1+Pn)

Υ(Q · ι(At l̃, η), s)

∫
K

(1)
1 (Pn)Atl̃K

(1)
1 (Pn)

W (0)(h)χ−1(deth) dh

= q(n)
W (0)(g)

W (0)(1)

∑
t≥0

∑
l∈o

×
L

/(1+Pn)

Υ(Q · ι(At l̃, η), s)χ(l
−1

)

∫
K

(1)
1 (Pn)AtK

(1)
1 (Pn)

W
(0)

(h) dh

= T (s)W (0)(g),

where
(193)

T (s) =
q(n)

W (0)(1)

∑
t≥0

∑
l∈o

×
L
/(1+Pn)

Υ(Q · ι(At l̃, η), s)χ(l
−1)

∫
K

(1)
1 (Pn)AtK

(1)
1 (Pn)

W (0)(h) dh.

To evaluate T (s), we note from the theory of Hecke operators on GL2(F ) that

(194)

∫
K

(1)
1 (Pn)AtK

(1)
1 (Pn)

τ (h)W (0) dh = vol(K
(1)
1 (Pn))λtW

(0),

where λt depends on t and τ . Using familiar double coset decompositions, the
eigenvalues λt can easily be calculated. The result is as follows.

• If τ = β1 × β2 with unramified characters β1, β2, then λt = γt − γt−1

where

γt = qtωτ (�)−t β1(�)2t+1 − β2(�)2t+1

β1(�)− β2(�)

for t ≥ 0, and γt = 0 for t < 0 (for β1 = β2, the fraction is to be interpreted
as (2t+ 1)β1(�)2t).

• If τ is an unramified twist of the Steinberg representation, then λt = 1 for
all t ≥ 0.

• If τ = β1 × β2 is a principal series representation with an unramified
character β1 and a ramified character β2, then λt = qtβ1(�)−tβ2(�)t for
all t ≥ 0.

• If τ is supercuspidal, or a ramified twist of the Steinberg representation,
or an irreducible principal series representation induced from two ramified
characters β1, β2, then λ0 = 1 and λt = 0 for t > 0.

We substitute the above formulas for λt in the integral inside (193). Then, we use

the definition of Υ to compute the term Υ(Q · ι(At l̃, η), s); it turns out that

(195) Υ(Q · ι(Atl̃, η), s) = q−6t(s+ 1
2 )χ(l)χ(�t).

After making these substitutions, it is easy to evaluate T (s) for the possible types of
τ listed above simply by summing the geometric series. This proves Theorem 3.2.1
in the inert case. The proofs for the cases

(
L
p

)
= 0 or 1 are very similar to the

above. The details are left to the reader. �
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3.3. Local sections: archimedean case

In this subsection, F = R and L = C. Let τ be as in Sect. 1.3, and let l1 be any
of the weights occurring in τ . Let χ0 be the character of C× such that χ0

∣∣
R× = ωτ

and χ0(ζ) = ζ−l1 for ζ ∈ C×, |ζ| = 1. Let χ be the character of C× given by
χ(ζ) = χ0(ζ)

−1.

We define I(χ̃, s) in the present (archimedean) case in exactly the same manner
as it was defined in the non-archimedean case (see (172), (173)). In this subsection,
we will construct a special element of I(χ̃, s). Let η0 be the matrix defined in (74).
For θ ∈ R, let

r(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
∈ SO(2),

and

(196) r×(θ) =

⎡⎢⎢⎢⎢⎢⎢⎣
cos(θ) sin(θ)

1 0
cos(θ) sin(θ)
− sin(θ) cos(θ)

0 1
− sin(θ) cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ KG3
∞ ,

where KG3
∞ is the maximal compact subgroup of G+

3 (R) = {g ∈ G3(R) |μ3(g) > 0}.
Explicitly,

KG3
∞ =

{[ A B
−B A

]
| A,B ∈ Mat3,3(C),

tĀB = tB̄A, tĀA+ tB̄B = 1
}
.

Also, we let

(197) wQ =

⎡⎢⎢⎢⎢⎢⎢⎣
1

1
−1

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎦ , s1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1

1
1

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

(198) t∞ = wQ · ι(1, η0) = ι(r(π/2), s1η0).

Let l be a positive integer (in our application we will consider a discrete series
representation of PGSp4(R) with scalar minimal K-type (l, l)). To ease notation,

we will denote the function Φ#
|l−l1|,l,−l1,l1

defined in (73) by J∞. Explicitly,

(199) J∞ =

{
il−l1 b̂l1−l(âd̂− b̂ĉ)l−l1D−l if l ≤ l1,

il1−lĉl−l1D−l if l ≥ l1,

where D(g) = det(J(g, i2)), and the functions â, b̂, ĉ, d̂ are defined before Lemma
1.3.3. Note that J∞(η0) = 1.

By the Iwasawa decomposition, G3(R) = P12(R)K
G3
∞ . The following lemma

provides a criterion for when functions on KG3
∞ can be extented to nice sections in

I(χ̃, s).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3.3. LOCAL SECTIONS: ARCHIMEDEAN CASE 71

Lemma 3.3.1. Suppose Υ∞ is an analytic function on KG3
∞ that satisfies the

following conditions.

i) For all A ∈ U(3) and all g ∈ KG3
∞ ,

(200) Υ∞(

[
A

A

]
g) = det(A)−l1 Υ∞(g).

ii) For all θ ∈ R and all k ∈ KG2
∞ ,

(201) Υ∞(r×(θ) t∞ ι(1, k)) = Υ∞(r×(θ) t∞)J∞(η0k).

iii) For all ϕ ∈ R and all g ∈ KG3
∞ ,

(202) Υ∞(g ι(r(ϕ), 1)) = e−il1ϕ Υ∞(g).

Then Υ∞ can be extended in a unique way to an analytic function on G3(R) satis-
fying the following conditions.

i)

(203) Υ∞ ∈ I(χ̃, s).

ii) For all ζ ∈ S1 and all h ∈ U(1, 1)(R)

(204) Υ∞(Q · ι(
[
ζ
ζ

]
h, η0), s) = ζ−l1 Υ∞(Q · ι(h, η0), s).

iii) We have the following equation for any k ∈ KG2
∞ and h ∈ U(1, 1)(R):

(205) Υ∞(Q · ι(h, η0k), s) = Υ∞(Q · ι(h, η0), s)J∞(η0k).

iv) For all ϕ ∈ R and all g ∈ G3(R),

(206) Υ∞(g ι(r(ϕ), 1), s) = e−il1ϕ Υ∞(g, s).

v) For all ϕ ∈ R and all h ∈ U(1, 1)(R),

(207) Υ∞(Q · ι(r(ϕ)h, η0), s) = e−il1ϕ Υ∞(Q · ι(h, η0), s).

Proof. Using the Iwasawa decomposition, it is easy to see that Υ∞ can be ex-
tended in a unique way to an analytic function on G3(R) satisfying condition (203).
Note that condition (200) is tailored so that the extension is well-defined. Next,
another appeal to the Iwasawa decomposition and the fact that Υ∞ ∈ I(χ̃, s) shows
that (202) implies (206). We now prove (205). We have the identity

(208) Q · ι(
[√

a √
a
−1

]
, 1) = pakawQ

with
(209)

pa =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1
1+a

1
1 1

1+a

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
a

1+a

1 √
1

1+a √
1+a
a

1 √
1 + a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ P12(R)
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and

(210) ka =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
a

1+a
−1√
1+a

1 0√
a

1+a
−1√
1+a

1√
1+a

√
a

1+a

0 1
1√
1+a

√
a

1+a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ KG3

∞ .

On the other hand, observe that ka = r×(θ) for θ ranging in an open subset of
R/2πZ; so condition (201) is equivalent to

(211) Υ∞(kawQ · ι(1, η0k), s) = Υ∞(kawQ · ι(1, η0), s)J∞(η0k).

Using (178) and (208), properties of J∞ imply that condition (205) holds for all

h of the form r(ϕ)

[√
a √

a
−1

]
. A similar calculation shows that (205) holds for

all elements h of the form

[
ζ
ζ

]
r(ϕ)

[√
a √

a
−1

]
. In combination with (206) it

follows that (205) holds for all h ∈ U(1, 1)(R). Finally, (204) and (207) can be
verified using (179), (205), and the properties of J∞. �

We define the functions xij on KG3
∞ by

(212) xij(g) = ij-coefficient of J( tḡg̃, I), g ∈ KG3
∞ ,

where

g̃ =

[
A −B
B A

]
for g =

[
A B
−B A

]
.

Any polynomial expression in the functions xij and their complex conjugates is
KG3

∞ -finite. We further define

X1 :=
(
(1− |x33|2)x11 + x13x31x33

)
x13 +

(
(1− |x33|2)x12 + x13x32x33

)
x23,

X2 :=
(
(1− |x33|2)x21 + x23x31x33

)
x13 +

(
(1− |x33|2)x22 + x23x32x33

)
x23,

Y1 :=
(
(1− |x33|2)x11 + x13x31x33

)
x31 +

(
(1− |x33|2)x21 + x23x31x33

)
x32,

Y2 :=
(
(1− |x33|2)x12 + x13x32x33

)
x31 +

(
(1− |x33|2)x22 + x23x32x33

)
x32.

Let Υ0 be the function on KG3
∞ given by

(213) Υ0 =

{ (
x31Y2 − x32Y1

)l1−l
if l ≤ l1,(

x13X2 − x23X1

)l−l1 if l ≥ l1.

By explicit calculation, one verifies that

(214) Υ0(r×(θ) ι(1, s1η0)) = (−1)l1−l sin(2θ)4|l−l1|.

Lemma 3.3.2. Let Υ0 be as in ( 213). Then the function Υ∞(g) :=
Υ0(g) det(J(g, i2))

−l1 is KG3
∞ -finite and satisfies the conditions from Lemma 3.3.1.

Moreover,

(215) Υ∞(r×(θ) t∞) = (−i)l1 (−1)l sin(2θ)4|l−l1|
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for all θ ∈ R. If Υ∞( · , s) denotes the extension of Υ∞ to a function on all of
G3(R), then
(216)

Υ∞(Qι(

[√
a √

a
−1

]
, η0), s) = 24|l−l1|(−i)l1 (−1)l

(√
a+

√
a
−1)q−6(s+ 1

2 )−4|l−l1|

for all a > 0. Here, q ∈ C is such that ωτ (a) = aq for a > 0.

Proof. From the construction, it is a routine calculation to verify that Υ∞ satisfies
the conditions (200) and (201). Property (202) follows from the right transforma-
tion properties of the functions xij . Property (215) follows easily from (214). To
prove (216), note that, by (208),

Qι(

[√
a √

a
−1

]
, 1) = par×(θ) ι(

[
1

−1

]
, s1) = par×(θ) t∞ ι(1, η−1

0 )

with pa as in (209) and θ ∈ R such that cos(θ) =
√

a
1+a and sin(θ) = −1√

1+a
. This

leads to the claimed result in a straightforward manner. �

3.4. The local pullback formula: archimedean case

In this section, we will prove the local pullback formula in the archimedean
case. Let Υ∞( · , s) be the element of I(χ̃, s) constructed in Lemma 3.3.2. For any
g2 ∈ U(2, 2)(F ), g ∈ G1(F ) and s ∈ C let

(217) Z∞(g, s; g2) =

∫
U(1,1)(R)

Υ∞(Q · ι(h, g2), s)Wl1(gh)χ(det(h))
−1 dh,

which converges absolutely for Re(s) sufficiently large. Here, Wl1 is as in (76). For
simplicity, we will assume that c = 1.

Theorem 3.4.1 (Archimedean Local Pullback Formula). Let l be a positive
integer, and let l1 be any of the weights occurring in τ . Then, for Re(s) sufficiently
large,

(218) Z∞(g, s; η0) = T∞(s)Wl1(g),

where, up to a non-zero constant (depending on τ∞ and l and l1, but not on s),

T∞(s) = 2−6s Γ(3s+ 1− q
2 + 2|l1 − l| − p

2 ) Γ(3s+ 1− q
2 + 2|l1 − l|+ p

2 )

Γ(3s+ 3
2 − q

2 + 2|l1 − l| − l1
2 ) Γ(3s+

3
2 − q

2 + 2|l1 − l|+ l1
2 )

.

Here, p and q are as in ( 57).

Proof. Recall that we have chosen t+ ∈ R>0 and normalized the function Wl1

such that Wl1(

[
t+

1

]
) = 1; see (77). By changing the value of p slightly and using

the holomorphy of both sides of (218) in p, we may work under the additional
assumption that Wl1(1) �= 0. We have

Z∞(g, s; η0) =

∫
U(1,1)(R)

Υ∞(Q · ι(h, η0), s)Wl1(gh)χ
−1(det(h)) dh
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(204)
=

∫
U(1,1)(R)/Z

Υ∞(Q · ι(h, η0), s)Wl1(gh)χ
−1(det(h)) dh

=

∫
SL(2,R)

F1(h)Wl1(gh) dh,

where the function F1 on SL2(R) is defined by F1(h) := Υ∞(Qι(h, η0), s). Hence
Z∞(g, s; η0) is in the space of τ . It follows from (207) that Z∞(g, s; η0) is a vector
of weight l1. By irreducibility, there is (up to multiples) only one vector of weight
l1 in the space of τ , namely Wl1 . It follows that Z∞(g, s; η0) is a multiple of Wl1(g).
By an easy calculation, in terms of the Iwasawa decomposition,

F1(

[
1 b
1

][√
a √

a−1

]
r(θ)) = (−i)l1e−il1θ

( (1 + a)2 + b2

a

) q
2
−3(s+ 1

2
)−2|l1−l|( b− i(a+ 1)

|b− i(a+ 1)|

)−l1
.

So we get that Z∞(g, s; η0) = T∞(s)Wl1(g), where

T∞(s)Wl1(1) = Z∞(1, s; η0)

= (−i)l1
∞∫

−∞

∞∫
0

a−1
( (1 + a)2 + b2

a

) q
2−3(s+ 1

2 )−2|l1−l|( b− i(a+ 1)

|b− i(a+ 1)|
)−l1

e2πib Wl1(

[√
a √

a
−1

]
) d×a db.

For brevity, we make the following substitutions,

s′ =
q

2
− 3(s+

1

2
)− 2|l1 − l|,

s1 = −s′ − l1
2
, s2 = −s′ − 1

2
− p

2
, s3 = −s′ − 1

2
+

p

2
, s4 = −s′ +

l1
2
.

By the integral formula from [31, (6.11)]), the first formula in Sect. 7.5.2 of [58],
and Lemma 3.4.2 below,

Z∞(1, s; η0) =
(2π)−2s′

Γ(s1)Γ(s4)

∞∫
0

∞∫
0

a−s′−1ts1−1(t + 1)s4−1e−2π(a+1)(1+2t) Wl1
(

[√
a √

a−1

]
) d×a dt

= a+ 2q+2π−s′+1+
q
2

Γ(s2)Γ(s3)

Γ(s1)2Γ(s4)

∞∫
0

ts1−1(t + 1)s4−1e−2π(1+2t)
2F1

(
s2, s3, s1;−t

)
dt

= a+ 2q+1−p−2s2π1+
q
2
Γ(s2)Γ(s3)

Γ(s1)Γ(s4)
W l1

2
,
p
2

(4π)

= 4
s′+1

π
Γ(s2)Γ(s3)

Γ(s1)Γ(s4)
Wl1

(1),

and so

T∞(s) = 4s
′+1π

Γ(s2)Γ(s3)

Γ(s1)Γ(s4)
.

This concludes the proof. �

Lemma 3.4.2. For complex numbers s1, s2, s3 with Re(s1) > 0,
∞∫
0

ts1−1(t+1)s2+s3−s1e−4πt
2F1

(
s2, s3, s1;−t

)
dt = Γ(s1)(4π)

− s2+s3+1
2 e2π W s2+s3+1

2
−s1,

s3−s2
2

(4π).
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Proof. This follows by first applying the third equation of [28, (9.131, 1)], followed
by the integral formula [28, (7.522, 1)]. �

3.5. The global pullback formula

In the following we use the global set-up of Theorem 2.3.2. We set the number l2
to be −l1. We will hence work with the section f = f|l1−l|,l,−l1,l1 in IC(s, χ, χ0, τ ).
It gives rise to the Eisenstein series E(g, s; f) via (141). In this section we will
prove the global pullback formula, which expresses the Eisenstein series E(g, s; f)
on G2(A) in terms of the pullback of a simpler Eisenstein series on G3(A).

Let χ̃ be the character on P12(A) defined by χ̃(m(A, v)n) = χ(v−1 det(A)); see
(171) for the corresponding local definition. For s ∈ C, we form the global induced
representation

(219) I(χ̃, s) = Ind
G3(A)
P12(A)

(χ̃δs12)

(see (26)), consisting of functions Υ on G3(A) such that

(220) Υ(m(A, v)ng, s) = |v|−9(s+ 1
2 ) |N(detA)|3(s+ 1

2 ) χ(v−1 det(A))Υ(g, s)

for n ∈ N12(A), m(A, v) ∈ M12(A), g ∈ G3(A). Now, let Υ = ⊗vΥv ∈ I(χ̃, s),
where Υv is defined by (174) in the non-archimedean case and defined as in Lemma
3.3.2 in the archimedean case. We define the Eisenstein series EΥ(g, s) on G3(A)
by

(221) EΥ(g, s) =
∑

γ∈P12(Q)\G3(Q)

Υ(γg, s)

for Re(s) sufficiently large, and by analytic continuation elsewhere. Furthermore,
let

(222) T (s) =
∏
v

Tv(s),

where the local functions Tv(s) are defined by Theorem 3.2.1 in the non-archimedean
case and by Theorem 3.4.1 in the archimedean case. Note that though (222) makes
sense for Re(s) sufficiently large; it is clear from the definitions of Tv(s) that T (s)
can be analytically continued to a meromorphic function on the entire complex
plane (it is effectively just a ratio of global L-functions).

Theorem 3.5.1 (Global Pullback Formula). Let Ψ be the cusp form in the
space of τ corresponding to a local newform at all non-archimedean places, a vector
of weight l1 at the archimedean place, and with the same normalization for the
corresponding Whittaker function WΨ as in ( 151). Let Ψ be extended to a function
on G1(A) via Ψ(ag) = χ0(a)Ψ(g) for a ∈ A×

L , g ∈ GL2(A). For an element
g ∈ G2(A), let U[g](A) denote the subset of G1(A) consisting of all elements h such
that μ2(g) = μ1(h). Then we have the following identity of meromorphic functions,
(223)

χ(μ2(g))

∫
U(1,1)(Q)\U[g](A)

EΥ(ι(h, g), s)Ψ(h)χ(det(h))−1 dh = T (s)E(g, s; f),

where f = f|l1−l|,l,−l1,l1 as in Theorem 2.3.2.
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Proof. Let E(g, s) denote the left hand side above. Note that EΥ(ι(g, h), s) is
slowly increasing away from its poles, while Ψ(h) is rapidly decreasing. Thus E(g, s)
converges uniformly and absolutely for s ∈ C away from the poles of the Eisenstein
series EΥ. Hence, it is enough to prove the theorem for Re(s) sufficiently large.
Since EΥ is left invariant by G3(Q),

(224) E(g, s) = χ(μ2(g))

∫
U(1,1)(Q)\U[g](A)

EΥ(Q · ι(h, g), s)Ψ(h)χ(det(h))−1 dh.

Let V (Q) denote the subgroup of G3(Q) defined by

V (Q) = {Q ι(g1, g2)Q
−1 | gi ∈ Gi(Q), μ1(g1) = μ2(g2)}.

Recall from [82, Prop. 2.4] that |P12(Q)\G3(Q)/V (Q)| = 2. We take the identity
element as one of the double coset representatives, and denote the other one by v.
Thus

G3(Q) = P12(Q)V (Q) � P12(Q)vV (Q).

Let R1 ⊂ V (Q) and R2 ⊂ vV (Q) be corresponding sets of coset representatives,
such that

P12(Q)V (Q) =
⊔

s∈R1

P12(Q)s, P12(Q)vV (Q) =
⊔

s∈R2

P12(Q)s.

For the Eisenstein series defined in (221), we can write EΥ(h, s) = E1
Υ(h, s) +

E2
Υ(h, s), where

E1
Υ(h, s) =

∑
γ∈R1

Υ(γh, s), E2
Υ(h, s) =

∑
γ∈R2

Υ(γh, s).

Now, by [82, 22.9] the orbit of v is ‘negligible’ for our integral, that is,∫
U(1,1)(Q)\U[g](A)

E2
Υ(Q · ι(h, g), s)Ψ(h)χ(det(h))−1 dh = 0

for all g ∈ G2(A). It follows that

(225) E(g, s) = χ(μ2(g))

∫
U(1,1)(Q)\U[g](A)

E1
Υ(Q · ι(h, g), s)Ψ(h)χ(det(h))−1 dh.

On the other hand, by [82, Prop. 2.7], we can take R1 to be the following set,

(226) R1 = {Q ι(1,m2(ξ)β)Q
−1 | ξ ∈ U(1, 1)(Q), β ∈ P (Q)\G2(Q)},

where m2(ξ) is as in (20), and where the β are chosen to have μ2(β) = 1. For Re(s)
large, we therefore have

E1
Υ(Q · ι(h, g), s) =

∑
ξ∈U(1,1)(Q)

β∈P (Q)\G2(Q)

Υ(Q · ι(h,m2(ξ)βg), s).

Substituting into (225) and using that Q ι(ξ,m2(ξ))Q
−1 ∈ P12(Q) by (178), we

have

E(g, s) = χ(μ2(g))

∫
U(1,1)(Q)\U[g](A)

∑
ξ∈U(1,1)(Q)

β∈P (Q)\G2(Q)

Υ(Q · ι(h,m2(ξ)βg), s)Ψ(h)χ(det(h))−1 dh
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=
∑

β∈P (Q)\G2(Q)

χ(μ2(g))

∫
U[g](A)

Υ(Q · ι(h, βg), s)Ψ(h)χ(det(h))−1 dh.

Let

(227) ΥΨ(g, s) = χ(μ2(g))

∫
U[g](A)

Υ(Q · ι(h, g), s)Ψ(h)χ(det(h))−1 dh.

If we can show that, for each g ∈ G2(Q),

(228) ΥΨ(g, s) = T (s)f(g, s),

the proof will be complete. By [82], we know that the integral above converges
absolutely and uniformly on compact sets for Re(s) large. We are going to evaluate
the above integral for such s. For a finite place p such that τp has conductor pn,
note that

G2(Qp) =
n⊔

m=0

P (Qp)ηmKHΓ(Pn)

by Proposition 1.2.1. For k ∈ KHΓ(Pn), we may write k = m2(

[
1 0
0 λ

]
)k′, where

λ = μ2(k) and μ2(k
′) = 1. Using the fact that both sides of (228) are invariant

under the right action on g by elements kp ∈ KHΓ(Pn) satisfying μ2(kp) = 1, and
the above observations, it follows that in order to prove our theorem, it is enough
to prove (228) for g ∈ G2(A) of the form

g = m1(a)m2(b)nκ k∞,

where mi ∈ M (i)(A), n ∈ N(A), k∞ ∈ KG2
∞ , and κ = (κv)v ∈

∏
v K

G2
v satisfies

• κv ∈ {η0, · · · ηn} if v = p and τp has conductor pn, n > 0,
• κv = η0 if v = ∞,
• κv = 1 otherwise.

For such g, we calculate

ΥΨ(g, s) = χ(μ1(b))

∫
U[m2(b)](A)

Υ(Q · ι(h,m1(a)m2(b)nκk∞), s)Ψ(h)χ(det(h))−1 dh

(178)
= |μ1(b)|−3(s+ 1

2
)

∫
U[m2(b)](A)

Υ(Q · ι(b−1h,m1(a)nκk∞), s)Ψ(bb−1h)χ(det(b−1h))−1 dh

(205)
= |μ1(b)|−3(s+ 1

2
)J∞(η0k∞)

∫
U(1,1)(A)

Υ(Q · ι(h,m1(a)nκ), s)Ψ(bh)χ(det(h))−1 dh

= χ(a)|N(a)μ1(b)
−1|3(s+

1
2
)J∞(η0k∞)

∫
U(1,1)(A)

Υ(Q · ι(h, κ), s)Ψ(bh)χ(det(h))−1 dh.

Using the Whittaker expansion

(229) Ψ(g) =
∑
λ∈Q×

WΨ(

[
λ 0
0 1

]
g),

we have

(230)

∫
U(1,1)(A)

Υ(Q · ι(h, κ), s)Ψ(bh)χ(det(h))−1 dh =
∑
λ∈Q×

Z(

[
λ 0
0 1

]
b, s;κ),
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where for g ∈ G1(A), g2 ∈ U(2, 2)(A),

Z(g, s; g2) =

∫
U(1,1)(A)

Υ(Q · ι(h, g2), s)WΨ(gh)χ(det(h))
−1 dh.

Note that the uniqueness of the Whittaker function implies Z(g, s;κ) =∏
v Zv(gv, s, κv), where the local zeta integral Zv(gv, s, κv) is defined by

Zv(gv, s, κv) =

∫
U(1,1)(Qv)

Υ(Q · ι(h, κv), s)W
(0)(gvh)χv(det(h))

−1 dh;

at the archimedean place we understand W (0) = Wl1 . Hence, by Theorems 3.2.1
and 3.4.1,
(231)

ΥΨ(g, s) = χ(a)|N(a)μ1(b)
−1|3(s+1/2)T (s)Ψ(b)J∞(η0k∞, s)

∏
p<∞

τp ramified

Jp(κp),

where for a finite place p with τp of conductor pn, n > 0,

(232) Jp(κp) =

{
1 if κp = η0,

0 otherwise.

This proves (228) and hence completes the proof of the theorem. �

Remark 3.5.2. Pullback formulas in the spirit of Theorem 3.5.1 as a method
to express complicated Eisenstein series on lower rank groups in terms of simpler
Eisenstein series on higher rank groups have a long history. Garrett [21] used
pullback formulas for Eisenstein series on symplectic groups to study the triple
product L-function, as well as to establish the algebraicity of certain ratios of inner
products of Siegel modular forms. Pullback formulas for Eisenstein series on unitary
groups were first proved in a classical setting by Shimura [82]. Unfortunately,
Shimura only considers certain special types of Eisenstein series in his work, which
do not include ours except in the very specific case when τ is unramified principal
series at all finite places and holomorphic discrete series at infinity.

3.6. The second global integral representation

In Theorem 2.3.2 we supplied a global integral representation for L(s, π̃ × τ̃).
Using Theorem 3.5.1, we can modify it into a second integral representation that
is more suitable for certain purposes. Let
(233)

R(s) =
L(3s+ 1, τ ×AI(Λ)× χ|F×)

L(6s+ 2, χL/Fχ|F×)L(6s+ 3, χ|F×) · T (s) · Yl,l1,p,q(s) ·
∏

v<∞ Yv(s)
,

where T (s) is defined by (222), the factors Yv(s) for non-archimedean v are given
by Theorem 2.2.1, and the archimedean factor Yl,l1,p,q(s) is given by Theorem 2.2.2.
Note that R(s) has an obvious Euler product R(s) =

∏
v Rv(s), and that Rv(s) = 1

for all finite places v where τv is unramified.
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Recall the Eisenstein series EΥ(g, s) defined in (221). We define the normalized
Eisenstein series

(234) E∗
Υ(g, s) = L(6s+ 1, χ|A×)L(6s+ 2, χL/Fχ|A×)L(6s+ 3, χ|A×)EΥ(g, s).

Let ZH and ZG1
denote respectively the centers of H = GSp4 and G1 = GU(1, 1).

Given any g ∈ G1 we define H[g] to be the subgroup of H consisting of elements
h ∈ H with μ2(h) = μ1(g). From Theorem 2.3.2 and Theorem 3.5.1 we get the
following result.

Theorem 3.6.1. Let φ = ⊗φv be a vector in the space of π such that φv is
unramified for all finite v and such that φ∞ is a vector of weight (−l,−l) in π∞.
Let Ψ be as in Theorem 3.5.1. The following meromorphic functions are all equal,

i) R(s)−1Bφ(1)L(3s+
1
2
, π̃ × τ̃)

ii)

∫
ZH (A)H(Q)\H(A)

φ(h)χ(μ2(h))

∫
U(1,1)(Q)\U[h](A)

E∗
Υ(ι(g, h), s)Ψ(g)χ(det(g))−1 dg dh,

iii)

∫
ZG1

(A)G1(Q)\G1(A)

Ψ(g)χ
( μ1(g)

det(g)

) ∫
Sp4(Q)\H[g](A)

E∗
Υ(ι(g, h), s))φ(h) dh dg.

For future reference, we record the following result about the poles of E∗
Υ(g, s).

Proposition 3.6.2. Assume that the number q defined in ( 57) is zero. Then
E∗

Υ(g, s) has no poles in the region 0 ≤ Re(s) ≤ 1
4 except possibly a simple pole at

the point s = 1
6 ; this pole can exist only if ωτ = 1.

Proof. First, note that the Eisenstein series E∗
Υ(g, s) on GU(3, 3) has a pole at s0

if and only if its restriction to U(3, 3), which is an Eisenstein series on U(3, 3), has a
pole at s = s0. Now the proof of the main Theorem of [85] shows exactly what we
want. However, the statement there is a little ambiguous and seems to also allow
for a possible simple pole at s = 0, in addition to the one at s = 1

6 . So we sketch
the proof of holomorphy at s = 0 here for completeness. Let Iv(χ, 0) be as defined
in [85]; this space is completely reducible at each non-archimedean inert place v
(it is the direct sum of two irreducible representations). Now, we may choose any
one of these irreducible components and work through the proof exactly as in [85].

�
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CHAPTER 4

Holomorphy of global L-functions for GSp4 ×GL2

In this section we will prove that the global L-function L(s, π× τ ) appearing in
Theorem 2.4.3 is entire. Our main tools are the global integral representation Theo-
rem 3.6.1 and Ichino’s regularized Siegel-Weil formula for unitary groups, Theorem
4.1 of [35].

4.1. Preliminary considerations

Our goal is to prove the following theorem.

Theorem 4.1.1 (Holomorphy for GSp4 × GL2 ). Let π = ⊗πv be a cuspidal,
automorphic representation of GSp4(A) with the properties enumerated in Theo-
rem 2.4.3 and such that π is not a Saito-Kurokawa lift. Let τ = ⊗τv be a cuspidal,
automorphic representation of GL2(A) such that τp is unramified for the primes p
dividing D. Then L(s, π × τ ) is an entire function.

The proof will be completed in Section 4.3 below. To begin with, note that τ
may be twisted by an unramified Hecke character of the form | · |t to make sure
that ωτ is of finite order. Such a twist will merely shift the argument of the L-
function, because of the equation L(s, π× τ × | · |t) = L(s+ t, π× τ ). It is therefore
sufficient to prove Theorem 4.1.1 under the following assumption, which we will
make throughout this section.

(235) The central character ωτ of τ is of finite order.

In particular, this means that the number q defined in (57) is zero. Since ε-factors
never have any zeros or poles, it follows from the functional equation Theorem 2.4.3
that in order to prove Theorem 4.1.1, it is enough to prove that L(s, π × τ ) has no
poles in the region Re(s) ≥ 1

2 .

Remark: Recall that the hypothesis that τp is unramified for the primes p di-
viding D was necessary for Theorem 2.4.3. This is the only reason for this hypoth-
esis in Theorem 4.1.1; the following arguments work for general τ . The restriction
on τ will be removed in Theorem 5.2.2.

Let Lf (s, π × τ ) be the finite part of L(s, π × τ ), i.e.,

Lf (s, π × τ ) =
∏
p<∞

Lp(s, πp × τp).

Lemma 4.1.2. The Dirichlet series defining Lf (s, π × τ ) converges absolutely
for Re(s) > 5

4 .

Proof. In fact, the Dirichlet series converges absolutely for Re(s) > 71
64 . This

follows directly from the global temperedness of π due to Weissauer [90] and the

81
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best known bound towards the Ramanujan conjecture for cusp forms on GL2 due
to Kim-Sarnak [42]. �

As a consequence, we get the following.

Lemma 4.1.3. The completed L-function L(s, π× τ ) has no poles in the region
Re(s) > 5

4 .

Proof. In view of Lemma 4.1.2, we only have to show that L∞(s, π × τ ) has no
poles in that region. In fact it turns out that L∞(s, π×τ ) has no poles in the region
Re(s) > 1. To see this, first note that q, μ are equal to zero by our assumption on
ωτ . Next, by the unitarizability of τ∞, it follows that p is a non-negative integer
when τ∞ is discrete series (or limit of discrete series) and p ∈ iR ∪ (−1, 1) if τ∞ is
principal series. Also, we have l ≥ 2. Now the holomorphy of L∞(s, π × τ ) in the
desired right-half plane follows from the tables following Corollary 2.2.3. �

We will now use the second integral representation to reduce the possible set
of poles to at most one point.

Proposition 4.1.4. L(s, π × τ ) has no poles in the region Re(s) ≥ 1
2 except

possibly a simple pole at the point s = 1. This pole can exist only if ωτ = 1.

Proof. In Theorem 3.6.1, the functions Ψ, Υ, χ, R(s) all depend on a choice of an
integer l1 such that τ has a vector of weight l1. We now make such a choice. If τ∞ is
a principal series representation, then put l1 = 0 or 1 (exactly one of these weights
occurs in τ ). If τ∞ is a discrete series (or a limit of discrete series) representation,
then put l1 = p+ 1; hence, l1 is the lowest weight of τ∞.

With this choice, we can check by an explicit calculation that the function R(s)
defined in (233) has no poles in the region 0 ≤ Re(s) ≤ 1

4 . Indeed, the only possible
pole in that region can come from R∞(s), and so it boils down to checking that
the function T∞(s) defined in Theorem 3.4.1 and the function Yl,l1,p,q(s) defined in
Theorem 2.2.2 are non-zero when 0 ≤ Re(s) ≤ 1

4 . It is easy to verify that this is
true with our choice of l1.

On the other hand, by Theorem 3.6.2, the only possible pole of E∗
Υ(g, s) in the

region 0 ≤ Re(s) ≤ 1
4 is at s = 1

6 ; this pole can occur only if ωτ = 1. The result
now follows from Theorem 3.6.1 and Lemma 4.1.3. �

4.2. Eisenstein series and Weil representations

In view of Proposition 4.1.4, we will now assume that ωτ = 1, and that the
integer l1 used in the definition of Υ∞ is equal to p + 1 in the discrete series
case, and 0 or 1 otherwise. By abuse of notation, we continue to use EΥ(g, s) to
denote its restriction to U(3, 3)(A). Indeed, this restricted function is an Eisenstein

series on U(3, 3)(A). For brevity, we will use G′
3 to denote U(3, 3). Let KG′

3

denote the standard maximal compact subgroup of G′
3(A). Let I(χ, s) be the set

of holomorphic vectors in the global induced representation defined analogously to
I(χ̃, s) as in (219), except that we are now dealing with functions on U(3, 3) rather
than GU(3, 3). In other words I(χ, s) consists of the sections f (s) on G′

3(A) such
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that

(236) f (s)(m(A, 1)ng, s) = |N(detA)|3(s+ 1
2 ) χ(det(A)) f (s)(g, s)

for all g ∈ G′
3(A), and so that f (s) is holomorphic (in the sense of [35, p. 251]). In

particular, any such section can be written as a finite linear combination of standard
sections with holomorphic coefficients. A key example of a standard section is
simply the restriction of the previously defined Υ(g, s) to U(3, 3).

Recall that φ = ⊗φv is a vector in the space of π such that φv is unramified
for all finite v and such that φ∞ is a vector of weight (−l,−l) in π∞. We have the
following lemma.

Lemma 4.2.1. Suppose that the Eisenstein series EΥ(g, s) on U(3, 3)(A) has
the property that for all g1 ∈ U(1, 1)(A), we have

(237)

∫
Sp4(Q)\Sp4(A)

Ress= 1
6
EΥ(ι(g1, h1), s))φ(h1) dh1 = 0.

Then L(s, π × τ ) is holomorphic at s = 1.

Proof. By Theorem 3.6.1, the fact that R(s) has no pole at s = 1
6 , and the fact

that

L(6s+ 1, χ|A×)L(6s+ 2, χL/F χ|A×)L(6s+ 3, χ|A×)

is finite and non-zero at s = 1
6 , it follows that if∫

Sp4(Q)\H[g](A)

Ress= 1
6
EΥ(ι(g, h), s))φ(h) dh = 0 for all g ∈ G1(A),

then L(s, π× τ ) is holomorphic at s = 1. Suppose EΥ(g, s) has the property (237).
If g ∈ G1(A) with μ1(g) = m, we can write m = λzk with λ ∈ Q×, z ∈ R+,
k ∈

∏
p<∞ Z×

p . It follows that we can write

g =

[
1
λ

]
g1

[
z1/2

z1/2

][
1
k

]
with g1 ∈ U(1, 1)(A). A similar decomposition holds for h with μ2(h) = m. Thus

EΥ(ι(g, h), s))φ(h) = EΥ(ι(g1, h1), s))φ(h1)

with g1, h1 belonging to U(1, 1)(A), Sp4(A) respectively. The lemma follows. �

We will reinterpret the condition of the lemma in terms of Weil representations
and theta liftings. Let (V,Q) be a non-degenerate Hermitian space over L of di-
mension 4. We identify Q with a Hermitian matrix of size 4. Let U(V ) be the
unitary group of V ; thus

U(V )(Q) = {g ∈ GL4(L) | tḡQg = Q}.

Let χ be as above. Fix an additive character ψ as before. As described in [35],
there is a Weil representation ωQ = ωQ,ψ,χ of G′

3(A) × U(V )(A) acting on the
Schwartz space S(V 3(A)). The explicit formulas for the action can be found in [35,
p. 246].
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Let s0 = 1
6 . Let S(V

3(A)) denote the space of KG′
3-finite vectors in S(V 3(A)).

Write Π(V ) for the image of the G′
3(A) intertwining map from S(V 3(A)) to I(χ, s0)

given by

ϕ �→ f (s0)
ϕ ,

where f
(s0)
ϕ (g) = (ωQ(g)ϕ)(0). We can extend f

(s0)
ϕ to a standard section f

(s)
ϕ ∈

I(χ, s) via

f (s)
ϕ (g, s) = |N(detA)|3(s−s0) f (s0)

ϕ (g),

where we use the Iwasawa decomposition to write g = m(A, 1)nk withA ∈ GL3(AL),

n in the unipotent radical of the Siegel parabolic subgroup, and k ∈ KG′
3 .

Next we deal with the local picture. Suppose that (V (v),Q(v)) is a non-
degenerate Hermitian space over Lv of dimension 4. Then we have the local Weil
representation ωQv

= ωQv,ψv ,χv
of G′

3(Qv) × U(V (v))(Qv) acting on the Schwartz

space S((V (v))3). We define R(V (v)) to be the image of the G′
3(Qv) intertwining

map from S((V (v))3) to Iv(χv, s0) given by

ϕ �→ f (s0)
ϕ ,

where f
(s0)
ϕ (g) = (ωQv

(g)ϕ)(0). The span of the various subspaces R(V (v)) of
Iv(χv, s0) as V (v) ranges over the various inequivalent non-degenerate Hermitian
spaces over Lv of dimension 4 is well understood. The non-archimedean case is
treated in [48] while the archimedean case is treated in [54]. For instance, the
following result [48, Thm. 1.2] describes the case when v is non-archimedean and
Lv is a field.

Theorem 4.2.2 (Kudla–Sweet). Suppose that v is non-archimedean and Lv is

a field. Let V
(v)
1 and V

(v)
2 be the two inequivalent non-degenerate Hermitian vector

spaces over Lv of dimension 4. Then R(V
(v)
1 ) and R(V

(v)
2 ) are distinct maximal

submodules of Iv(χv, s0), so that

Iv(χv, s0) = R(V
(v)
1 ) +R(V

(v)
2 ).

In the case when v is non-archimedean and Lv = Fv ⊕ Fv, a similar result
is provided by [48, Thm. 1.3], while the case v = ∞ is dealt with in [54]. Now,
let C = {V (v)} be a collection, over all places v of Q, of local non-degenerate
Hermitian spaces over Lv of dimension 4. Whenever v is non-archimedean and Lv

is a field, there are two inequivalent choices for V (v). Each of these spaces has
an isotropic vector [48, Lemma 5.2]. If v is non-archimedean and Lv = Fv ⊕ Fv,
then the “Galois” automorphism is given by (x1, x2) �→ (x2, x1). In this case the
resulting “norm” map from Lv to Fv is surjective. So there is only one isometry
class for V (v) and the “unitary” group of V (v) is isomorphic to GL4(Fv). Indeed,
up to isometry, the space V (v) is explicitly given by V (v) = F 4

v ⊕ F 4
v with (a, b) =

[ta1 · b2, ta2 · b1] where a = (a1, a2), b = (b1, b2). Finally, if v = ∞, there are 5
such V (v), corresponding to spaces of signature (p, q) with p+ q = 4. For any such
collection C as above, let Π(C) be the representation space defined by

Π(C) = ⊗vR(V (v)).

The upshot of the local results from [48] and [54] is that the natural map from
⊕CΠ(C) to I(χ, s0) is surjective; here the sum ranges over all inequivalent collections
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C as above. Let A(G′
3) denote the space of automorphic forms over G′

3(A). Define
A−1 to be the G′

3(A) intertwining map from I(χ, s0) to A(G′
3) given by

f (s0) �−→ Ress=s0Ef(s)(g, s).

We note here (see [35, p. 252]) that the residue of the Eisenstein series at some
point s0 only depends on the section at s0, so the above map is indeed well defined.

Next, for any local Hermitian space V (v) as above, with v non-archimedean, let

V
(v)
0 denote the complementary space, which is defined to be the space of dimension

2 over Lv in the same Witt class as V (v). Note that such a space exists because (by
our comments above) V (v) always has an isotropic vector if v is non-archimedean.

The subspace R(V
(v)
0 ) of Iv(χv,−s0) is defined similarly as above. It turns out (see

[35], [48]) that for any non-archimedean place v, the restriction of the intertwining

operator maps R(V (v)) onto R(V
(v)
0 ). This identifies R(V

(v)
0 ) as a quotient of

R(V (v)); in fact it is the unique irreducible quotient of R(V (v)). Moreover, if f (s0)

is a factorizable section, and the local section at a non-archimedean place v lies in

the kernel of the above map from R(V (v)) to R(V
(v)
0 ), then A−1(f

(s0)) = 0. This
follows from [35, Lemma 6.1]; the lemma only states the result for the case that
Lv is a field, but the same proof also works for the split case using the local results
from [48, Sect. 7].

From the above discussion, we conclude that the map A−1 factors through the
quotient

I∞(χ∞, s0)⊗ (⊕Π(C′)) ,

where C′ = {V (v)
0 } runs over all inequivalent collections of local Hermitian spaces

V
(v)
0 of dimension 2 over Lv with v ranging over the non-archimedean places. (Com-

pare [46, Prop. 4.2] for the analogous result in the symplectic case.) But we can
say more. For any global Hermitian space V0 of dimension 2 over L, let Π(V0) be
the image of the G′

3(A) intertwining map from S(V 3
0 (A)) to I(χ,−s0). Note that

(at each place, and hence globally) Π(V0) is naturally a quotient (via the intertwin-
ing operator) of Π(V ), where V is the complementary global Hermitian space of
dimension 4 over L, obtained by adding a split space of dimension 2 to V0.

Proposition 4.2.3. The map A−1 from I(χ, s0) to A(G′
3) factors through

⊕V0
Π(V0) where V0 runs through all global Hermitian spaces of dimension 2 over

L.

Proof. We have already seen that the map A−1 factors through the quotient

I∞(χ∞, s0) ⊗ (⊕Π(C′)) , where C′ = {V (v)
0 } runs over all inequivalent collections

of local Hermitian spaces V
(v)
0 of dimension 2 over Lv with v ranging over the

non-archimedean places of Q. The argument of [84, p. 363–364] takes care of the

archimedean place, and we get that A−1 factors through ⊕Π(C′), where C′ = {V (v)
0 }

runs over all inequivalent collections of local Hermitian spaces V
(v)
0 of dimension 2

over Lv; here v ranges over all the places of Q including ∞.

The question now is if there exists a global Hermitian space V0 whose local-

izations are precisely the local spaces {V (v)
0 } in the collection C′. If such a global

Hermitian space does not exist, then the collection C′ is called incoherent, otherwise
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it is called coherent. From the local results quoted above, we know that each Π(C′)
is irreducible. Thus to complete the proof we only need to show that Π(C′) cannot
be embedded in A(G′

3) if C′ is incoherent.

The proof that such an embedding cannot exist is fairly standard. See, for
instance [46, Thm. 3.1 (ii)], [47, Prop. 2.6] or [84, Cor. 4.1.12]. Thus, we will be
brief. For any (global) Hermitian matrix β of size 3, let Wβ : A(G′

3) → C denote
the β-th Fourier coefficient, defined by

Wβ(f) =

∫
N12(Q)\N12(A)

f(nb)ψ(−tr(bβ)) db.

Let D be a non trivial embedding of Π(C′) in A(G′
3) where C′ is incoherent, and

put Dβ = Wβ ◦ D. Then there must exist some β such that Dβ is non-zero.
Moreover, if Dβ = 0 for all β of rank ≥ 2, then the argument of [47, Lemma
2.5] shows that D = 0. So there exists β with rank(β) ≥ 2 and Dβ �= 0. By
well-known results on the twisted Jacquet functor (see [35, Lemmas 5.1 and 5.2]),

this implies that β is locally represented by {V (v)
0 } at each place v, i.e., there

exists v
(v)
0 ∈ (V

(v)
0 )3 such that (v

(v)
0 , v

(v)
0 ) = β. Since the dimension of V

(v)
0 is

2, this implies that such a β cannot be non-singular; thus rank(β) = 2. Hence

β is (globally) equivalent to

[
β0

0

]
where β0 is of size 2 and non-singular. Let

εv(V
(v)
0 ) = ±1 denote the Hasse invariant of the local Hermitian space V

(v)
0 . Since

the collection C′ is incoherent, we have
∏

v εv(V
(v)
0 ) = −1. On the other hand,

because β is locally represented by {V (v)
0 }, and rank(β)= dim(V

(v)
0 ) = 2, it follows

that the matrix for V
(v)
0 equals β0 for some suitable basis. But this means that

εv(V
(v)
0 ) = εv(β0). So

∏
v εv(V

(v)
0 ) =

∏
v εv(β0) = 1, a contradiction. �

4.3. The Siegel-Weil formula and the proof of entireness

In the previous subsection, we proved that the map A−1 from I(χ, s0) to A(G′
3)

given by

f (s0) �−→ Ress=s0Ef(s)(g, s)

factors through ⊕V0
Π(V0), where V0 runs through all global Hermitian spaces of

dimension 2 over L. It turns out that the same map is also given by a regularized
theta integral. This is the content of the regularized Siegel-Weil formula, which we
now recall. Let (V0,Q0) be a global Hermitian space of dimension 2 over L and let
(V,Q) be the global Hermitian space of dimension 4 over L obtained by adding a
split space of dimension 2 to V0. Note that the Witt index of V is at least 1, thus
V cannot be anisotropic. Given ϕ0 ∈ S(V 3

0 (A)) we define the theta function

(238) Θ(g, h;ϕ0) =
∑

x∈V 3
0 (Q)

ωQ0
(g, h)ϕ0(x).

This is a slowly increasing function on (G′
3(Q)\G′

3(A))× (U(V0)(Q)\U(V0)(A)). If
Q0 is anisotropic, we define

IQ0
(g, ϕ0) =

∫
U(V0)(Q)\U(V0)(A)

Θ(g, h;ϕ0) dh.
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If Q0 is isotropic, the above integral does not converge, so we define

IQ0
(g, ϕ0) = c−1

α

∫
U(V0)(Q)\U(V0)(A)

Θ(g, h;ωQ0
(α)ϕ0) dh,

where α, cα are defined as in Sect. 2 of [35]. In fact, in the convergent case, the
second definition automatically equals the first, so we might as well use it in both
the cases. Next, one has a map of Schwartz functions πQ0

Q πK from S(V 3(A)) to

K0-invariant functions in S(V 3
0 (A)); here K0 is the standard maximal compact

subgroup of U(V0(A)). We refer the reader to [35] for definitions and details. Let

ϕ ∈ S(V 3(A)). Let f
(s)
ϕ ∈ I(χ, s) be the standard section attached to ϕ via the

Weil representation. Then the regularized Siegel-Weil formula [35, Thm. 4.1] in
this setting says the following.

Theorem 4.3.1 (Ichino). We have

Ress=s0Ef
(s)
ϕ

(g, s) = c IQ0
(g, πQ0

Q πKϕ)

for an explicit constant c depending only on the normalization of Haar measures.

Theorem 4.3.1 and Proposition 4.2.3 imply the following result.

Proposition 4.3.2. Suppose that the Eisenstein series EΥ(g, s) does not satisfy
the property ( 237). Then there exists a Hermitian space (V0,Q0) of dimension 2
over L and a K0-invariant Schwartz function ϕ0 ∈ S(V 3

0 (A)) such that, for some
g ∈ U(1, 1)(A), ∫

Sp4(Q)\Sp4(A)

IQ0
(ι(g, h), ϕ0)φ(h) dh �= 0.

We will now prove Theorem 4.1.1. In order to do so, it suffices to show that
the conclusion of Proposition 4.3.2 leads to a contradiction. First note that, given
Schwartz functions ϕ1 ∈ S(V0(A)), ϕ2 ∈ S(V 2

0 (A)), we may form the Schwartz
function ϕ0 = ϕ2⊗ϕ1 ∈ S(V 3

0 (A)) defined by ϕ(v1, v2, v3) = ϕ1(v3)ϕ2(v1, v2). The
space generated by linear combinations of functions of this type is the full Schwartz
space S(V 3

0 (A)). Suppose that the conclusion of Proposition 4.3.2 holds. By the
definition of IQ0

and the above discussion, it follows that we can find ϕ1 ∈ S(V0(A)),
ϕ2 ∈ S(V 2

0 (A)) such that for some g ∈ U(1, 1)(A), we have

(239)

∫
Sp4(Q)\Sp4(A)

∫
U(V0)(Q)\U(V0)(A)

Θ(ι(g, h), h′;ϕ2 ⊗ ϕ1)φ(h) dh
′ dh �= 0.

For g =

[
a b
c d

]
∈ U(1, 1) let ĝ =

[
a −b
−c d

]
. It is easy to check that

ωQ0
(ι(g, h))(ϕ2 ⊗ ϕ1) = ωQ0

(h)ϕ2 ⊗ ωQ0
(ĝ)ϕ1.

Here, we are abusing notation and using ωQ0
to denote the Weil representation of

Gi(A) on S(V i
0 (A)) for various i. This gives the following factorization,

(240) Θ(ι(g, h), h′;ϕ2 ⊗ ϕ1) = Θ(ĝ, h′;ϕ1)Θ(h, h′;ϕ2).

Define the automorphic form Θ(h′;φ, ϕ2) on U(V0)(Q)\U(V0)(A) by

Θ(h′;φ, ϕ2) =

∫
Sp4(Q)\Sp4(A)

Θ(h, h′;ϕ2)φ(h) dh.
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Equations (239) and (240) imply the following.

Lemma 4.3.3. Suppose that the conclusion of Proposition 4.3.2 holds. Then
there exists a Schwartz function ϕ2 ∈ S(V 2

0 (A)) such that the automorphic form
Θ(h′;φ, ϕ2) on U(V0)(A) is non-zero.

We will now interpret the conclusion of this lemma in terms of theta liftings.
Let V ∗

0 denote the 4-dimensional orthogonal space over Q obtained by considering
V0 as a space over Q and composing the hermitian form on V0 with trL/Q. We have

the following seesaw diagram (see [45, p. 252]) of dual reductive pairs.1

U(2, 2)

��
��

��
��

�
O(V ∗

0 )

Sp(4)

���������
U(V0)

Note that, at each place, V ∗
0 is either the unique anisotropic space of dimension four,

or the split quadratic space V2,2. Let π1 be the representation of Sp4(A) generated
by the restriction of φ to Sp4(A). By [60], we know that π1 is an irreducible,
automorphic, cuspidal representation. Moreover, π1 is an anti-holomorphic discrete
series representation at infinity. The above seesaw diagram and Lemma 4.3.3 imply
that if the conclusion of Proposition 4.3.2 holds, then π1 has a non-zero theta lift
to O(V ∗

0 ).

However, if π1 has a non-zero theta lift to O(V ∗
0 ), then V ∗

0 cannot be split at in-
finity. This is because there is no local archimedean theta lift of an anti-holomorphic
discrete series representation from Sp4(R) to O(2, 2)(R), see [69]. This means there
must be a non-archimedean place v where V ∗

0 is ramified. But this implies that π1

is also ramified at v; else the local theta lift would be zero. However, we know that
π1 is unramified at all finite places because φ is right-invariant under Sp4(Zp) at all
finite places p. This contradiction shows that the conclusion of Proposition 4.3.2
cannot hold. Therefore the Eisenstein series EΥ(g, s) on U(3, 3)(A) has the property
that, for all g ∈ U(1, 1)(A),∫

Sp4(Q)\Sp4(A)

Ress= 1
6
EΥ(ι(g, h), s))φ(h) dh = 0,

and hence L(s, π × τ ) is holomorphic at s = 1. This completes the proof of Theo-
rem 4.1.1.

1We would like to thank Paul Nelson for pointing this out to us.
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CHAPTER 5

Applications

As a special case of Langlands functoriality, one expects that automorphic forms
on GSp4 have a functorial transfer to automorphic forms on GL4, coming from the
natural embedding of dual groups GSp4(C) ⊂ GL4(C). For generic automorphic
representations on GSp4 this transfer was established in [4]. There is also a conjec-
tured functorial transfer from automorphic forms on PGSp4 to automorphic forms
on GL5, coming from the morphism ρ5 : Sp4(C) → GL5(C) of dual groups, where
ρ5 is the irreducible 5-dimensional representation of Sp4(C). Here, we are going
to show the existence of both these transfers for full level holomorphic cuspidal
Siegel eigenforms. Note that the automorphic representation generated by such a
Siegel modular form is not globally generic, since its archimedean component, a
holomorphic discrete series representation, is non-generic.

We will use the transfer results to prove analytic properties of several L-
functions related to Siegel modular forms. In the last subsection we will derive
some special value results for GSp4 ×GL1 and GSp4 ×GL2 L-functions.

5.1. The transfer theorems

In the following let A be the ring of adeles of Q. As before we write H for GSp4,
considered as an algebraic group over Q. Let π = ⊗πv be a cuspidal, automorphic
representation of H(A) with the following properties.

• π has trivial central character.
• The archimedean component π∞ is a holomorphic discrete series repre-
sentation with scalar minimal K-type (l, l), where l ≥ 3.

• For each finite place p, the local representation πp is unramified.

It is well known that every such π gives rise to a holomorphic cuspidal Siegel
eigenform of degree 2 and weight l with respect to the full modular group Sp4(Z);
see [3]. Conversely, every such eigenform generates an automorphic representation
π as above (which is in fact irreducible; see [60]). Well-known facts about classical
full-level Siegel modular forms show that the cuspidality condition implies l ≥ 10.
For the following lemma let ψ be the standard global additive character that was
used in Theorem 2.3.2 and Theorem 3.5.1. Recall the definition of global Bessel
models from Sect. 2.1.

Lemma 5.1.1. Let π be as above, and let F be the corresponding Siegel cusp
form. Assume that the Fourier expansion of F is given by

(241) F (Z) =
∑
S

a(F, S)e2πi tr(SZ),

89
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where Z lies in the Siegel upper half space of degree 2, and S runs through 2 × 2
positive definite, semi-integral, symmetric matrices. Then, given a positive integer
D such that −D is a fundamental discriminant, the following are equivalent.

i) a(F, S) �= 0 for some S with D = 4det(S).
ii) π has a Bessel model of type (S(−D),Λ, ψ), where S(−D) is the matrix

defined in ( 149), and where Λ is a character of the ideal class group ( 150)
of L = Q(

√
−D).

Proof: This follows from equation (4.3.4) in [19] (which is based on (1-26) of
[83]). �

The second author has recently shown that condition i) of the lemma is always
satisfied for someD; see [75]. In fact, independently of whether F is an eigenform or
not, there exist infinitely many non-zero Fourier coefficients a(F, S) such that D =
4det(S) is odd and squarefree (in which case −D is automatically a fundamental
discriminant). The important fact for us to note is that there always exists a positive
integer D such that −D is a fundamental discriminant and such that π satisfies the
hypotheses of Theorem 2.4.3.

We shall write down the explicit form of the local parameters of the represen-
tations πv. These are admissible homomorphisms from the local Weil groups to the
dual group GSp4(C). Note that the trivial central character condition implies that
the image of each local parameter lies in Sp4(C). As in [87] (1.4.3), the real Weil
group WR is given by WR = C× � jC× with the rules j2 = −1 and jzj−1 = z̄ for
z ∈ C×. Then the parameter of π∞ is given by
(242)

C× � reiθ �−→

⎡⎢⎢⎣
ei(2l−3)θ

eiθ

e−i(2l−3)θ

e−iθ

⎤⎥⎥⎦ , j �−→

⎡⎢⎢⎣
−1

−1
1

1

⎤⎥⎥⎦ .

For a finite place p, there exist unramified characters χ1, χ2 and σ of Q×
p such that

πp is the spherical component of a parabolically induced representation χ1×χ2�σ
(using the notation of [76]). If we identify characters of Q×

p with characters of the
local Weil group WQp

via local class field theory, then the L-parameter of πp is
given by

(243) WQp
� w �−→

⎡⎢⎢⎣
σ(w)χ1(w)

σ(w)χ1(w)χ2(w)
σ(w)χ2(w)

σ(w)

⎤⎥⎥⎦ .

The central character condition is χ1χ2σ
2 = 1, so that the image of this parameter

lies in Sp4(C). Now, let Π∞ be the irreducible, admissible representation of GL4(R)
with L-parameter (242). For a prime number p, let Πp be the irreducible, admis-
sible representation of GL4(Qp) with L-parameter (243). Then the irreducible,
admissible representation

(244) Π4 := ⊗Πv

of GL4(A) is our candidate representation for the transfer of π to GL4. Clearly, Π4

is self-contragredient.
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Theorem 5.1.2. Let π be a cuspidal automorphic representation of GSp4(A)
as above, related to a cuspidal Siegel eigenform F . We assume that F is not of
Saito-Kurokawa type. Then the admissible representation Π4 of GL4(A) defined
above is cuspidal automorphic. Hence Π4 is a strong functorial lifting of π. This
representation is symplectic, i.e., the exterior square L-function L(s,Π4,Λ

2) has a
pole at s = 1.

Proof. We will use the converse theorem for GL4 from [11], and therefore have
to establish the “niceness” of the L-functions of twists of Π by cusp forms on GL1

and GL2. As remarked above, there exists a positive integer D such that −D is
a fundamental discriminant and such that π satisfies the hypotheses of Theorem
2.4.3; we will fix such a D. Let τ = ⊗τp be a cuspidal, automorphic representation
of GL2(A) such that τp is unramified for p|D. By definition of the candidate repre-
sentation Π, the GL4×GL2 L-function L(s,Π4× τ ) coincides with the GSp4×GL2

L-function L(s, π × τ ). Therefore, by Theorem 4.1.1, the L-function L(s,Π4 × τ )
has analytic continuation to an entire function. Moreover, by Theorem 2.4.3, it
satisfies the functional equation

(245) L(s,Π4 × τ ) = ε(s,Π4 × τ )L(1− s, Π̃4 × τ̃).

We will next prove that L(s,Π4 × τ ) is bounded in vertical strips.1 Consider the
group GSp8 and its Levi subgroup GL2 × GSp4. One of the representations of
the dual parabolic with Levi GL2(C) × GSp4(C) on the dual unipotent radical is
the tensor product representation. This means that our L-function L(s, π × τ ) is
accessible via Langlands’ method; see [52]. Now, Gelbart and Lapid proved that
any L-function that is accessible via Langlands’ method is meromorphic of finite
order; this is Theorem 2 in [24]. Here, a function f : C → C being of finite order
means that there exist positive constants r, c, C such that

|f(z)| ≤ C ec|z|
r

for all z ∈ C.

By the Phragmen-Lindelöf Theorem, if a holomorphic function of finite order is
bounded on the left and right boundary of a vertical strip, then it is bounded
on the entire vertical strip. For a large enough positive number M , our function
L(s, π× τ ) is bounded on Re(s) = M , since it is given as a product of archimedean
Euler factors, which are bounded on vertical lines, times a convergent Dirichlet
series. By the functional equation, L(s, π × τ ) is also bounded on Re(s) = −M .
It follows that L(s, π × τ ) is bounded on −M ≤ Re(s) ≤ M . This proves that
L(s,Π4 × τ ) is bounded in vertical strips.

A similar argument applies to twists of Π4 by Hecke characters χ of A×. The
required functional equation of L(s,Π4 ×χ) = L(s, π×χ) is provided by [44]. The
holomorphy follows from Theorem 2.2 of [63].

By Theorem 2 of [11], there exists an automorphic representation Π′ = ⊗Π′
v

of GL4(A) such that Π′
∞

∼= Π∞ and Π′
p
∼= Πp for all primes p � D. We claim that

in fact Π′
p
∼= Πp for all primes p; this will prove that the candidate representation

Π4 is automorphic (but not yet the cuspidality). To prove our claim, observe that

1We would like to thank Mark McKee for explaining this argument to us.
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we have the functional equations

(246) L(s,Π4) = ε(s,Π4)L(1− s, Π̃4)

and

(247) L(s,Π′) = ε(s,Π′)L(1− s, Π̃′).

We have (246) because L(s,Π4) = L(s, π) and ε(s,Π4) = ε(s, π) by definition of Π4,
so that we can use Andrianov’s classical theory; see [1]. We have (247) because Π′

is an automorphic representation of GL4(A). Dividing (246) by (247) and observing
that the local factors outside D coincide, we obtain

(248)
∏
p|D

L(s,Πp)L(1− s, Π̃′
p)ε(s,Π

′
p)

L(s,Π′
p)L(1− s, Π̃p)ε(s,Πp)

= 1.

It follows from unique prime factorization that if p1, . . . , pr are distinct primes, and
if R1, . . . , Rr ∈ C(X) are such that

(249)
r∏

i=1

Ri(p
s
i ) = 1 for all s ∈ C,

then the rational functions Ri are all constant. Hence, it follows from (248) that

(250)
L(s,Πp)L(1− s, Π̃′

p)ε(s,Π
′
p)

L(s,Π′
p)L(1− s, Π̃p)ε(s,Πp)

is constant for each p|D.

Fix a prime p|D, and write (250) as

(251)
1

L(s,Πp)
= cpX

m
L(1− s, Π̃′

p)

L(s,Π′
p)L(1− s, Π̃p)

,

where cp is a constant, X = p−s, andm is some exponent coming from the ε-factors.
Let α, β, γ, δ be the Satake parameters of Πp, so that

L(s,Πp) =
1

(1− αp−s)(1− βp−s)(1− γp−s)(1− δp−s)
.

Substituting into (251), we obtain

(1− αX)(1− βX)(1− γX)(1− δX)

= (1− (αp)−1X−1)(1− (βp)−1X−1)(1− (γp)−1X−1)(1− (δp)−1X−1)cpX
m

L(1− s, Π̃′
p)

L(s,Π′
p)

= (X − (αp)−1)(X − (βp)−1)(X − (γp)−1)(X − (δp)−1)cpX
m−4

L(1− s, Π̃′
p)

L(s,Π′
p)

.

Consider the zeros of the functions on both sides of this equation. On the left hand
side, we have zeros exactly when X = ps is equal to

(252) α−1, β−1, γ−1, δ−1

(with repetitions allowed). On the right hand side, the factor L(1− s, Π̃′
p) does not

contribute any zeros, since local L-factors are never zero. The factor Xm−4 might
contribute the zero 0, but this zero does certainly not appear amongst the numbers
(252). Then there are the obvious possible zeros when X equals

(253) (αp)−1, (βp)−1, (γp)−1, (δp)−1.
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Recalling that α, β, γ, δ originate from the Satake parameters of a holomorphic
Siegel cusp form, the Ramanujan conjecture for such modular forms, proven in
[90], implies that |α| = |β| = |γ| = |δ| = 1. (Even without the full Ramanujan
conjecture, known estimates as those in [67] would lead to the same conclusion.)
Hence there is no overlap between the numbers in (252) and (253). It follows that
the factor L(s,Π′

p) must contribute the zeros (252) for the right hand side. In

particular, L(s,Π′
p)

−1 is a polynomial in p−s of degree 4, so that Π′
p is a spherical

representation. And then, evidently, its Satake parameters are precisely α, β, γ
and δ. This is equivalent to saying Π′

p
∼= Πp, proving our claim.

We now proved that the candidate representation Π4 = ⊗Πv is automorphic,
and it remains to prove it is cuspidal. Assume that Π4 is not cuspidal; we will
obtain a contradiction. Being not cuspidal, Π4 is a constituent of a globally induced
representation from a proper parabolic subgroup of GL4. It follows that L(s,Π4)
is, up to finitely many Euler factors, of one of the following forms.

i) L(s, χ1)L(s, χ2)L(s, χ3)L(s, χ4) with Hecke characters χi of A
×.

ii) L(s, χ1)L(s, χ2)L(s, τ ) with Hecke characters χ1, χ2 of A× and a cuspidal,
automorphic representation τ of GL2(A).

iii) L(s, χ1)L(s, τ ) with a Hecke character χ1 of A× and a cuspidal, automor-
phic representation τ of GL3(A).

iv) L(s, τ1)L(s, τ2) with cuspidal, automorphic representations τ1, τ2 of GL2(A).

Note that all the characters and representations in this list must be unramified at
every finite place, since the same is true for Π4. If one of the cases i), ii) or iii) is
true, then L(s,Π4 ×χ−1

1 ) has a pole. Since L(s,Π4 ×χ−1
1 ) = L(s, π×χ−1

1 ) and we
are assuming that F is not of Saito-Kurokawa type, this contradicts Theorem 2.2
of [63]. Hence we are in case iv). But then L(s,Π4 × τ̃1) = L(s, π× τ̃1) has a pole,
contradicting Theorem 4.1.1. This contradiction shows that Π4 must be cuspidal.

It remains to prove the last statement. Since Π4 is self-dual, it is well known
that exactly one of the L-functions

L(s,Π4,Λ
2) or L(s,Π4, Sym

2)

has a pole at s = 1. If L(s,Π4, Sym
2) would have a pole at s = 1, then Π4 would be

a (strong) lifting from the split orthogonal group SO4; see the Theorem on p. 680
of [26] and the comments thereafter. By Lemma 5.1.3 below, this is impossible. It
follows that L(s,Π4,Λ

2) has a pole at s = 1. �

Lemma 5.1.3. Let F and π = ⊗πv be as in Theorem 5.1.2, and let Π4 be
the resulting lifting to GL4(A). Then there does not exist a cuspidal, automorphic
representation σ of SO4(A) such that Π4 is a Langlands functorial lifting of σ.

Proof. The obstruction comes from the archimedean place. Recall that the dual
group of SO4 is SO4(C), which we realize as

SO4(C) = {g ∈ SL4(C) | tg
[

12
12

]
g =

[
12

12

]
}.
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Let ϕ : WR → GL4(C) be the archimedean L-parameter given explicitly in (242).
If Π4 would come from SO4, there would exist a matrix g ∈ GL4(C) such that

gϕ(w)g−1 ∈ SO4(C) for all w ∈ WR.

Then t(gϕ(w)g−1)

[
12

12

]
(gϕ(w)g−1) =

[
12

12

]
for all w ∈ WR, or equivalently

tϕ(w)Sϕ(w) = S, where S = tg

[
12

12

]
g.

Letting w run through non-zero complex numbers reiθ shows that S is of the form

S =

⎡⎢⎢⎣
a

b
a

b

⎤⎥⎥⎦ .

But then letting w = j yields the contradiction −S = S. �

We will next consider a backwards lifting of Π4 in order to obtain a globally
generic, cuspidal, automorphic representation on GSp4(A) in the same L-packet as
π.

Theorem 5.1.4. Let F and π = ⊗πv be as in Theorem 5.1.2. Then there exists
a globally generic, cuspidal, automorphic representation πg = ⊗πg

v of GSp4(A)
such that πg

p
∼= πp for all primes p, and such that πg

∞ is the generic discrete series
representation of PGSp4(R) lying in the same L-packet as π∞. Any globally generic,
cuspidal automorphic representation σ = ⊗σv of GSp4(A) such that σp

∼= πp for
almost all p coincides with πg.

Proof. Let Π4 be the lifting of π to GL4 constructed in Theorem 5.1.2. Since
Π4 is symplectic, we can apply Theorem 4 of [27]. The conclusion is that there
exists a non-zero representation σ = σ1 ⊕ . . .⊕ σm of PGSp4(A) such that each σi

is globally generic, cuspidal, automorphic and weakly lifts to Π4. By Theorem 9 of
[27], there can be only one σi, i.e., σ is itself irreducible. Note that “weak lift” in
[27] includes the condition that the lift is functorial with respect to archimedean L-
parameters (see [27], p. 733). In particular, the archimedean component of σ is the
generic discrete series representation of PGSp4(R) lying in the same L-packet as π∞.
Evidently, the local components σp and πp are isomorphic for almost all primes p. It
remains to show that this is the case for all primes p. This can be done by a similar
argument as in the proof of Theorem 5.1.2. Dividing the functional equations for
the degree 4 L-functions L(s, π) and L(s, σ), and comparing the resulting zeros at
a particular prime p, shows first that L(s, σp) is a degree 4 Euler factor. Hence σp

is an unramified representation. The same comparison of zeros then also implies
that σp and πp have the same Satake parameters. The last assertion follows from
the strong multiplicity one result Theorem 9 of [27]. �

With F and π as above, we constructed a strong functorial lifting of π to GL4

with respect to the natural inclusion of dual groups Sp4(C) ⊂ GL4(C). Similarly,
we will now produce a strong functorial lifting of π to GL5 with respect to the
morphism ρ5 : Sp4(C) → GL5(C) of dual groups, where ρ5 is the irreducible 5-
dimensional representation of Sp4(C). Let L(s, π, ρ5) be the degree 5 (standard)
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L-function of F . If the L-parameter at a prime p is given by (243), then
(254)

L(s, πp, ρ5) =
1

(1− p−s)(1− χ1(p)p−s)(1− χ−1
1 (p)p−s)(1− χ2(p)p−s)(1− χ−1

2 (p)p−s)
.

Theorem 5.1.5. Let F and π = ⊗πv be as in Theorem 5.1.2. Then there exists
a cuspidal, automorphic representation Π5 of GL5(A) such that

(255) L(s, π, ρ5) = L(s,Π5)

(equality of completed Euler products). The representation Π5 is a strong functo-
rial lifting of π to GL5 with respect to the morphism ρ5 : Sp4(C) → GL5(C) of
dual groups. Moreover, Π5 is orthogonal, i.e., the symmetric square L-function
L(s,Π5, Sym

2) has a pole at s = 1.

Proof. A straightforward calculation verifies that

(256) Lf (s,Π4,Λ
2) = Lf (s, π, ρ5)ζ(s).

Here, the subscript f indicates that the Euler product defining the L-functions
is taken over finite places only, and ζ(s) denotes the Riemann zeta function. By
Theorem 5.1.2, the function Lf (s,Π4,Λ

2) has a simple pole at s = 1. It follows that
Lf (s, π, ρ5) is holomorphic and non-zero at s = 1. Together with [29], Theorem 2,
we obtain that Lf (s, π, ρ5) has no poles on Re(s) = 1. Now by [42], Theorem A,
L(s,Π4,Λ

2) is the L-function of an automorphic representation of GSp6(A) of the
form

(257) Ind(τ1 ⊗ . . .⊗ τm)

where τ1, . . . , τm are unitary, cuspidal, automorphic representations of GLni
(A),

n1 + . . . + nm = 6. Since Lf (s,Π4,Λ
2) has a simple pole at s = 1, it follows that

exactly one of the τi, say τm, is the trivial representation of GL1(A). Cancelling
out one zeta factor, we see that

(258) Lf (s, π, ρ5) = Lf (s, τ1) . . . Lf (s, τm−1).

Observe that since π is unramified at every finite place, the same must be true for
the τi. If we had ni = 1 for some i, then L(s, τi), and therefore the right hand side
of (257), would have a pole on Re(s) = 1. This contradicts the observation from
above that Lf (s, π, ρ5) has no poles on Re(s) = 1. Hence ni > 1 for all i, so that
the only possibilities for the set {n1, . . . , nm−1} are {2, 3} and {5}. Assume the
former is the case, so that, say, τ1 is a cuspidal representation of GL2(A) and τ2 is
a cuspidal representation of GL3(A). Let Π5 = Ind(τ1⊗ τ2). It is not hard to verify
that

(259) Lf (s,Π5,Λ
2) = Lf (s,Π4, Sym

2),

which we know is an entire function. On the other hand,

(260) Lf (s,Π5,Λ
2) = Lf (s, ωτ1)Lf (s, τ1 × τ2)Lf (s, ωτ2 × τ̃2),

where ωτi is the central character of τi. Since the latter is everywhere unramified,
the right hand side of (260) has a pole on Re(s) = 1. This contradiction shows
that the assumption {n1, . . . , nm−1} = {2, 3} must be wrong. Hence Π5 := τ1 is a
cuspidal representation of GL5(A) such that

(261) Lf (s, π, ρ5) = Lf (s,Π5).
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This implies that Π5 is a lifting of π (with respect to the morphism ρ5 of dual groups)
at every finite place. At the archimedean place, observe that the L-parameter
of Ind(τ1 ⊗ τ2) equals the exterior square of the L-parameter of Π4, since the
lifting of [42] is strong. On the other hand, an explicit calculation shows that the
exterior square of the L-parameter of Π4 equals the L-parameter of π composed
with ρ5, plus the trivial representation ofWR (in other words, the archimedean place
behaves exactly as the finite places, so that (256) holds in fact for the completed
L-functions). Cancelling out the trivial representation on both sides, one obtains
an equality of the L-parameter of τ1 with the L-parameter of π composed with ρ5.
Hence Π5 is a functorial lifting of π also at the archimedean place.

Finally, Π5 is orthogonal since the exterior square Lf (s,Π5,Λ
2) has no pole at

s = 1; see (259). This concludes the proof. �

5.2. Analytic properties of L-functions

For n ∈ {1, 4, 5, 10, 14, 16} let ρn be the n-dimensional irreducible representa-
tion of Sp4(C). In the notation of [18], Sect. 16.2, we have ρ4 = Γ1,0, ρ5 = Γ0,1,
ρ10 = Γ2,0, ρ14 = Γ0,2 and ρ16 = Γ1,1. Of course, ρ4 is the natural representation of
Sp4(C) on C4, which is also called the spin representation. An explicit formula for
the representation ρ5 as a map Sp4(C) → SO5(C) is given in Appendix A.7 of [70].
(Somewhat confusingly, in the theory of Siegel modular forms ρ5 is often referred
to as the standard representation, even though it is ρ4 that is the non-trivial repre-
sentation of lowest dimension.) The representation ρ10 is the adjoint representation
of Sp4(C) on its Lie algebra. We have the following relations,

Λ2ρ4 = ρ1 + ρ5,(262)

Λ2ρ5 = Sym2ρ4 = ρ10,(263)

Sym2ρ5 = ρ1 + ρ14,(264)

ρ4 ⊗ ρ5 = ρ4 + ρ16.(265)

Let F and π be as in Theorem 5.1.2. To each ρn we have an associated global
L-function L(s, π, ρn). We will list the archimedean L- and ε-factors (the latter
with respect to the character ψ−1, where ψ(x) = e−2πix). Let ΓR and ΓC be as in
(131). The archimedean factors depend only on the minimal K-type (l, l) of π∞.

ρ L(s, π∞, ρ) ε(s, π∞, ρ, ψ−1)

ρ1 ΓR(s) 1

ρ4 ΓC(s+
1
2 )ΓC(s+ l − 3

2 ) (−1)l

ρ5 ΓR(s)ΓC(s+ l − 1)ΓC(s+ l − 2) 1

ρ10 ΓR(s+ 1)2 ΓC(s+ 1)ΓC(s+ l − 1)ΓC(s+ l − 2)ΓC(s+ 2l − 3) 1

ρ14 ΓR(s)
2 ΓC(s+ 1)ΓC(s+ l − 1)ΓC(s+ l − 2) 1

ΓC(s+ 2l − 2)ΓC(s+ 2l − 3)ΓC(s+ 2l − 4)

ρ16 ΓC(s+
1
2 )

2 ΓC(s+ l − 1
2 )ΓC(s+ l − 3

2 )
2 ΓC(s+ l − 5

2 ) −1

ΓC(2 + 2l − 5
2 )ΓC(2 + 2l − 7

2 )
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These factors are normalized so that they fit into a functional equation relating s
and 1− s, and hence differ from the traditional factors used in the theory of Siegel
modular forms. For example, the classical Andrianov spin L-function relates s and
2l − 2 − s; see [1], Theorem 3.1.1. To obtain the Andrianov Γ-factors, one has to
replace s by s− l + 3

2 in the above factor for ρ4.

Theorem 5.2.1. Let F and π be as in Theorem 5.1.2. The Euler products
defining the L-functions Lf (s, π, ρn), for n ∈ {4, 5, 10, 14, 16}, are absolutely con-
vergent for Re(s) > 1. They have meromorphic continuation to the entire complex
plane, have no zeros or poles on Re(s) ≥ 1, and the completed L-functions (using
the above archimedean factors) satisfy the functional equation

L(s, π, ρn) = ε(s, π, ρn)L(1− s, π, ρn).

Furthermore, for n ∈ {4, 5, 10}, the functions L(s, π, ρn) are entire and bounded in
vertical strips.

Proof. By definition, L(s, π, ρ4) = L(s,Π4) and L(s, π, ρ5) = L(s,Π5). Hence,
the analytic properties of L(s, π, ρ4) and L(s, π, ρ5) follow from the known analytic
properties of L-functions of cuspidal representations on GLn. For the absolute
convergence of the Euler products in Re(s) > 1, see [39], Theorem 5.3. As for the
adjoint L-function, it follows from (263) that

(266) L(s,Π4, Sym
2) = L(s, π, ρ10).

Since Π4 is symplectic by Theorem 5.1.2, this is an entire function; see [8, Thm.
7.5]. The absolute convergence in Re(s) > 1 follows from [39, Thm. 5.3], together
with the known automorphy, hence absolute convergence, of L(s,Π4,Λ

2). Since
symmetric square L-functions are accessible via the Langlands-Shahidi method,
the boundedness in vertical strips follows from [25], and the functional equation
follows from [80, Cor. 6.7]. The non-vanishing on Re(s) = 1 follows also from the
Langlands-Shahidi method; see Sect. 5 of [79]. From (264) we get

(267) L(s,Π5, Sym
2) = Z(s)L(s, π, ρ14),

where Z(s) = ΓR(s)ζ(s) is the completed Riemann zeta function. Observe that
L(s,Π5,Λ

2) is absolutely convergent for Re(s) > 1 by (259). Together with [39],
Theorem 5.3, this implies the absolute convergence of L(s,Π5, Sym

2), and hence of
L(s, π, ρ14), in Re(s) > 1. The meromorphic continuation of L(s, π, ρ14) is obvious
from (267). Since this is an identity of complete Euler products, and since our
liftings are strongly functorial, it also implies the asserted functional equation.
By Theorem 5.1.5 the function L(s,Π5, Sym

2) has a simple pole at s = 1, while
otherwise it is holomorphic and non-vanishing on Re(s) = 1. Since the same is true
for Z(s), it follows that L(s, π, ρ14) is holomorphic and non-vanishing on Re(s) = 1.
Since

(268) L(s,Π4 ×Π5) = L(s, π)L(s, π, ρ16).

by (265), similar arguments apply to L(s, π, ρ16). �

Let r be a positive integer, and τ a cuspidal, automorphic representation of
GLr(A). Let σr be the standard representation of the dual group GLr(C). Then
we can consider the Rankin-Selberg Euler products L(s, π × τ, ρn ⊗ σr), where ρn
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is one of the irreducible representations of Sp4(C) considered above. For n = 4 or
n = 5, since Π4 and Π5 are functorial liftings of π, we have

(269) L(s, π × τ, ρn × σr) = L(s,Πn × τ ),

where the L-function on the right is a standard Rankin-Selberg L-function for
GLn × GLr. From the well-known properties of these L-functions, the following
result is immediate. For ε > 0 and a closed interval I on the real line we use the
notation Tε,I = {s ∈ C | Re(s) ∈ I, |Im(s)| ≥ ε}, as in [25].

Theorem 5.2.2. Let F and π be as in Theorem 5.1.2. Let r be a positive
integer, and τ a (unitary) cuspidal, automorphic representation of GLr(A). Let
n = 4 or n = 5. Then the Euler products defining the GSp4 × GLr L-functions
L(s, π×τ, ρn⊗σr) are absolutely convergent for Re(s) > 1. They have meromorphic
continuation to the entire complex plane, and the completed L-functions satisfy the
functional equation

(270) L(s, π × τ, ρn ⊗ σr) = ε(s, π × τ, ρn ⊗ σr)L(1− s, π̃ × τ̃ , ρn ⊗ σr).

These L-functions are entire, bounded in vertical strips, and non-vanishing on
Re(s) ≥ 1, except in the cases

• n = r = 4 and τ = | det |it ⊗ Π4, where t ∈ R and Π4 is the lifting of π
from Theorem 5.1.2, or

• n = r = 5 and τ = | det |it ⊗ Π5, where t ∈ R and Π5 is the lifting of π
from Theorem 5.1.5.

In these cases the function L(s, π × τ, ρn ⊗ σr) is holomorphic except for simple
poles at s = −it and s = 1 − it, and is bounded on all sets of the form Tε,I with
ε > |t|.

Proof. For the precise location of poles, see Theorem 2.4 of [12]. For boundedness
in vertical strips, see Corollary 2 on p. 80 of [25]. �

Theorem 5.2.3. Let F and F ′ be Siegel cusp forms with respect to Sp4(Z).
Assume that F and F ′ are Hecke eigenforms, that they are not Saito-Kurokawa
lifts and that π resp. π′ are the associated cuspidal, automorphic representations
of GSp4(A). Let n ∈ {4, 5} and n′ ∈ {4, 5}. Then the Euler products defining
the GSp4 × GSp4 L-functions L(s, π × π′, ρn ⊗ ρn′) are absolutely convergent for
Re(s) > 1. They have meromorphic continuation to the entire complex plane, and
the completed L-functions satisfy the expected functional equation. These functions
are entire, bounded in vertical strips, and non-vanishing on Re(s) ≥ 1, except if
n = n′ and F and F ′ have the same Hecke eigenvalues. In these cases the function
L(s, π × π′, ρn ⊗ ρn′) is holomorphic except for simple poles at s = 0 and s = 1,
and is bounded on all sets of the form Tε,I with ε > 0.

Proof. By definition,

(271) L(s, π × π′, ρn ⊗ ρn′) = L(s,Πn ×Π′
n′),

where Πn (resp. Π′
n′) is the lifting of π (resp. π′) to GLn (resp. GLn′). Evidently, F

and F ′ have the same Hecke eigenvalues if and only if π and π′ are nearly equivalent
if and only if Πn = Π′

n. Hence everything follows from the properties of L-functions
for GLn ×GLn′ . �
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Theorem 5.2.4. Let F and F ′ be Siegel cusp forms with respect to Sp4(Z).
Assume that F and F ′ are Hecke eigenforms, that they are not Saito-Kurokawa
lifts and that π resp. π′ are the associated cuspidal, automorphic representations of
GSp4(A). Let χ be a Hecke character of A× (possibly trivial) such that χ2 = 1, τ2
be a unitary, cuspidal, automorphic representation of GL2(A) with trivial central
character, and τ3 be a unitary, self-dual, cuspidal, automorphic representation of
GL3(A). Then the central values

L(1/2, π⊗χ, ρ4), L(1/2, π⊗τ2, ρ5⊗σ2), L(1/2, π⊗τ3, ρ4⊗σ3), L(1/2, π×π′, ρ4⊗ρ5),

are all non-negative.

Proof. Recall that the lifting Π4 is symplectic by Theorem 5.1.2, and the lifting Π5

is orthogonal by Theorem 5.1.5. Furthermore, τ2 is symplectic and τ3 is orthogonal.
All the assertions now follow from Theorem 1.1 of [53]. �

5.3. Critical values of L-functions

If L(s,M) is an arithmetically defined (or motivic) L-series associated to an
arithmetic object M, it is of interest to study its values at certain critical points s =
m. For these critical points, conjectures due to Deligne predict that L(m,M) is the
product of a suitable transcendental number Ω and an algebraic number A(m,M)
and furthermore, if σ is an automorphism of C, then A(m,M)σ = A(m,Mσ).
In this subsection, we will prove critical value results in the spirit of the above
conjecture for L-functions associated to a Siegel cusp form of full level.

For any subring A ⊂ C, let Sl

(
Sp4(Z), A

)
be the A-module consisting of the

holomorphic Siegel cusp forms F (Z) =
∑

S a(F, S)e2πi tr(SZ) of weight l for Sp4(Z)

for which all the Fourier coefficients a(F, S) lie in A. For F ∈ Sl

(
Sp4(Z),C

)
and

σ ∈ Aut(C), define σF by

σF (Z) =
∑
S

σ(a(F, S))e2πi tr(SZ).

By work of Shimura [81], we know that σF ∈ Sl

(
Sp4(Z),C

)
and

Sl

(
Sp4(Z),Q

)
⊗Q C = Sl

(
Sp4(Z),C

)
.

Also, if F is a Hecke eigenform, so is σF ; see Kurokawa [50].

Now, let F ∈ Sl

(
Sp4(Z),C

)
be an eigenform for all the Hecke operators and

let πF be the associated cuspidal, automorphic representation of GSp4(A). We
assume that F is not of Saito-Kurokawa type, so that the hypothesis of Theorems
5.1.2 is satisfied. Let ΠF be the resulting cuspidal, automorphic representation
of GL4(A). The representation ΠF is regular and algebraic in the sense of [10].
We define the σ-twist σΠF as in [10] or [88]. This can be described locally. If
ΠF = ⊗pΠF,p ⊗ΠF,∞, then σΠF = ⊗p

σΠF,p ⊗ΠF,∞, where for any finite place p,

(272) σInd
GL4(Qp)

B(Qp)
(χ1 ⊗ . . .⊗ χ4) = Ind

GL4(Qp)

B(Qp)
(σχ′

1 ⊗ . . .⊗ σχ′
4).

Here B is the standard Borel of GL4, χ1, . . . , χ4 are characters of Q×
p and for any

such χ,
σχ′(x) = σ(χ(x)|x| 12 )|x|− 1

2 .

(See Waldspurger’s example on [88, p. 125].) We have the following lemma.
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Lemma 5.3.1. Let F be a holomorphic Siegel cusp form for Sp4(Z) that is an
eigenfunction for all the Hecke operators and σ an automorphism of C. Suppose
that F is not of Saito-Kurokawa type. Then σF is not of Saito-Kurokawa type.
Furthermore, if ΠσF is the cuspidal, automorphic representation of GL4(A) obtained
from σF by Theorem 5.1.2, then

ΠσF = σΠF .

Proof. First of all, note that the condition of F being of Saito-Kurokawa type is
equivalent to simple relations among the Fourier coefficients of F as in [15, p. 76].
These relations are preserved under the action of σ. This proves the first part of
the lemma. For the second part, we need to show that ΠσF,p = σΠF,p for any prime
p. Fix such a prime p. Suppose that

ΠσF,p = Ind
GL4(Qp)

B(Qp)
(χ′′

1 ⊗ . . .⊗ χ′′
4).

Let λF,m be the eigenvalue for the Hecke operator T (m) acting on F . For the
exact definition of these Hecke operators, we refer the reader to Andrianov [1].
By Kurokawa [50], we know that σ(λF,m) = λσF,m. By writing the local degree-4
Euler factors in terms of the Hecke eigenvalues, we conclude that the multisets
{χ′′

1(p), . . . , χ
′′
4(p)} and {σχ′

1(p), . . . ,
σχ′

4(p)} are identical. Hence

Ind
GL4(Qp)

B(Qp)
(χ′′

1 ⊗ . . .⊗ χ′′
4) = Ind

GL4(Qp)

B(Qp)
(σχ′

1 ⊗ . . .⊗ σχ′
4),

and therefore, ΠσF = σΠF . �

We now supply certain results on critical L-values for GSp4 ×GLn where n ∈
{1, 2}.

Critical value result for GSp4 × GL1. In [30], Grobner and Raghuram define
certain periods of automorphic forms on GL2n by comparing cohomologies in top
degree. We refrain from giving the definition of these periods here in the interest
of brevity and instead refer the reader to [30, Sec. 4] for details. When the results
of [30] are combined with our Theorem 5.1.2, we obtain a special value result for
twists of Siegel eigenforms by Dirichlet characters. We now briefly describe this
result.

Let F be a holomorphic Siegel cusp form of weight l for Sp4(Z) that is an
eigenfunction for all the Hecke operators and is not of Saito-Kurokawa type. Let
ΠF = ΠF,f ⊗ ΠF,∞ be the lift to GL4(A); here ΠF,f denotes the finite part of
the automorphic representation ΠF . Let Q(ΠF ) denote the rationality field of ΠF

as defined in [10]. This is a totally real number field, and by the argument of
Lemma 5.3.1, we know that Q(ΠF ) equals the field generated by all the Hecke
eigenvalues of F . For convenience we will denote Q(ΠF ) by Q(F ). For χ a Hecke
character of A of finite order, let Q(χ) denote the number field generated by the
image of χ and let Q(F, χ) denote the compositum of Q(F ) and Q(χ). Define Q(σF )
, Q(σχ) and Q(σF, σχ) similarly.

Remark 5.3.2. By Mizumoto [59], it is known that for any integer l, there
exists an orthogonal basis {F1, F2, . . . , Fd} comprising of Hecke eigenfunctions for
Sl

(
Sp4(Z),C

)
such that each Fi ∈ Sl

(
Sp4(Z),Q(Fi)

)
.
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Let ω+(ΠF,f ) and ω−(ΠF,f ) be the periods as defined in [30, Sect. 4]. For
convenience, let us denote them by ω+(F ) and ω−(F ) respectively. These are non-
zero complex numbers obtained from comparing cohomologies in top degree. Also
let c(ΠF,∞,0) be as in [30, Sect. 6.6] and denote c(ΠF,∞, 0)−1 by ω∞(l); this notation
is justified because c(ΠF,∞, 0) depends only on the weight l. Then, applying the
main theorem of [30] to the representation ΠF leads to the following special value
result.

Theorem 5.3.3 ([30], Corollary 8.3.1). Let F be a cuspidal Siegel eigenform
of weight l for Sp4(Z) that is not of Saito-Kurokawa type and let χ be a Hecke
character of A of finite order. Let εχ ∈ {+,−} denote the sign of χ(−1), G(χf )
denote the Gauss sum for χ and Lf (s, πF × χ) =

∏
p<∞ L(s, πF,p × χp) denote the

finite part of the L-function. Define

A(F, χ) =
Lf (

1
2 , πF × χ)

ωεχ(F )ω∞(l)G(χf)2
.

Then we have

i) A(F, χ) ∈ Q(F, χ),
ii) For any automorphism σ of C, we have σ(A(F, χ)) = A(σF, σχ).

Remark 5.3.4. In [32], Harris defined certain “occult” periods for GSp4 by
comparing rational structures on Bessel models and rational structures on coherent
cohomology and used these to study the critical values of the degree 4 L-function
for GSp4.

As a corollary to Theorem 5.3.3, we immediately obtain the following result.

Corollary 5.3.5. Let d1 and d2 be two fundamental discriminants of the same
sign, and let χd1

, χd2
be the associated quadratic Dirichlet characters. Let F be a

cuspidal Siegel eigenform of weight l for Sp4(Z) that is not of Saito-Kurokawa type.
Then we have

Lf (
1

2
, πF × χd1

) ∼Q(F ) Lf (
1

2
, πF × χd2

),

where ”∼Q(F )” means up to multiplication by an element in the number field Q(F ).

Remark 5.3.6. In [5], Böcherer made a remarkable conjecture that expresses
the central values Lf (

1
2 , πF × χd), as d varies over negative fundamental discrim-

inants, in terms of the Fourier coefficients of F of discriminant d. In particular,
Böcherer’s conjecture implies Corollary 5.3.5 above for the case that d1, d2 are
both negative. Thus Corollary 5.3.5 can be read as providing evidence towards
Böcherer’s conjecture.

Critical value result for GSp4 × GL2. Next, we provide a critical value result
for GSp4×GL2. This result will not use our lifting theorem, but instead will follow
from the integral representation (Theorem 3.6.1) using the methods of [73].

Theorem 5.3.7. Let F be a cuspidal Siegel eigenform of weight l for Sp4(Z)
such that F ∈ Sl

(
Sp4(Z),Q(F )

)
. Let g ∈ Sl(N,χ) be a primitive Hecke eigenform of

level N and nebentypus χ; here N is any positive integer, and χ a Dirichlet character
mod N . Let πF and τg be the irreducible, cuspidal, automorphic representations of
GSp4(A) and GL2(A) corresponding to F and g. Let Q(F, g, χ) be the field generated
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by the Hecke eigenvalues of F , the Hecke eigenvalues of g and the values taken by
χ. For a positive integer k, 1 ≤ k ≤ �

2 − 2, define

A(F, g; k) =
Lf (

�
2 − k, πF × πg)

π5�−4k−4〈F, F 〉〈g, g〉 .

Then we have,

i) A(F, g; k) ∈ Q(F, g, χ),
ii) For an automorphism σ of C, σ(A(F, g; k)) = A(σF, σg; k).

Remark 5.3.8. Note that the first claim of the above theorem actually follows
from the second.

Remark 5.3.9. Partial results towards the above theorem have been previously
obtained by Böcherer–Heim [6], Furusawa [19], and various combinations of the
authors [64,66,72,73].

Proof. The proof is essentially identical to that of Theorem 8.1 of [73] which
proved the above result under certain restrictions on N , χ and F . More precisely,
in [73], N was assumed to be squarefree and all its prime divisors inert in a cer-
tain quadratic field, χ was assumed to be trivial, and F was assumed to satisfy a
certain non-vanishing condition on the Fourier coefficients. These restrictions were
necessary because the relevant integral representation [73, Thm. 6.4] in that paper
was proved only under these assumptions. The special value result in that paper
followed from the integral representation by first rewriting the integral represen-
tation in classical language and then using results of Garrett and Harris and the
theory of nearly holomorphic functions due to Shimura.

However, in the current paper, the second integral representation (Theorem
3.6.1) works for general N and χ and the non-vanishing assumption on F is always
satisfied, as shown in [75]. Now, Theorem 5.3.7 follows in an identical manner
as in [73], because the remaining ingredients (the theory of nearly holomorphic
functions and the results of Garrett and Harris) are true for general N and χ. It is
worth noting, however, that we still need to assume that the weights of F and g are
equal (even though the integral representation, Theorem 3.6.1, works for arbitrary
g) because otherwise the Eisenstein series EΥ(g, s) at the right-most critical point
(corresponding to s = l

6 − 1
2 ) is no longer holomorphic.

�
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