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Lifting from ˜SL(2) to GSpin(1, 4)

Ameya Pitale

1 Introduction

In [15], Ikeda defines a lifting of automorphic forms from ˜SL2 to the symplectic group

GSp4n for all n. Ikeda proves his result using the theory of Fourier-Jacobi forms. For n=1

he shows that his definition agrees with the classical Saito-Kurokawa lift. In [7], Duke

and Imamoḡlu prove the automorphy of the classical Saito-Kurokawa lift from holomor-

phic half-integer weight forms using the converse theorem for Sp4 due to Imai [16].

In this paper we present the lifting of automorphic forms from ˜SL2, the metaplec-

tic group, to the Spin group GSpin(1, 4) using the Maaß converse theorem [24]. The rea-

son we choose to study lifts to the spin group is the following observation: for all primes

p �= 2, we have that GSp4(Qp) is isomorphic to GSpin(1, 4)(Qp) (see Proposition 6.3). This

relation between GSp4 and GSpin(1, 4) suggests the possibility of developing liftings for

the spin group analogous to Ikeda’s liftings for the symplectic group. Another motivation

for considering spin groups is to give applications for the Maaß converse theorem. As far

as we know, the Maaß converse theorem has been applied only once by Duke [6] to show

that a noncuspidal Theta series is automorphic for the group GSpin(1, 5). In this paper

we obtain a family of cuspidal automorphic forms for GSpin(1, 4) using the converse the-

orem.

To define the lifting, we start with a weight 1/2 Maaß Hecke eigenform f on the

complex upper half plane with respect to Γ0(4). The candidate function F on a symmetric

space of GSpin(1, 4) is defined in terms of a Fourier expansion with Fourier coefficients
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related to the Fourier coefficients of f as in the formula (3.4). The Maaß converse Theorem

2.3 states that the function F is cuspidal automorphic with respect to the integer points

of GSpin(1, 4) if and only if a family of Dirichlet series is “nice” (“nice” means analytic

continuation, bounded on vertical strips, and functional equation). To obtain the “nice”

properties of the Dirichlet series, we use the method of Duke and Imamoḡlu in [7] to

rewrite the Dirichlet series in terms of a Rankin triple integral of the function f, a cer-

tain Theta function, and an Eisenstein series with respect to Γ0(4). Then essentially the

“nice” properties of the Eisenstein series give us the corresponding “nice” properties of

the Dirichlet series.

Another interesting result of the paper is related to the nonvanishing of the lift.

In [15] it is shown that the nonvanishing of the Ikeda lift is equivalent to the nonvan-

ishing of certain Fourier coefficients of the holomorphic half-integer weight form, which

follows from a straightforward calculation in [18]. In our case, the nonvanishing of the

lift F is equivalent to the nonvanishing of certain negative Fourier coefficients of f. It

seems that it is not possible to get nonvanishing of specifically negative Fourier coef-

ficients of f using elementary methods as in [18]. To achieve this we use the work of

Baruch and Mao [2] to prove a Waldspurger-type (or Kohnen-Zagier-type) formula which

relates the square of the negative Fourier coefficient of f to special values of L-functions

(Theorem 4.3). Then we get the nonvanishing of the lift F by the results of Friedberg and

Hoffstein [10] on nonvanishing of special values of L-functions.

We also analyze the adelic automorphic representation πF of the group GSpin(1,

4)(A) obtained from the automorphic function F. To do this, we first show that if f is a

Hecke eigenfunction, then so is F and explicitly calculate the eigenvalues of F in terms of

the eigenvalues of f. Since the p-adic component (p an odd prime) of πF is an irreducible

unramified representation of GSpin(1, 4)(Qp) (� GSp4(Qp)), we know that it is the unique

spherical constituent of the representation obtained by induction from an unramified

character on the Borel subgroup. In Theorem 6.5, we obtain the explicit description of

this character in terms of the eigenvalue of f using the Hecke theory for the Spin group.

Using the precise information about the local representations, we show that the

representation πF is a CAP representation. Let us remind the reader that if G is a re-

ductive algebraic group and P a parabolic subgroup, then an irreducible cuspidal auto-

morphic representation π of G(A) is called cuspidal associated to parabolic (CAP) sub-

group P if there is an irreducible cuspidal automorphic representation σ of the Levi sub-

group of P such that π is nearly equivalent to an irreducible component of IndGP (σ). The

notion of CAP representations was first introduced by Piatetski-Shapiro [27] for the

group Sp4. The CAP representations are very interesting because they provide counterex-

amples to the generalized Ramanujan conjecture. CAP representations on Sp4 have been
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extensively studied by Piatetski-Shapiro in [27] and Soudry in [34, 35]. In [11, 28], fam-

ilies of CAP representations on the split exceptional group of type G2 have been con-

structed. In [12] the authors give a criterion for an irreducible cuspidal automorphic

representation of a split group of type D4 to be a CAP representation. In these papers

the method used to construct CAP representations is theta lifting of various types. In

[15], Ikeda shows that the lift he obtains is a CAP representation.

The representation πF constructed here is interesting in this context because it

is CAP to a representation of GSp4(A) instead of GSpin(1, 4)(A) (Theorem 6.7). If one con-

siders Langland’s philosophy, then it is natural to extend the notion of CAP representa-

tions to the situation where the group G is replaced by two groups G1, G2 which satisfy

G1,ν � G2,ν for almost all νwhich is the case in our present setting.

2 Preliminaries

Our main tool to prove the automorphy is the Maaß converse theorem which is stated in

terms of Vahlen matrices. So we will get a realization of a symmetric space for the group

Spin(1, 4) in terms of Vahlen matrices which we define below. Then we will define auto-

morphic functions and state the Maaß converse theorem. We end the section with the

definition and basic properties of half-integer weight Maaß forms. The main references

for Sections 2.1 and 2.2 are [8, 9, 24] where the authors have considered the general case

of Spin(1, n). Here we will specialize their notation and results to the case Spin(1, 4).

2.1 Vahlen matrices

Let C2(R) := {α = α0 + α1i1 + α2i2 + α3i1i2 : αj ∈ R, j = 0, 1, 2, 3 and i21 = i22 = −1, i1i2 =

−i2i1} be the algebra of real quaternions. For α as above define α∗ := α0 + α1i1 + α2i2 −

α3i1i2,α
′ := α0−α1i1−α2i2+α3i1i2, ᾱ := α0−α1i1−α2i2−α3i1i2, and Norm(α) = |α|2 := αᾱ.

The Vahlen group of matrices is defined by

SV2(R) :=

{(

α β

γ δ

)

∈M2

(

C2(R)
)

: αδ∗ − βγ∗ = 1, αβ∗, δγ∗ ∈ V2
}
, (2.1)

where V2 := R + Ri1 + Ri2. It is shown in [8, page 377] that SV2(R) is generated by the

matrices
(

0 1
−1 0

)

,
(

1 β
0 1

)

with β ∈ V2. Also, in [8, page 382] it is shown that

SV2(R) � Spin(1, 4). (2.2)
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Define the 4-dimensional hyperbolic upper-half space as

H3 :=
{
x0 + x1i1 + x2i2 + x3i3 : xj ∈ R for j = 0, . . . , 3 and x3 > 0

}
. (2.3)

Here i3 satisfies i23 = −1 and i3ij = −iji3 for j = 1, 2. We consider C2(R) and H3 to be

contained in the Clifford algebra over R generated by the units i1, i2, i3 with relations i2j =

−1, ijik = −ikij for j �= k. The line element ds2 = (dx20 + · · · + dx23)/x23 defines a Riemannian

metric d on H3. The Laplace Beltrami operator is given by

Ω3 := x3+1
3

3∑
j=0

∂

∂xj

(

x−3+1
3

∂

∂xj

)

= x23

3∑
j=0

∂2

∂x2j
− (3 − 1)x3

∂

∂x3
. (2.4)

We now state the result on isometries of H3 [8, page 381].

Proposition 2.1. If
(

α β
γ δ

) ∈ SV2(R) and z ∈ H3, then γz + δ ∈ R + Ri1 + Ri2 + Ri3 and

(

α β

γ δ

)

· z := (αz + β)(γz + δ)−1 ∈ H3. (2.5)

Formula (2.5) defines an action of SV2(R) on H3 by orientation preserving isometries.

This action keeps the metric d and the Laplace Beltrami operator Ω3 invariant. The re-

sulting sequence 1 → {1,−1} → SV2(R) → Iso+(H3) → 1 is exact. Here Iso+(H3) is the set

of orientation preserving isometries of H3. �

2.2 Automorphic functions and MCT

Let us now define automorphic functions for SV2(R). Fix the subgroup ΓT of SV2(R) de-

fined by

ΓT :=

〈(

0 1

−1 0

)

,

(

1 β

0 1

)

: β ∈ T
〉

, (2.6)

where T is a fixed lattice in V2.

Definition 2.2 (automorphic function). A complex-valued C∞ -function F on H3 is called

automorphic with respect to ΓT if

(1) Ω3F + (r2 + 32/4)F = 0 for some r ∈ R,

(2) for certain positive constants κ1 and κ2, F(x) = O(xκ1

3 ) for x3 → ∞ and F(x) =

O(x−κ2

3 ) for x3 → 0 uniformly on x0, x1, x2,

(3) F(γx) = F(x) for all γ ∈ ΓT , x ∈ H3.
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As given in [24], the conditions (1) and (2) together with the invariance under the

translations in ΓT are equivalent to the fact that F(x) has the following Fourier expansion:

F(x) = u0
(

x3
)

+
∑
β∈S
β�=0

A(β)x3/23 Kir
(

2π|β|x3
)

e2πiRe(βx), (2.7)

where

u0
(

x3
)

=

⎧⎨
⎩a1x

3/2+ir
3 + a2x

3/2−ir
3 if r �= 0,

a1x
3/2
3 + a2x

3/2
3 log x3 if r = 0.

(2.8)

Here Kir is the classical K-Bessel function that satisfies Kir(y) → 0 as y → ∞. We have

Re(x0 + x1i1 + x2i2 + x3i3) := x0 and S is the lattice in V2 dual to lattice T defined by

S := {β ∈ V2 : Re(βT) ⊂ Z}. If u0(x3) = 0, then we call F a cuspidal automorphic function.

In Section 3.1 we will make a choice of the lattice T such that ΓT has only one cusp, hence

the notation is justified.

For every nonnegative integer l fix a basis {Pl,ν} of spherical harmonic polynomi-

als of degree l in 3 variables. In [24], Maaß proves the following converse theorem.

Theorem 2.3 (Maaß converse theorem). The following two statements are equivalent.

(1) F(x) =
∑
β∈S
β�=0

A(β)x3/23 Kir(2π|β|x3)e2πiRe(βx) is a cuspidal automorphic func-

tion with respect to ΓT .

(2) For all l, Pl,ν, the ξ(s, Pl,ν) := π−2sΓ(s + ir/2)Γ(s − ir/2)
∑
β∈S
β�=0

(A(β)Pl,ν(β)/

(|β|2)s) satisfy the following:

(a) ξ(s, Pl,ν) have analytic continuation to the complex plane,

(b) ξ(s, Pl,ν) are bounded on vertical strips,

(c) ξ(s, Pl,ν) satisfy the functional equation

ξ

(

3

2
+ l − s, Pl,ν

)

= (−1)lξ
(

s, P ′
l,ν

)

, (2.9)

where P ′
l,ν(β) := Pl,ν(β ′) for β ∈ V2. �

In [24], Maaß proves the above theorem for the group Spin(1, n), n ≥ 2. Also, his

statement is more general than the one above in the sense that he allows F to be noncus-

pidal and correspondingly ξ(s, P0) can have 2 simple poles. To prove Theorem 2.3, Maaß

first gets the following criteria for a function on H3 to be identically zero.

Proposition 2.4. Let g(x) be a twice continuously differentiable function on H3 satisfy-

ing Ω3g + (r2 + 32/4)g = 0 for some r ∈ R. Since Ω3 is an elliptic operator, g(x) can be
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extended to a complex neighbourhood U about any point in H3 such that g(x) represents

a regular analytic function in complex variables x0, x1, x2, x3 on U. g(x) vanishes identi-

cally in H3 if and only if for any set of complex numbers a0, a1, a2 with a20 + a21 + a22 = 0

and any real x3 > 0, the conditions

(

dl

dtl
g
((

a0 + a1i1 + a2i2
)

t + x3i3
)

)

t=0

= 0 (2.10)

are satisfied for l = 0, 1, 2, . . .. �

Observe that in the case of a holomorphic function f on the upper half plane,

modularity with respect to SL2(Z) is equivalent to checking the periodicity (f(z + 1) −

f(z) = 0) and the condition f(−z−1) = (−z)kf(z) only for z = iy. The second condition is

a direct consequence of the holomorphy of f. In our case, Proposition 2.4 replaces this

condition. Note that l = 0 corresponds to g(i3x3) = 0.

Take g(x) = F(x)−F(−x−1) with F as in (2.7). Observe that F(x) is automorphic with

respect to ΓT if and only if g(x) ≡ 0. Maaß uses Proposition 2.4 along with the standard

method of Mellin transform and Mellin inversion to complete the proof of Theorem 2.3.

2.3 Maaß forms on SL2 of half-integral weight

Automorphic forms for the metaplectic group ˜SL2 can be realised as half-integer weight

forms on the upper half plane with respect to the group Γ0(4) :=
{(
a b
c d

) ∈ SL2(Z) : c ≡
0(mod 4)

}
. Let St+1/2(4), t ∈ Z be the space of functions f on the upper half plane H = {z =

x + iy : x, y ∈ R, y > 0} satisfying the following.

(1) For all γ =
(

a b
c d

) ∈ Γ0(4)

f(γz) =

(

ε−1
d

(

c

d

)(

cz + d

|cz + d|

)1/2
)2t+1

f(z), (2.11)

where

εd =

⎧⎨
⎩1 if d ≡ 1(mod 4);

i if d ≡ 3(mod 4);
(2.12)

and (·/·) is the Legendre symbol.

(2) Δt+1/2f + λf = 0 for some λ ∈ C where Δt+1/2 is the Laplace operator given

by

Δt+1/2 := y2
(

∂2

∂x2
+
∂2

∂y2

)

−

(

t +
1

2

)

iy
∂

∂x
. (2.13)
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(3) f vanishes at the cusps of Γ0(4) (the cusps of Γ0(4) are given by ∞, 0, and 1/2).

f has the Fourier expansion

f(z) =
∑
n∈Z

n�=0

c(n)Wsign(n)(t+1/2)/2,ir/2
(

4π|n|y
)

e2πinx, (2.14)

where λ = 1/4+(r/2)2 andWν,μ(y) is the classical Whittaker function. The numbers {c(n)}

are called the Fourier coefficients of f. For more details on half-integral weight Maaß

forms we refer the reader to [17, 20].

Define the plus space

S+
t+1/2(4) :=

{
f ∈ St+1/2(4) | c(n) = 0whenever (−1)tn ≡ 2, 3(mod 4)

}
. (2.15)

This is analogous to the Kohnen plus space for holomorphic half-integral weight modu-

lar forms introduced in [18]. For t = 0, S+
1/2(4) is same as the plus space defined in [17]

where it is shown to be nonempty. It will follow from Lemma 2.5 below that S+
t+1/2(4) is

nonempty for t ∈ Z.

For t = 0 and every odd prime p define Hecke operators T(p2) : S1/2(4) → S1/2(4),

f → (T(p2)f)(z) :=
∑
n�=0 c

(p)(n)Wsign(n)/4,ir/2(4π|n|y)e2πinx by the formula

c(p)(n) = pc
(

np2
)

+ p−1/2

(

n

p

)

c(n) + p−1c

(

n

p2

)

. (2.16)

Katok and Sarnak [17] give us that the T(p2) commute with each other, commute with

Δ1/2, and (2.16) implies that if c(n) = 0whenever (−1)tn ≡ 2, 3(mod 4), then c(p)(n) satis-

fies the same condition, that is, T(p2) keep S+
1/2(4) stable.

Define the following operators.

(1) Lowering operator Lt+1/2 := (z− z)(∂/∂z)+ (t + 1/2)/2 = iy(∂/∂x)−y(∂/∂y)+

(t + 1/2)/2 : St+1/2(4) → St−2+1/2(4) satisfies Δt−2+1/2Lt+1/2(f) =

λLt+1/2(f) whenever Δt+1/2(f) = λf.

(2) Raising operator Rt+1/2 := −(z−z)(∂/∂z)−(t + 1/2)/2 = −iy(∂/∂x)−y(∂/∂y)−

(t + 1/2)/2 : St+1/2(4) → St+2+1/2(4) satisfies Δt+2+1/2Rt+1/2(f) =

λRt+1/2(f) whenever Δt+1/2(f) = λf.

(3) Inverting operator It+1/2 : St+1/2(4) → S−(t+1/2)(4) defined by (It+1/2f)(z) :=

f(z) satisfies Δ−(t+1/2)It+1/2(f) = λIt+1/2(f) whenever Δt+1/2(f) = λf.

For more on these operators see [6]. Also, note that the raising and lowering operators

above are the same as those defined by Bump [3, Section 2.1] if we replace the half inte-

gers with integers. These operators along with Lemma 2.5 below give us the freedom to
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move f ∈ S+
1/2(4) to functions in S+

t+1/2(4) for t ∈ Z. This will be crucial in the proof of the

nonvanishing result in Section 4.

The recurrence relations for the classical Whittaker functions stated in [25, page

302] give us the following lemma.

Lemma 2.5. Let c(n), cL(n), cR(n), and cI(n) be the Fourier coefficients of f, Lt+1/2(f),

Rt+1/2(f), and It+1/2(f), respectively, then

cL(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c(n) if n < 0,
⎛

⎜

⎝

ir

2
+
1

2
−
t +

1

2
2

⎞

⎟

⎠

⎛

⎜

⎝

t +
1

2
2

+
ir

2
−
1

2

⎞

⎟

⎠
c(n) if n > 0,

(2.17)

cR(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛

⎜

⎝

ir

2
+
1

2
+
t +

1

2
2

⎞

⎟

⎠

⎛

⎜

⎝
−
t +

1

2
2

+
ir

2
−
1

2

⎞

⎟

⎠
c(n) if n < 0,

c(n) if n > 0,

(2.18)

cI(n) = c(−n). (2.19)
�

3 Lifting from ˜SL2 to Spin(1, 4)

In this section we will start with a function f ∈ S+
1/2(4) and define a function F on H3

given by the Fourier expansion F(x) =
∑
β∈S
β�=0

A(β)x3/23 Kir(2π|β|x3)e2πiRe(βx). Then we use

Theorem 2.3 to prove that the function F is a cuspidal automorphic function.

3.1 Definition of A(β)

Fix the lattice T := Z + Zi1 + Zi2 ⊂ V2. This lattice is self-dual, that is, S = T .

Proposition 3.1. For T as above,

ΓT = SV2(Z) := SV2 ∩M2

(

C2(Z)
)

, (3.1)

where C2(Z) is the order in C2 consisting of elements whose coefficients are in Z, that is,

generated by {1, i1, i2, i1i2} over Z. In particular, ΓT is discrete, arithmetic, and has finite

covolume. �

Proof. It is clear that ΓT ⊂ SV2(Z). To show the other inclusion, we will first show that

given a matrixM =
(

α β
γ δ

) ∈ SV2(Z) we can find an element g ∈ ΓT such that gM is upper
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triangular. By multiplying on the left by the matrix
(

0 1
−1 0

)

if necessary, we can assume

that |α|2 ≥ |γ|2. We will first show that we can find a g0 ∈ ΓT such that the norm of the

lower-left matrix entry of g0M is strictly less than |γ|2. From [8, page 373] we know that

αγ̄ ∈ V2 ⇒ αγ−1 = αγ̄/|γ|2 ∈ V2. Hence we can find a u ∈ T such that |αγ−1 − u|2 < 1 ⇒
|α − uγ|2 < |γ|2. Now consider

(

0 1

−1 0

)(

1 −u

0 1

)

M =

(

γ δ

−(α − uγ) −(β − uδ)

)

. (3.2)

Repeat the same process (finitely many times since the norm of the lower-left matrix

entry is a nonnegative integer and it decreases at each step) until you get an upper-

triangular matrix. So let g ∈ ΓT be such that gM =
(

α β
0 δ

)

. Since αδ∗ = 1, we conclude

that α is a unit, that is, α = ±1,±i1,±i2,±i1i2 and δ = α ′. One can check easily that
(

ε 0
0 ε ′

) ∈ ΓT for any unit ε. Hence

M = g−1

(

α 0

0 α ′

)(

1 ᾱβ

0 1

)

∈ ΓT (3.3)

as required.

Notice that SV2(Z) is the stabilizer of the latticeC2(Z)×C2(Z) in the vector space

C2 × C2. From [9, pages 261-262] we have that SV2(Z) and with it ΓT are discrete, arith-

metic, and have finite covolume. �

Remark 3.2. Let us note here that if we consider Spin(1, n) with n > 4, then the above

proposition is not true, that is, ΓT is not equal to the integer points of Spin(1, n), n > 4.

In fact, the group ΓT does not have finite covolume and is not arithmetic. So, in a sense,

Spin(1, 4) is the only interesting case to apply the Maaß converse theorem. For higher

values of n, the converse theorem is an analog of Hecke’s converse theorem for triangle

subgroups in SL2 [14].

Let f ∈ S+
1/2(4) be a nonzero Hecke eigenform with the Fourier expansion (2.14)

and Fourier coefficients {c(n)}. Write β = β0+β1i1+β2i2 ∈ S as β = 2ud(α0+α1i1+α2i2),

where gcd(α0, α1, α2) = 1, u ≥ 0, and d is odd.

Define

A(β) := 23/4|β|

u∑
t=0

(∑
n|d

c

(

−|β|2

(

2tn
)2

)

n−1/2

)

(−1)t2t/2. (3.4)

The main result is as follows.
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Theorem 3.3. WithA(β) as above and r as in (2.14),

F(x) :=
∑
β∈S
β�=0

A(β)x3/23 Kir
(

2π|β|x3
)

e2πiRe(βx) (3.5)

is a cuspidal automorphic function on H3 with respect to ΓT . �

(1) We observe that the definition ofA(β) is similar to the Saito-Kurokawa lift for

Sp4. In the Sp4 case, one starts with g(z) =
∑∞
n=1 b(n)e2πinz, a holomorphic cusp form of

weight k+ 1/2which lies in the Kohnen plus space. The Saito-Kurokawa lift is then given

by G(Z) =
∑
B>0 a(B)e2πiTr(BZ) : H2 → C (the sum is over all positive definite symmetric

half-integral 2× 2matrices and H2 is the Siegel upper half plane), where

a(B) := a

⎛

⎝

m
r

2
r

2
n

⎞

⎠ =
∑

d|(m,n,r)

dkb

(

det(2B)
d2

)

. (3.6)

The above formula differs from (3.4) in the sense that in (3.4) we have to treat the prime

2 dividing gcd(β0, β1, β2) separately. This can be explained by noting that Sp4(Qp) �
Spin(1, 4)(Qp) for every odd prime p �= 2 as shown in Proposition 6.3.

(2) Note that we can find constants C0, k0 independent of β such that A(β) satis-

fies

∣

∣A(β)
∣

∣ < C0|β|k0 . (3.7)

This follows easily from the definition of A(β) and the fact that there exist positive

C1, k1 ∈ R such that |c(n)| < C1|n|k1 for all nonzero integers nwhere c(n) are the Fourier

coefficients of f ∈ S+
1/2(4).

3.2 Rankin integral formula

Maaß converse Theorem 2.3 says that it is enough to show that

ξ
(

s, Pl,ν
)

= π−2sΓ

(

s +
ir

2

)

Γ

(

s −
ir

2

)∑ ′

β∈S

A(β)Pl,ν(β)
(

|β|2
)s (3.8)

convergent for Re(s) 	 0 from (3.7), have analytic continuation, are bounded on vertical

strips, and satisfy the functional equation

ξ

(

3

2
+ l − s, Pl,ν

)

= (−1)lξ
(

s, P ′
l,ν

)

(3.9)
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for all integers l ≥ 0 and all spherical harmonic polynomials Pl,ν of degree l in 3 vari-

ables. Here the prime on the summation means that we exclude β = 0. Note thatA(−β) =

A(β) and Pl,ν(−β) = (−1)lPl,ν(β) give us

∑ ′

β∈S

A(β)Pl,ν(β)
(

|β|2
)s = (−1)l

∑ ′

β∈S

A(β)Pl,ν(β)
(

|β|2
)s (3.10)

which implies that if l is odd, then ξ(s, Pl,ν) = 0 and the above conditions are trivially

satisfied. Henceforth we assume that l is even.

The objective of this section is to get a Rankin integral formula for the Dirichlet

series ξ(s, Pl,ν) which we will use to show the required properties of Theorem 2.3. We

first substitute the definition (3.4) for A(β) in the formula for ξ(s, Pl,ν) to get the follow-

ing proposition.

Proposition 3.4.

ξ

(

s +
l

2
+
1

4
, Pl,ν

)

= π−2s−l−1/223/4
[

2s − 2−s

2s + 21−s

]

Γ

(

s +
l

2
+
1

4
+
ir

2

)

Γ

(

s +
l

2
+
1

4
−
ir

2

)

× ζ(2s)
∞∑
m=1

c(−m)b(m)
ms+l/2−1/4

,

(3.11)

where b(m) :=
∑

|β|2=m Pl,ν(β). �

The proof of this proposition involves interchanging the order of summation and

careful bookkeeping of the indices.

We now need the following Theta function and Eisenstein series to formulate the

Rankin integral formula. Define

Θl,ν(z) :=
∑
β∈Z3

Pl,ν(β)e2πi|β|2z =

∞∑
m=1

b(m)e2πimz. (3.12)

Here we have identified the lattice T defined in Section 3.1 with Z3. By [32, page 456],

Θl,ν(z) is a holomorphic modular form of weight l + 3/2 for the group Γ0(4), that is,

Θl,ν(γz) =

(

ε−1
d

(

c

d

)

(cz + d)1/2
)2l+3

Θl,ν(z) (3.13)

for γ =
(

a b
c d

) ∈ Γ0(4). It is cuspidal when l ≥ 1. Note that the function Θl,ν(z) is not

changed if we replace the polynomial Pl,ν(β) by Pl,ν
′(β) because {β : |β|2 = m} = {β ′ :

|β ′|2 = m}.
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As in [7], define the normalized Eisenstein series of weight −(l + 2) for Γ0(4) by

˜E∞ (z, s) := (4π)l/2
Γ(s + l + 1)

Γ(s)
(

π−sΓ(s)ζ(2s)
)1

2

∑
γ∈Γ∞ \Γ0(4)

(

cz + d

|cz + d|

)l+2

Im(γz)s.

(3.14)

Here γ =
(

a b
c d

)

and Γ∞ :=
{(
1 b
0 1

)

| b ∈ Z
}

. The above series converges for Re(s) 	 0.

From [7], ˜E∞ (z, s) has a meromorphic continuation to the whole complex plane with a

possibility of 2 simple poles with constant residues and is bounded on vertical strips.

The Eisenstein series satisfies

˜E∞ (γz, s) =

(

cz + d

|cz + d|

)−(l+2)
˜E∞ (z, s) (3.15)

for γ =
(

a b
c d

) ∈ Γ0(4).
Define the integral

I(s) :=

∫
Γ0(4)\H

f(z)Θl,ν(z)˜E∞ (z, s)y(l+2)/2−1/4dxdy

y2
. (3.16)

One can check that I(s) is well defined using the transformation property of the integrand

with respect to elements of Γ0(4). Note that I(s) is convergent for all s ∈ C. This is because

firstly, I(s) converges for all s which are not a pole for the Eisenstein series since f is

a cusp form and Θl,ν, ˜E∞ have moderate growth. At the poles of the Eisenstein series,

its residue is a constant and hence the residue of I(s) is given by a constant multiple of∫
Γ0(4)\H

f(z)Θl,ν(z)y(l+2)/2−1/4(dxdy/y2). This integral is zero since f is a nonholomorphic

cusp form and Θl,ν is a holomorphic form.

Proposition 3.5. For Re(s) 	 0,

I(s) = π−2s+1/42−2s−1/2Γ

(

s +
l

2
+
1

4
+
ir

2

)

× Γ
(

s +
l

2
+
1

4
−
ir

2

)

ζ(2s)
∞∑
m=1

c(−m)b(m)
ms+l/2−1/4

.

(3.17)

�

Proof.

I(s) = 2l−1πl/2−sΓ(s + l + 1)ζ(2s)︸ ︷︷ ︸
u(s)

×
∫
Γ0(4)\H

f(z)Θl,ν(z)
∑

Γ∞ \Γ0(4)

(

cz + d

|cz + d|

)l+2

Im(γz)sy(l+2)/2−1/4dxdy

y2
.

(3.18)



Lifting from ˜SL(2) to GSpin(1,4) 3931

Here we have used (3.14). Now using (2.11), (3.13) we get

I(s) = u(s)
∫
Γ∞ \H

f(z)Θl,ν(z)ys+(l+2)/2−1/4dxdy

y2

= u(s)
∫∞
0

∫1
0

⎡

⎢

⎣

∑
m∈Z

m�=0

c(m)Wsign(m)/4,ir/2
(

4π|m|y
)

e2πimx

⎤

⎥

⎦

×
[ ∞∑
n=1

b(n)e2πinz
]

ys+(l+2)/2−1/4dxdy

y2
.

(3.19)

We have used (2.14), (3.12). Now we integrate with respect to x first:

I(s) = u(s)
∞∑
m=1

c(−m)b(m)
∫∞
0

W−1/4,ir/2(4πmy)e−2πmyys+l/2−1/4dy

y
. (3.20)

The change of variable y → (4πm)−1y gives

I(s) = u(s)(4π)−(s+l/2−1/4
∞∑
m=1

c(−m)b(m)
ms+l/2−1/4

∫∞
0

W−1/4,ir/2(y)e−y/2ys+l/2−1/4dy

y

= π−2s+1/42−2s−1/2Γ

(

s +
l

2
+
1

4
+
ir

2

)

× Γ
(

s +
l

2
+
1

4
−
ir

2

)

ζ(2s)
∞∑
m=1

c(−m)b(m)
ms+l/2−1/4

.

(3.21)

For the integral formula above involving the Whittaker function, we refer the reader to

[25, page 316]. �

Comparing (3.17) with (3.11) we get the following proposition.

Proposition 3.6.

ξ

(

s +
l

2
+
1

4
, Pl,ν

)

= π−l−3/425/4
[

23s − 2s

2s + 21−s

] ∫
Γ0(4)\H

f(z)Θl,ν(z)˜E∞ (z, s)y(l+2)/2−1/4dxdy

y2

= π−l−3/425/4
[

23s − 2s

2s + 21−s

]

I(s).

(3.22)
�
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From the remarks about the convergence of I(s) made before Proposition 3.5, we

get the analytic continuation of ξ(s, Pl,ν) to the entire complex plane. Also, ξ(s, Pl,ν) is

bounded on vertical strips since the same is true of the Eisenstein series, f is a cusp form,

and Θl,ν has moderate growth. Now to complete the proof of Theorem 3.3, we need to

prove the functional equation of ξ(s, Pl,ν).

Observe that the functional equation from Maaß converse theorem ξ(3/2 + l −

s, Pl,ν) = (−1)lξ(s, P ′
l,ν) is equivalent to ξ(s+ l/2+1/4, Pl,ν) = ξ(1−s+ l/2+1/4, P ′

l,ν). This

implies that we have to show the functional equation

[

23s − 2s
]

I(s) =
[

23(1−s) − 2(1−s)]I(1 − s) (3.23)

since the term 2s + 21−s in the denominator of (3.22) is already invariant under s → 1− s.

(Note that I(s) is unchanged if Pl,ν is replaced by P ′
l,ν since the same is true of Θl,ν.)

We remark here that in the definition (3.4) of A(β), the terms involving prime 2

are chosen so that we get the appropriate rational function in 2s which together with the

integral I(s) have a functional equation.

3.3 The functional equation

To get (3.23), we will use the functional equation for the Eisenstein series. For that, we

need to define two more Eisenstein series corresponding to the cusps 0 and 1/2 of Γ0(4)

as in [7]:

˜E0(z, s) :=

(

−z

|z|

)l+2

˜E∞
(

−1

4z
, s

)

, (3.24)

˜E1/2(z, s) :=

(

−2z + 1

| − 2z + 1|

)l+2

˜E∞
(

−1

4z − 2
, s

)

. (3.25)

We have the following lemma [7, page 352].

Lemma 3.7.

˜E∞ (z, 1 − s) =
24s−3

1 − 22s−2︸ ︷︷ ︸
d1(s)

˜E∞ (z, s) +
22s−2

(

1 − 22s−1
)

1 − 22s−2︸ ︷︷ ︸
d2(s)

[

˜E0(z, s) + ˜E1/2(z, s)
]

. (3.26)

�
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Let us define Ij(s) :=
∫
Γ0(4)\H

f(z)Θl,ν(z)˜Ej(z, s)y(l+2)/2−1/4(dxdy/y2) for j = 0, 1/2.

Now (3.26) gives us

I(1 − s) = d1(s)I(s) + d2(s)
[

I0(s) + I1/2(s)
]

. (3.27)

To simplify the above expression, we need the following transformation laws for f

and Θl,ν.

Lemma 3.8.

eiπ/4
(

z

|z|

)−1/2

f

(

−1

4z

)

=
√
2f0(z), (3.28)

eiπ/4
(

z

|z|

)−1/2

f

(

−1

4z
+
1

2

)

=
√
2f1(z), (3.29)

Θl,ν

(

−
1

4z

)

= (−i)l23/2(−iz)l+3/2
∑

m≡0(mod 4)

b(m)e2πim(z/4), (3.30)

Θl,ν

(

−
1

4z
+
1

2

)

= (−i)l23/2(−iz)l+3/2
∑

m≡3(mod 4)

b(m)e2πim(z/4), (3.31)

where fj(z) :=
∑
m≡j(mod 4) c(m)Wsign(m)/4,ir/2(4π|m|y/4)e2πim(x/4) for j = 0, 1. �

Proof. The first two equations follow from [17] or [7, page 354]. Following Shimura [32],

we define the following Theta functions for each h ∈ Z3:

Θl,ν(z;h) :=
∑

β≡h(mod 2)

Pl,ν(β)e2πi|β|2(z/4). (3.32)

It is clear from the definition that Θl,ν(z) =
∑
h(mod 2)Θl,ν(4z;h). Shimura [32, page 454]

gives us the following formulae for Θl,ν(z;h):

Θl,ν

(

−
1

z
;h

)

= (−i)l2−3/2(−iz)l+3/2
∑

k(mod 2)

e
tkh/2Θl,ν(z; k),

Θl,ν(z + 2;h) = e
thh/2Θl,ν(z;h),

(3.33)

where tk stands for the transpose. Using these formulae, a straightforward calculation

gives us the last two equations of the lemma. �

SetΘ0l,ν(z) :=
∑
m≡0(mod 4) b(m)e2πim(z/4) andΘ3l,ν(z) :=

∑
m≡3(mod 4) b(m)e2πim(z/4).
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Proposition 3.9.

I0(s) + I1/2(s) = −22sI(s). (3.34)
�

Proof. Since I0(s), I1/2(s), and I(s) are analytic functions, it is enough to prove (3.34) for

Re(s) 	 0. So we will assume that Re(s) 	 0 and proceed as in the proof of Proposition

3.5. We have

I0(s) =

∫
Γ0(4)\H

f(z)Θl,ν(z)˜E0(z, s)y(l+2)/2−1/4dxdy

y2
. (3.35)

We make the change of variable z → −1/4z. This corresponds to the action by the element
(

0 1/2
−2 0

)

in SL(2,R) which normalizes Γ0(4):

I0(s) =

∫
Γ0(4)\H

f

(

−1

4z

)

Θl,ν

(

−1

4z

)

˜E0

(

−1

4z
, s

)

Im

(

−1

4z

)(l+2)/2−1/4
dxdy

y2
. (3.36)

Now using (3.24), (3.28), and (3.30) we get

I0(s) = −2−l+1/2

∫
Γ0(4)\H

f0(z)Θ0l,ν(z)˜E∞ (z, s)y(l+2)/2−1/4dxdy

y2
. (3.37)

Proceeding as in the evaluation of I(s)

I0(s) = −2−l+1/2u(s)

×
∑

m≡0(mod 4)

c(−m)b(m)
∫∞
0

W−1/4,ir/2

(

4πm
y

4

)

e−2πm(y/4)ys+l/2−1/4dy

y
.

(3.38)

u(s) was defined in Proposition 3.5. Change of variable y → (πm)−1y gives

I0(s) = −2−l+1/2u(s)(π)−(s+l/2−1/4)

×
∑

m≡0(mod 4)

c(−m)b(m)
ms+l/2−1/4

∫∞
0

W−1/4,ir/2(y)e−y/2ys+l/2−1/4dy

y

= −2−1/2π−2s+1/4Γ

(

s +
l

2
+
1

4
+
ir

2

)

Γ

(

s +
l

2
+
1

4
−
ir

2

)

ζ(2s)

×
∑

m≡0(mod 4)

c(−m)b(m)
ms+l/2−1/4

.

(3.39)
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In the case of the integral I1/2(s), we make a change of variable z → −1/4z + 1/2 corre-

sponding to the action by the element
(

1 1/2
−2 0

)

in SL(2,R) which normalizes Γ0(4). Since

this change of variable gives the same expression for f(z),Θl,ν(z), ˜E1/2(z, s), and ywith f0

and Θ0l,ν replaced by f1 and Θ3l,ν, respectively, the calculation for I1/2(s) proceeds in the

exact same way as above to yield

I1/2(s) = −2−1/2π−2s+1/4Γ

(

s +
l

2
+
1

4
+
ir

2

)

× Γ
(

s +
l

2
+
1

4
−
ir

2

)

ζ(2s)
∑

m≡3(mod 4)

c(−m)b(m)
ms+l/2−1/4

.

(3.40)

This gives us

I0(s) + I1/2(s)

= −2−1/2π−2s+1/4Γ

(

s +
l

2
+
1

4
+
ir

2

)

Γ

(

s +
l

2
+
1

4
−
ir

2

)

ζ(2s)
∞∑
m=1

c(−m)b(m)
ms+l/2−1/4

= −22sI(s).

(3.41)
�

An easy calculation gives us

d1(s) − 22sd2(s) =
23s − 2s

23−3s − 21−s
. (3.42)

Using (3.27), (3.34), and (3.42) we finally get the following theorem.

Theorem 3.10.

(

23(1−s) − 2(1−s))I(1 − s) =
(

23s − 2s
)

I(s). (3.43)

�

This gives us the required functional equation for ξ(s, Pl,ν) and completes the

proof of our main Theorem 3.3.

4 Nonvanishing of A(β)

We will first show thatA(β) is nonvanishing if and only if certain Fourier coefficients c(n)

are nonzero. To get the nonvanishing of c(n), we derive an analogue of the Waldspurger

formula for the Fourier coefficients of nonholomorphic Maaß forms for SL2(R) following

the paper of Baruch and Mao [2]. This formula relates the value of |c(n)|2 with the central

value of L-functions. Finally, we use the results of Friedberg and Hoffstein [10] to get the

nonvanishing of the L-values.
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4.1 Criteria for nonvanishing

We have assumed that f(z) is a Hecke eigenfunction. So for an odd prime pwe have

pc
(

np2
)

+ p−1/2

(

n

p

)

c(n) + p−1c

(

n

p2

)

= λpc(n), (4.1)

where T(p2)f = λpf.

Theorem 4.1. A(β) = 0 for all β ∈ V2(Z) if and only if c(−n) = 0 for all n > 0 and not of

the form n = 4u(8k + 7). �

Proof. We remind the reader of a fact in basic number theory: a positive integer n can be

written as a sum of three squares if and only if n is not of the form 4u(8k + 7).

First let us assume that c(−n) = 0 unless n = 4u(8k + 7). From the definition (3.4)

we can immediately conclude thatA(β) = 0 for all β ∈ S since |β|2/(2tn)2 is always of the

form 4umwithm �≡ 7(mod 8).

To show the converse let us now assume that A(β) = 0 for all β ∈ V2(Z). We want

to show that if n = 4um, wherem �≡ 7(mod 8), then c(−n) = 0. It is clear that we can take

4 � m. Ifm is square-free, then choose β ∈ T such that |β|2 = m. We get c(−4um) = 0 from

the definition of A(β) and induction on u. Now if n = 4umj2 with m square-free and j

odd, then we get c(−n) = 0 from the use of (4.1) and c(−4um) = 0which is already shown

above. �

4.2 Waldspurger’s formula for Maaß forms

In their paper [2], Baruch and Mao get an adelic Waldspurger’s formula and, as an appli-

cation, use it to derive the Kohnen-Zagier formula for holomorphic half-integral weight

forms [19]. We will follow their paper and do the required calculation to get the Maaß

forms case.

Let A denote the ring of adeles for the global field Q. Let (π, Vπ) be an irreducible

cuspidal automorphic representation of GL2(A) and ψ a nontrivial additive character of

A/Q. Then π � ⊗ ′
νπν where (πν, Vπν) is an irreducible cuspidal automorphic represen-

tation of GL2(Qν). Let {Wφ | φ ∈ Vπ} be the Whittaker model for π with respect to the

characterψ. Fix a finite set S of places ν containing those where πν is not unramified. Fix

unramified vectors φ0,ν for ν �∈ S. Now choose local Whittaker functionals Lν such that

Lν(φ0,ν) = 1 and ‖φ0,ν‖ν = 1 for all ν �∈ S. Here ‖ · ‖ν is defined by

∥

∥φν
∥

∥

ν
=
(

φν, φν
)

:=

∫
Q∗
Lν

(

πν

((

a 0

0 1

))

φν

)

Lν

(

πν

((

a 0

0 1

))

φν

)

da

|a|ν
.

(4.2)
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Let φ = ⊗ν∈Sφν ⊗ν �∈S φ0,ν ∈ Vπ such that Lν(φν) �= 0 for ν ∈ S. Here we have fixed an

identification between Vπ and the restricted tensor product ⊗ ′
νVπν . Then define

dπ(S,ψ) :=

∣

∣Wφ(1)
∣

∣

‖φ‖
∏
ν∈S

∥

∥φν
∥

∥

∣

∣Lν
(

φν
)∣

∣

. (4.3)

It is shown in [2] that dπ(S,ψ) is independent of the choice of Lν and φ so long as the

conditions above are satisfied.

LetD ∈ Z and define ψD(x) := ψ(Dx). Let (π̃, Vπ̃) be an irreducible cuspidal auto-

morphic representation of the adelic metaplectic group ˜SL2(A). We have π̃ � ⊗νπ̃ν where

(π̃ν, Vπ̃ν
) is an irreducible cuspidal automorphic representation of ˜SL2(Qν). Assume that

π̃ has a ψD-Whittaker model {˜WD
˜φ

| ˜φ ∈ Vπ̃}. Let S be a finite set of places ν containing

those where π̃ν is not unramified. Fix unramified vectors ˜φ0,ν for ν �∈ S. Choose local

Whittaker functionals ˜LDν such that ˜LDν (˜φ0,ν) = 1 and ‖˜φ0,ν‖ν = 1 for all ν �∈ S. Here

‖˜φν‖ν is defined using ˜LDν as in the linear case above. Let ˜φ = ⊗ν∈S˜φν ⊗ν �∈S ˜φ0,ν ∈ Vπ̃

such that ˜LDν (˜φν) �= 0 for all ν ∈ S. Here we have fixed an identification between Vπ̃ and

the restricted tensor product ⊗ ′
νVπ̃ν

. Then define

dπ̃(S,ψD) :=

∣

∣˜WD
˜φ

(1)
∣

∣

‖˜φ‖
∏
ν∈S

∥

∥˜φν
∥

∥

∣

∣˜LDν
(

˜φν
)∣

∣

. (4.4)

It is shown in [2] that dπ̃(S,ψD) is independent of the choice of ˜LDν and ˜φ so long as the

conditions above are satisfied.

We now state [2,Theorem 4.3] for a representation π of GL2(A) with trivial central

character such that πp is unramified for all finite places p and π∞ is a unitary principal

series representation. This is the case needed for our application.

Theorem 4.2 (Baruch-Mao). Let π be an irreducible cuspidal automorphic representa-

tion of GL2(A) as above. Let π̃ = Θ(π,ψ) be the irreducible automorphic cuspidal rep-

resentation of ˜SL2(A) related to π by the theta correspondence [2, Section 3]. Let S be a

finite set of places including ∞. Then for a fundamental discriminantD,

∣

∣dπ̃
(

S,ψD
)∣

∣

2
=
∣

∣dπ(S,ψ)
∣

∣

2
LS
(

1

2
, π⊗ χD

) ∏
ν∈S

|D|−1ν , (4.5)

where χD is the quadratic idele class character of A∗/Q∗ corresponding toD and LS(·, π⊗
χD) is the partial L-function. �

Let g(z) ∈ S+
t+1/2 with Fourier coefficients {b(n)} and let h(z) be the correspond-

ing Maaß form of weight 2t with respect to SL2(Z) with Fourier coefficients {a(n)} given
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by the Shimura correspondence for Maaß forms (see [17, 20]). Following [2] we obtain an

automorphic cusp form φ on GL2(A) from h and an automorphic cusp form ˜φ on ˜SL2(A)

from g. Then φ ∈ Vπ for some irreducible cuspidal automorphic representation π of

GL2(A) with trivial central character and ˜φ ∈ Vπ̃ for some irreducible cuspidal auto-

morphic representation π̃ of ˜SL2(A). We can show that π̃ = Θ(π,ψ) [2]. We can apply

Theorem 4.2 to π and π̃ with S = {∞, 2} and ˜ψ(x) = ψ((−1)tx) where ψ(x) = e2πix if x ∈ R

and for x ∈ Qp set ψ(x) = e−2πix̂ where we choose x̂ ∈ Q satisfying |x − x̂|p ≤ 1.
ChooseD such that (−1)tD>0. Let us evaluate dπ(S, ˜ψ) (which is equal to dπ(S,ψ)

by [2, Lemma 2.3]) and dπ̃(S, ˜ψD) (which is equal to dπ̃(S,ψ|D|)):

∣

∣dπ(S,ψ)
∣

∣

2
=

∣

∣Wφ(1)
∣

∣

2

‖φ‖2
∏

ν∈{∞ ,2}

∥

∥φν
∥

∥

2

∣

∣Lν
(

φν
)∣

∣

2

=

∣

∣Wt,ir/2(4π)a(1)
∣

∣

2

‖φ‖2
∥

∥φ∞∥

∥

2

∣

∣c1Wt,ir/2(4π)
∣

∣

2

∥

∥φ2
∥

∥

2

∣

∣L2
(

φ2
)∣

∣

2

=

∣

∣a(1)
∣

∣

2

∣

∣c1
∣

∣

2

∥

∥φ∞∥

∥

2

‖φ‖2
3

2

∣

∣1 − 2−1−2ir
∣

∣

−2
.

(4.6)

The calculation at ν = 2 is the same as in [2]. We have also used that L∞ (φ∞ ) =

c1Wt,ir/2(4π) for some nonzero constant c1 due to the uniqueness of local Whittaker mod-

els,

∣

∣dπ̃
(

S,ψ|D|
)∣

∣

2

=

∣

∣˜W
|D|
˜φ

(1)
∣

∣

2

‖˜φ‖2
∏

ν∈{∞ ,2}

∥

∥˜φν
∥

∥

2

∣

∣˜L
|D|
ν

(

˜φν
)∣

∣

2

=

∣

∣W(t+1/2)/2,ir/2
(

4π|D|
)

b
(

|D|
)∣

∣

2

‖˜φ‖2

∥

∥˜φ∞∥

∥

2

∣

∣cDW(t+1/2)/2,ir/2
(

4π|D|
)∣

∣

2

∥

∥˜φ2
∥

∥

2

∣

∣˜L
|D|
2

(

˜φ2
)∣

∣

2

=

∣

∣b
(

|D|
)∣

∣

2

∣

∣cD
∣

∣

2

∥

∥˜φ∞∥

∥

2

‖˜φ‖2
ε2(D),

(4.7)

where again from [2], we have

ε2(D) =

⎧⎪⎪⎨
⎪⎪⎩
3

4

∣

∣1 + 2−1/2−ir
∣

∣

−2
whenD ≡ 1(mod 4),

3

4

∣

∣1 − 2−1−2ir
∣

∣

−2
|D|−12 when

D

4
≡ 2, 3(mod 4).

(4.8)
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We have also used that ˜L|D|∞ (˜φ∞ ) = cDW(t+1/2)/2,ir/2(4π|D|) for some nonzero constant cD

due to the uniqueness of local Whittaker models.

Note that the calculations above are valid only for choices of t, r, andD such that

W(t+1/2)/2,ir/2(4π|D|) �= 0 and Wt,ir/2(4π) �= 0. The asymptotics for the classical Whit-

taker functions given in [25, page 319] allow us to conclude that for fixed r, we can choose

t a positive odd integer such thatWt,ir/2(4π) �= 0 and for fixed r and twe can choose a pos-

itive integerMt,r such that whenever |D| > Mt,r we haveW(t+1/2)/2,ir/2(4π|D|) �= 0. Now,

from Theorem 4.2, (4.6), and (4.7) we get the following theorem.

Theorem 4.3. Let r, t, and D be such that the above conditions for classical Whittaker

functions are satisfied. Let g(z) ∈ S+
t+1/2 with Fourier coefficients {b(n)} and eigenvalue

1/4 + (r/2)2 with respect to the Laplace operator. Then

∣

∣b
(

|D|
)∣

∣

2
= CL{∞ ,2}(1

2
, π⊗ χD

)

, (4.9)

where

C=
c2D
c21

∥

∥φ∞∥

∥

2

‖φ‖2
‖˜φ‖2
∥

∥˜φ∞∥

∥

2

∣

∣a(1)
∣

∣

2
ε2(D)−1 3

2

∣

∣1−2−1−2ir
∣

∣

−2 ∏
ν∈{∞ ,2}

|D|−1ν �= 0, (4.10)

andD < −Mt,r is a fundamental discriminant. �

4.3 The nonvanishing of the special values of L-functions

Let S be a finite set of places of Q and ξ a fixed quadratic character of A∗/Q∗. SetΨ(S, ξ) :=

{χ quadratic character of A∗/Q∗ such that χν = ξν for all ν ∈ S}.

Theorem 4.4 (Friedberg and Hoffstein [10]). Let π be an irreducible cuspidal automor-

phic representation of GL2(A) which is self-contragradient. Assume that there exists

some χ ∈ Ψ(S, ξ) such that ε(1/2, π ⊗ χ) = 1. Then there are infinitely many χ ∈ Ψ(S, ξ)

such that L(1/2, π⊗ χ) �= 0. �

Note that any quadratic character of A∗/Q∗ is of the form χD for some D ∈ Q∗.

We now state the result for the nonvanishing of Fourier coefficients of Maaß forms.

Theorem 4.5. Let f ∈ S+
1/2(4) be a Hecke eigenform with Fourier coefficients {c(n)}. Then

for infinitely manyD < 0withD = −n and n ≡ 3(mod 8), it holds that c(D) �= 0. �

Proof. Let λ = 1/4+(r/2)2 be the eigenvalue of fwith respect to the Laplace operatorΔ1/2.

Choose an odd integer t such thatWt,ir/2(4π) �= 0. This is possible from the remark made
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before Theorem 4.3. Now let g∈S+
t+1/2(4) be defined by g :=Rt+1/2−2Rt+1/2−4· · ·R−1/2I1/2f.

Let {b(n)} be the Fourier coefficients of g. From (2.18) and (2.19), we know that if {c(n)}

are the Fourier coefficients of f, then for n > 0 we have c(−n) = b(n). As in the previous

section, let h be the Maaß form of weight 2twith respect to SL2(Z) corresponding to g and

let φ be the adelic cuspidal automorphic form corresponding to h. Then φ lies in an irre-

ducible cuspidal automorphic representation π of GL2(A) with trivial central character,

hence π is self-contragradient.

Since πp is unramified at all finite places p,we obtain ε(1/2, πp) = 1 for all p. π∞ is

the unitary principal series representation with even K-type. If π∞ = π(μ1, μ2) where μ1,

μ2 are unitary unramified characters, then from [13] we have ε(1/2, π∞ ) = ε(1/2, μ1)ε(1/

2, μ2) = 1 since ε(1/2, μ) = 1 for an unramified character μ. From [2, (3.1)], we have

ε(1/2, π⊗χD) = ε(1/2, π) for allD ∈ Q∗. So ε(1/2, π⊗χD) = 1 for allD ∈ Q∗ and hence the

hypothesis of Theorem 4.4 is satisfied by any choice of S and ξ. Let us choose S = {∞, 2}
and ξ = χ−3. Then by definition χD ∈ Ψ(S, ξ) ⇔ D ≡ 5(mod 8) andD < 0. We can takeD to

be square-free sinceD andDm2 give the same character, that is, χD = χDm2 . Theorem 4.4

then gives us L(1/2, π⊗ χD) �= 0 for infinitely manyD satisfyingD ≡ 5(mod 8) andD < 0.

The function g that we constructed above satisfies the hypothesis of Theorem 4.3

and hence we get that b(|D|) �= 0 for infinitely manyD such thatD < −Mt,r,D ≡ 5(mod 8)

and square-free. (Note that a numberD satisfying the above conditions is a fundamental

discriminant.) This gives us the required result. �

Note that we can get similar nonvanishing results for different D ′s by choosing

appropriate ξ = χD. Finally, from Theorems 4.1 and 4.5 we get the nonvanishing of A(β).

Theorem 4.6. A(β) �= 0 for infinitely many β ∈ V2(Z). In particular, the map f(z) �→ F(x)

is injective. �

5 Hecke theory

We now present the Hecke theory for the Spin(1, 4) case. In Section 5.1 we get the genera-

tors for the Hecke algebra of the Spin group. For this we will follow Krieg’s work [21, 22]

in which he obtains the generators of the Hecke algebra in a setting similar to ours. In

Section 5.2 we define the Hecke operator Tp on automorphic functions on Spin(1, 4) with

respect to Γ = SV2(Z) by its action on the Fourier coefficients A(β). We show that if

f ∈ S+
1/2(Γ0(4)) is a Hecke eigenfunction, then F defined in Section 3.2 is an eigenfunction

of Tp with eigenvalue p3/2λp + p(p + 1), where λp is the pth eigenvalue of f. In Section 5.3

we define the Hecke operator Tp2 on automorphic functions on Spin(1, 4) with respect to

Γ by its action on the Fourier coefficients A(β). We show that if f ∈ S+
1/2(Γ0(4)) is a Hecke
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eigenfunction, then F defined in Section 3.2 is an eigenfunction of Tp2 with eigenvalue

(p + 1)p3/2λp + (p − 1)(p + 1), where λp is the pth eigenvalue of f.

5.1 Hecke algebraHp

As mentioned above, we will use the results of Krieg. In his papers [21, 22], Krieg works

with the Hurwitz orderO := Z + Zi1 + Zi2 + Z(1/2)(1+ i1 + i2 + i1i2) instead of the integer

quaternions C2(Z) = Z + Zi1 + Zi2 + Zi1i2. We will use Krieg’s results whenever directly

applicable or adopt his proofs in our case otherwise.

Define the similitude group GSV+
2 (Q) := {M =

(

α β
γ δ

) ∈ Mat2(C2(Q)) : αδ∗ − βγ∗ =

μ(M) ∈ Q+, αβ∗, δγ∗ ∈ V}. HereV = R+Ri1+R2 as defined in (2.1). ForM1,M2 ∈ GSV+
2 (Q)

with single-coset decompositions ΓMiΓ =
⋃

μ ΓMi,μ, i = 1, 2 define the product

(

ΓM1Γ
) · (ΓM2Γ

)

:=
∑

C∈Γ\ GSV+
2 (Q)/Γ

t(C)ΓCΓ with t(C) := �
{
(μ, ν) : ΓM1,μM2,ν = ΓC

}
.

(5.1)

The Hecke algebra of GSV+
2 is the algebra over integers generated by the set of double

cosets {ΓMΓ : M ∈ GSV+
2 (Q)} with product as defined in (5.1). LetHp be the subalgebra of

double cosets generated by {ΓMΓ : M ∈ GSV+
2 (Q) ∩ Mat2(C2(Z[p−1])), μ(M) = pk with k ∈

Z}. Here Z[p−1] is the ring of rational numbers with only powers of p in the denominator.

ForM ∈ GSV+
2 (Q)∩Mat2(C2(Z[p−1])) let k0 be the smallest nonnegative integer such that

pk0M =: M ′ ∈ Mat2(C2(Z)). Then we have

ΓMΓ =

(

Γ

(

p−1 0

0 p−1

)

Γ

)k0

(ΓM ′Γ). (5.2)

Let ˜Hp be the subalgebra of Hp generated by ΓMΓ ∈ Hp with M ∈ Mat2(C2(Z)). Equa-

tion (5.2) implies thatHp is generated by ˜Hp and the double coset Γ
(

p−1 0

0 p−1

)

Γ . The main

result of this section is the explicit calculation of the generators of ˜Hp.

Set GSV+
2 (Z) = GSV+

2 (Q) ∩ Mat2(C2(Z)). Fix an α̂ ∈ C2(Z) such that |α̂|2 = p and

p � α̂n for every n ≥ 1. (This condition is satisfied as long as α̂ �= − ¯̂α and |α̂|2 = p. To see

this use the fact that for any x ∈ C2(R) we have x2 = 2Re(x)x− |x|2.) The following lemma

shows that each double coset in ˜Hp contains a diagonal matrix of a given type.

Lemma 5.1. Let M ∈ GSV+
2 (Z) with μ(M) = pm where p is an odd prime and m ≥ 1.

Then ΓMΓ contains an element of the form
(

α̂lpk1 0

0 (α̂ ′)lpk2

)

with α̂ as above and l, k1 ≥ 0,

l + k1 + k2 = m, and l + k1 ≤ k2. �



3942 Ameya Pitale

Proof. It is easy to show that we can find a diagonal element
(

η 0
0 δ

) ∈ ΓMΓ . Let η = pk1τ

with p � τ and hence δ = pk2τ ′ where pm = pk1+k2 |τ|2. Let |τ|2 = pl. Now we get the

result of the lemma since by methods as in the proof of [22, Theorem 6(b)], we can find

two elements g1, g2 ∈ Γ such that g1
(

τpk1 0

0 τ ′pk2

)

g2 =
(

α̂lpk1 0

0 (α̂ ′)lpk2

)

. �

For the proof of the main theorem of this section we need the single-coset decom-

position of the two double cosets Γ
(

1 0
0 p

)

Γ and Γ
(

α̂ 0
0 pα̂ ′

)

Γ .

Proposition 5.2.

Γ

(

1 0

0 p

)

Γ =

⎛

⎝

⋃

{̂β}

Γ

(

1 ̂β

0 p

)

⎞

⎠ ∪ Γ
(

p 0

0 1

)

∪
⎛

⎝

⋃

{α,δ}

Γ

(

α δ

0 α ′

)

⎞

⎠ , (5.3)

where ̂β in the first term runs through the set {β0+β1i1+β2i2 : 0 ≤ βj < p, j = 0, 1, 2} and

{α, δ} in the third term runs through the set of equivalence classes of the set C := {{α, δ} :=
(

α δ
0 α ′

)

: μ({α, δ}) = p} under the action of Γ by left multiplication. There are exactly p(p+1)

distinct elements in the third term. Furthermore, the union above is a disjoint union. �

Proof. It is clear that the right-hand side of (5.3) is contained in the left-hand side since

Γ
(

1 0
0 p

)

Γ = {M ∈ GSV+
2 (Z) : μ(M) = p} by Lemma 5.1. Now we show the opposite inclusion.

Let M be such that μ(M) = p. As in the proof of Proposition 3.1, we can find an element

g ∈ Γ such that gM =
(

α β
0 δ

)

. Since αδ∗ = p, we have |α|2|δ|2 = p2 and δ = (α ′/|α|2)p. We

have three cases depending on the value of |α|2. If |α|2 = 1, p2, and p, respectively, then

M belongs to the first, second, and third term, respectively, of (5.3). We illustrate the

calculation for the case |α|2 = 1. We have α ∈ {±1,±i1,±i2,±i1i2} and δ = α ′p. Multiply

gM on the left by
(

ᾱ 0
0 α∗

) ∈ Γ to get

(

ᾱ 0

0 α∗

)(

α β

0 α ′p

)

=

(

1 ᾱβ

0 p

)

. (5.4)

Write ᾱβ = x0 + x1i1 + x2i2 = p(y0 + y1i1 + y2i2) + (β0 + β1i1 + β2i2) with 0 ≤ βj ≤ p − 1.

So

(

1 −
(

y0 + y1i1 + y2i2
)

0 1

)(

1 ᾱβ

0 p

)

=

(

1 β0 + β1i1 + β2i2

0 p

)

. (5.5)

This gives usM ∈ ⋃

{̂β} Γ
(

1 ̂β
0 p

)

as required.
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It remains to show that there are p(p + 1) distinct single cosets in the third term

of (5.3). Observe that |{α ∈ C2(Z) : |α|2 = p}| = 8(p + 1). There are exactly p + 1 orbits

of 8 elements each when we consider the action of units in C2(Z) by left multiplication

on the above set. Now let α and α1 be two elements such that |α|2 = |α1|
2 = p. Suppose

(

α δ1

0 α ′
)

= g
(α1 δ2

0 α ′
1

)

for some element g ∈ Γ . Then α and α1 differ only by a unit. Hence we

can assume that α = α1 and g is of the form
(

1 u
0 1

)

where u ∈ Z + Zi1 + Zi2. From the

definition of SV2 we know that δj = vjα
′ with vj ∈ V2 for j = 1, 2 and hence for a fixed α

two choices of δ give the same left coset if v1 = v2 + u. So for a fixed α the distinct left

cosets are given by the choices of δ = vα ′ where v = a + bi1 + ci2 satisfies

0 ≤ a, b, c < 1, vα ′ ∈ C2(Z). (5.6)

Let α = α0 + α1i1 + α2i2 + α3i1i2 and set a1 := pa, b1 := pb, c1 := pc. One can check that

a1, b1, c1 ∈ {0, 1, . . . , p − 1}. Then (5.6) is equivalent to

⎛

⎜

⎜

⎝

α0 α1 α2

−α1 α0 α3

−α2 −α3 α0

⎞

⎟

⎟

⎠

︸ ︷︷ ︸
A

⎛

⎜

⎜

⎝

a1

b1

c1

⎞

⎟

⎟

⎠

≡ 0(modp). (5.7)

ConsiderA a linear transformation on a 3-dimensional vector space over Z/pZ. Det(A) =

α0|α|2 = α0p ≡ 0(modp). Also A �≡ 0(modp). One can check that rank of A is equal to 2.

This implies that dim(Ker(A)) = 1. Hence the number of solutions to (5.6) is exactly p.

This completes the proof of Proposition 5.2. �

Next we give the Peirce decomposition for quaternions. Let p be an odd prime. Fix

r, s ∈ Z such that 1 + r2 + s2 ≡ 0(modp). This is always possible, in fact, one can show

that the number of solutions to the equation x2 + y2 ≡ −1(modp) is p + 1 if p ≡ 3(mod 4)

and p − 1 if p ≡ 1(mod 4). Given α = α0 + α1i1 + α2i2 + α3i1i2 ∈ C2(Z) define

ψp(α) :=

(

α0 − α2r − α3s α1 − α2s + α3r

−α1 − α2s + α3r α0 + α2r + α3s

)

∈ Mat2(Z). (5.8)

Lemma 5.3. For an odd prime p, the mapψp defined above gives an isomorphism of rings

between Mat2(Z/pZ) and C2(Z)/pC2(Z). ψp satisfies |α|2 ≡ det(ψp(α))(modp). �

This lemma follows directly from [21, Lemma 1, page 329]when one observes that

for an odd prime pwe have C2(Z)/pC2(Z) � O/pOwhereO is the Hurwitz order.

We can extend the mapψp naturally to a ring isomorphism between Mat2(C2(Z))/

pMat2(C2(Z)) and Mat4(Z/pZ). For an element α∈C2(Z) (resp., g∈ Mat2(C2(Z))), define
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rk(α) (resp., rk(g)) as the rank of the matrix ψp(α) as an element of Mat2(Z/pZ) (resp.,

as the rank of the matrixψp(g) as an element of Mat4(Z/pZ)). Note that rk(g1gg2)=rk(g)

for any g1, g2 ∈ Γ . The notion of rank will play a crucial role in the proof of many results.

Proposition 5.4.

Γ

(

α̂ 0

0 pα̂ ′

)

Γ =

(

⋃

α

Γ

(

pα 0

0 α ′

))

∪
(

⋃

α,δ

Γ

(

α δ

0 pα ′

))

∪
(

⋃

v

Γ

(

p v

0 p

))

.

(5.9)

Here the union in the first term runs over the orbits of the action of the group of units

in C2(Z) on the set {α ∈ C2(Z) : |α|2 = p}. The union in the second term runs over the

same set of equivalence classes for α and for each α the set δ is determined in Lemma 5.5

below. The union in the third term is over the set {v = v0 + v1i1 + v2i2 : v0, v1, v2 ∈ Z, 0 ≤
v0, v1, v2 ≤ p − 1, v �= 0, |v|2 ≡ 0(modp)}. �

Proof. An element M with μ(M) = p2 lies in the double coset Γ
(

α̂ 0
0 pα̂ ′

)

Γ if and only if

rk(M) = 1. Take such a matrix M. We can find an element g ∈ Γ such that gM =
(

μ δ

0 (μ ′/|μ|2)p2

)

. As in the proof of Proposition 5.2 we have |μ|2 = 1, p, p2, p3, or p4. Notice

that |μ|2 = 1 or p4 implies that one of the diagonal entries above is a unit and hence we get

rk(M) ≥ 2, a contradiction. Again arguing as in Proposition 5.2 the cases |μ|2 = p3, p, p2

imply that M lies in the first, second, and third term on the right-hand side of (5.9), re-

spectively. Finally, the precise description of the distinct cosets in the second term of

(5.9) is given by the following lemma. �

Lemma 5.5. For each α such that |α|2 = p, the distinct cosets in the second term of (5.9)

are given by those δ that satisfy the following two conditions:

(1) δ ∈ C2(Z) has to be of the form uα ′ where u = a + bi1 + ci2 ∈ V2(R) with

0 ≤ a, b, c < p,
(2) α∗δ ′ ≡ 0(modp).

The number of δ satisfying the above properties is p3. �

Proof. The first condition is obtained by a similar argument as given in the proof of

Proposition 5.2. To get the second condition we will use the fact that rk(M) = 1. From

(5.8) we have

ψp

((

α δ

0 pα ′

))

=

(

ψp(α) ψp(δ)

0 0

)

. (5.10)

Let C1 and C2 (resp., C3 and C4) be the columns of the matrices ψp(α) (resp., of ψp(δ).)
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The condition rk(M) = 1 implies that determinant of every 2 × 2 matrix obtained from

any two of the four columns C1, C2, C3, or C4 is equivalent to zero modp. There are 6

such matrices and we get

|α|2 ≡ |δ|2 ≡ Re
(

α∗δ ′
) ≡ Re

(

i1α
∗δ ′

) ≡ Re
(

i2α
∗δ ′

) ≡ Re
(

i1i2α
∗δ ′

) ≡ 0(modp).

(5.11)

This gives us the second condition in the statement of the lemma.

Now we prove that the number of δ satisfying the above conditions is p3. We first

remind the reader that from Proposition 5.2 there are exactly p choices of δ ∈ C2(Z)

of the form uα ′ where the coordinates of u lie between 0 and 1. Let us denote them by

0 = u1α
′, u2α ′, . . . , upα ′. (Note that again from Proposition 5.2, these p elements form a

line {tu2α
′ : t = 0, 1, . . . , p−1} modp.)One can check that all the possible choices of δ satis-

fying the first condition above are contained in the set {(u+uj)α ′ : u = x+yi1+zi2, x, y, z ∈
{0, 1, . . . , p − 1}, j = 1, 2, . . . , p}.

It is now enough to show that for every u = x + yi1 + zi2, x, y, z ∈ {0, 1, . . . , p − 1}

there is a unique t = 0, 1, . . . , p − 1 such that α∗((u + tu2)α ′) ′ ≡ 0(modp). To prove

this we define a linear transformation Nα on the 3-dimensional space (Z/pZ)3 by Nα

(u(modp)) := α∗u ′α(modp). Then the mapNα satisfies the following properties.

(1) Rank ofNα is equal to 1.

(2) The eigenvalues of Nα are given by 0 and 4α23, where α = α0 + α1i1 + α2i2 +

α3i1i2. (Note that we can assume that α3 �= 0 by multiplying α by a suit-

able unit, if necessary. We are allowed to do this since α is fixed only up

to a unit.)

(3) For every t = 0, 1, . . . , p − 1 the vectors tu ′
2α(modp) are eigenvectors of Nα

with eigenvalue 4α23.

All of the above three properties can be proved by writing downNα in the form of a 3× 3
matrix and doing the required calculations. From these properties we can conclude that

the image of the map Nα is precisely the line {tu ′
2α : t = 0, 1, . . . , p − 1}. Hence given

u = x + yi1 + zi2, x, y, z ∈ {0, 1, . . . , p − 1} choose the unique t0 ∈ {0, 1, . . . , p − 1} such that

Nα(u) = −t0u
′
2α. Then (u + t0u2)α ′ satisfies the second condition in the statement of the

lemma. This proves Lemma 5.5 and with it Proposition 5.4. �

Now we state the main theorem on generators of the Hecke algebra.

Theorem 5.6. The double cosets X1 := Γ
(

1 0
0 p

)

Γ , X2 := Γ
(

α̂ 0
0 α̂ ′p

)

Γ , and X3 := Γ
(

p 0
0 p

)

Γ gen-

erate the algebra ˜Hp and they are algebraically independent. As in the remarks before

Lemma 5.1, α̂ ∈ C2(Z) is chosen so that it satisfies |α̂|2 = p and p � α̂n for every n ≥ 1. �
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Proof. We will prove that ΓMΓ , where μ(M)=pm, is given by an algebraic expression in

terms of X1, X2, and X3 by induction on m. If m=1, then the result follows from Lemma

5.1. Ifm=2, then again from Lemma 5.1 we have that ΓMΓ =Γ
( 1 0
0 p2

)

Γ or X2 or X3. Write

(

Γ

(

1 0

0 p

)

Γ

)(

Γ

(

1 0

0 p

)

Γ

)

= t0Γ

(

1 0

0 p2

)

Γ + t1Γ

(

p 0

0 p

)

Γ + t2Γ

(

α̂ 0

0 α̂ ′p

)

Γ,

(5.12)

where t0, t1, t2 ∈ Z. We can do this because every double coset arising in the product

above has similitude p2. If Γ
(

1 0
0 p

)

Γ =
⋃e
r=1 ΓMr is the decomposition into disjoint

single cosets, then by (5.1) we have t0 = card
{
(i, j) : ΓMiMj = Γ

( 1 0
0 p2

)}
. Now one can

use Proposition 5.2 to check that t0 = 1. Hence we get the required result form = 2.

Now let us assume that the theorem is true for allM with μ(M) = pk, k ≤ m − 1.

Let μ(M) = pm and from Lemma 5.1 write ΓMΓ = Γ
( α̂lpk1 0

0 (α̂ ′)lpk2

)

Γ with l, k1, k2 satisfy-

ing the conditions stated in Lemma 5.1. From Lemma 5.3 and comments following it we

know that

rk(M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if k1 > 0;

1 if k1 = 0, l > 0;

2 if k1 = l = 0.

(5.13)

We cannot have rk(M) = 3 or 4. For rk(M) = 0 the theorem follows from the induction

hypothesis and the relation ΓMΓ = pΓ
( α̂lpk1−1 0

0 (α̂ ′)lpk2−1

)

Γ .

Now let rk(M) = 1. Denote by B the matrix
(

α̂l−1 0
0 (α̂ ′)l−1pk2−1

)

and consider the

product

(ΓBΓ)

(

Γ

(

α̂ 0

0 pα̂ ′

)

Γ

)

=
∑

C∈Γ\Γ (pm)/Γ

t(C)ΓCΓ, (5.14)

where t(C) ∈ Z and Γ (pm) := {M ∈ GSV+
2 (Z) : μ(M) = pm}. Since the rank of every single-

coset representative of X2 is 1, the formula for t(C) in (5.1) gives us that t(C) �= 0 implies

that rk(C) ≤ 1. Fix C =
(

α̂l1 0
0 (α̂ ′)l1pk3

)

with l1 + k3 = m, l1 > 0, k3 ≥ l1 with rk(C) = 1

and t(C) �= 0. Let ΓBΓ =
⋃

ΓBi be the decomposition into disjoint single cosets where the

Bi are chosen to be upper triangular. Let Γ
(

α̂ 0
0 pα̂ ′

)

Γ =
⋃

ΓAi be the decomposition into

disjoint single cosets as in Proposition 5.4. Choose Bi and Aj such that BiAj = gC for

some g ∈ Γ . Since the left side is upper triangular, we get that g has to be of the form
(

1 u
0 1

)

with u ∈ C2(Z) ∩ V. (We are allowed to have units as the diagonal entries but we
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can multiply both sides with suitable matrix from Γ and get g in the above form.) Again

using Proposition 5.4, we can conclude that Aj =
(

α̂ 0
0 pα̂ ′

)

and hence Bi is forced to be

equal to
(

α̂l1−1 0
0 (α̂ ′)l1−1pk3−1

)

. This is possible if and only if l1 = l and k3 = k2, that is,

C = M. Hence we can conclude that t(C) �= 0 and rk(C) = 1 ⇔ C = M and in this case

t(M) = 1. Now (5.14) gives us

(ΓBΓ)

(

Γ

(

α̂ 0

0 pα̂ ′

)

Γ

)

= ΓMΓ +
∑

C∈Γ\Γ (pm)/Γ
rk(C)=0

t(C)ΓCΓ (5.15)

which gives us the result for rk(M) = 1 using the induction hypothesis and the result for

rank 0.

Finally, if rk(M) = 2, we can assume thatM =
(

1 0
0 pm

)

. Using arguments as above

one can conclude that

(

Γ

(

1 0

0 pm−1

)

Γ

)(

Γ

(

1 0

0 p

)

Γ

)

= ΓMΓ +
∑

C∈Γ\Γ (pm)/Γ
rk(C)≤1

t(C)ΓCΓ (5.16)

with t(C) ∈ Z. Since we have already shown that the theorem is valid for elements with

rank ≤ 1, the above equation completes the proof of the theorem. �

5.2 Hecke operator Tp

In this section we define the Hecke operator Tp and get a formula for Tp in terms of the

Fourier coefficientsA(β) in Proposition 5.8. In Theorem 5.9 we show that if f ∈ S+
1/2(Γ0(4))

is a Hecke eigenfunction, then F defined in Section 3.2 is an eigenfunction of Tp with

eigenvalue p3/2λp + p(p + 1), where λp is the pth eigenvalue of f.

Definition 5.7. Let F be a function on H3. For any odd prime p, define the Hecke operator

Tp by

(

TpF
)

(x) :=
∑
{̂β}

F

(

x + ̂β

p

)

+ F(px) +
∑
α,δ

F
(

(αx + δ)(α ′)−1
)

. (5.17)

Here {̂β} = {β0 + β1i1 + β2i2 : 0 ≤ βj ≤ p − 1, j = 0, 1, 2}, α, δ are as in Proposition 5.2, and

x ∈ H3.
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Note that the Hecke operator is defined by evaluating F at the points obtained by

acting the single-coset representatives of Proposition 5.2 on x and then adding them up.

If we multiply the single-coset representatives by an element of Γ , we again get a set of

single-coset representatives. Hence if F is an automorphic form with respect to Γ , that is,

F(gx) = F(x) for all g ∈ Γ , then so is TpF.

Let α1, . . . , αp+1 be representatives for the orbits of {α ∈ C2(Z) : |α|2 = p} under

the left action by the units inC2(Z). We will identify the lattice T = V2(Z) with Z3 and the

multiplication of two elements will be as elements of V2(Z).

Proposition 5.8. (1) For any β ∈ Z3

(

TpF
)

(β) = p3/2A(pβ) + p3/2A(β/p) + p

p+1∑
i=1

A

(

α(i) ′βα(i)

p

)

. (5.18)

Here (TpF)(β) is the βth Fourier coefficient of TpF. If β/p or α(i) ′βα(i)/p �∈ C2(Z), then the

corresponding terms are assumed to be zero.

(2) For any prime q define νq(β) as the highest power of q dividing all the coor-

dinates of β.

(a) If q �= p, then for every i = 1, . . . , p + 1 it holds that νq(β) =

νq(α(i) ′βα(i)/p).

(b) Write β = gcd(β)(β0 + β1i1 + β2i2) with gcd(β0, β1, β2) = 1.

(i) If −(β20 + β21 + β22) is not a square modp, then for all i = 1, . . . , p + 1

it holds that νp(α(i) ′βα(i)/p) = νp(β) − 1.

(ii) If β20+β21+β22 ≡ 0(modp) but β20+β21+β22 �≡ 0(modp2), then there is

exactly one i such that νp(α(i) ′βα(i)/p) = νp(β) and for all j �= i

it holds that νp(α(j) ′βα(j)/p) = νp(β) − 1.

(iii) If β20 + β21 + β22 ≡ 0(modp2), then there is exactly one i such that

νp(α(i) ′βα(i)/p) = νp(β) + 1 and for all j �= i it holds that

νp(α(j) ′βα(j)/p) = νp(β) − 1.

(iv) If −(β20 + β21 + β22) is a square modp, then there are exactly two dis-

tinct iκ1
, iκ2

such that νp(α(iμ) ′βα(iμ)/p) = νp(β) for μ = κ1, κ2

and for all j �= iκ1
, iκ2

it holds that νp(α(j) ′βα(j)/p) = νp(β) − 1.

�

Proof. Let β = β0 + β1i1 + β2i2 and α = α0 + α1i1 + α2i2 + α3i1i2. (We will drop the

superscript i forαwhenever there is no confusion.)Writeα ′βᾱ = ̂β0+̂β1i1+̂β2i2. Writing

in terms of the coordinates of β and αwe have
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(I)

̂β0 = −2α3
(

β2α1 − β1α2 − β0α3
)

+ 2α0
(

β0α0 + β1α1 + β2α2
)

− pβ0,

̂β1 = −2α2
(

β2α1 − β1α2 − β0α3
)

+ 2α0
(

− β0α1 + β1α0 − β2α3
)

− pβ1,

̂β2 = 2α1
(

β2α1 − β1α2 − β0α3
)

+ 2α0
(

− β0α2 + β1α3 + β2α0
)

− pβ2.

(5.19)

Using these formulae we have
(II)

β0̂β0 + β1̂β1 + β2̂β2 = −p|β|2 + 2α20|β|2 + 2
(

β2α1 − β1α2 − β0α3
)2
,

− β0̂β0 + β1̂β1 − β2̂β2 = −p|β|2 + 2α22|β|2 + 2
(

− β0α1 + β1α0 − β2α3
)2
,

β0̂β0 − β1̂β1 − β2̂β2 = −p|β|2 + 2α23|β|2 + 2
(

β0α0 + β1α1 + β2α2
)2
,

− β0̂β0 − β1̂β1 + β2̂β2 = −p|β|2 + 2α21|β|2 + 2
(

− β0α2 + β1α3 + β2α0
)2
.

(5.20)

These equations essentially give us the proof of part (2) of the proposition. Let us illus-

trate the proof of (2)(b)(i). To prove (2)(b)(i) we have to show that for all the p + 1 values

of α we have α ′βᾱ �≡ 0(modp) assuming that −|β|2 is not a square modp. Suppose not,

then ̂β0,̂β1,̂β2 ≡ 0(modp). We can assume that α0 �= 0 (we can always multiply α by a

unit to ensure this). Then (5.20) above gives us

(

β2α1 − β1α2 − β0α3
)2

+ α20|β|2 ≡ 0(modp)

=⇒ (

α−1
0

(

β2α1 − β1α2 − β0α3
))2 ≡ −|β|2(modp).

(5.21)

This contradicts the assumption that −|β|2 is not a square modp. This proves (2)(b)(i).

The proofs of the other statements involve manipulation of equations in (5.20) and we do

not present them here.

Now we will prove (1). We have

F(x) =
∑
β∈Z

3

β�=0

A(β)x3/23 Kir
(

2π|β|x3
)

e2πiRe(βx). (5.22)

To evaluate the first term on the right-hand side of (5.17), we have to sum over ̂β the

following expression:

F

(

x + ̂β

p

)

=
∑
β∈Z

3

β�=0

A(β)
(

x3p
−1
)3/2

Kir
(

2π|β|p−1x3
)

e2πiRe(βp−1x)e2πiRe(β̂β/p).

(5.23)



3950 Ameya Pitale

One can check that

∑
{̂β}

e2πiRe(β̂β/p) =

⎧⎨
⎩p

3 if p | β,

0 otherwise.
(5.24)

We first sum over ̂β and then (5.24) implies that we can replaceβ by pβ since the elements

in the lattice Z3 that are not divisible by p vanish:

∑
{̂β}

F

(

x + ̂β

p

)

=
∑
β∈Z

3

β�=0

p3/2A(pβ)x3/23 Kir
(

2π|β|x3
)

e2πiRe(βx). (5.25)

Next let us calculate

F(px) =
∑
β∈Z

3

β�=0

A(β)
(

x3p
)3/2

Kir
(

2π|β|px3
)

e2πiRe(βpx). (5.26)

Replacing β by β/pwe get

F(px) =
∑
β∈Z

3

β�=0

p3/2A

(

β

p

)

x
3/2
3 Kir

(

2π|β|x3
)

e2πiRe(βx). (5.27)

The indexing set above should consist of thoseβ such thatβ/p ∈ Z3. But since we assume

thatA(β/p) = 0 if p does not divide β, we can write the indexing set as β ∈ Z3. Now let us

consider

F
(

(αx + δ)α ′−1) = F

(

(αx + δ)
α∗

p

)

= F

(

αxα∗

p
+
δα∗

p

)

. (5.28)

Notice that the x3 component remains unchanged when x is replaced by αxα∗/p. We have

F
(

(αx + δ)α ′−1) =
∑
β∈Z

3

β�=0

A(β)x3/23 Kir
(

2π|β|x3
)

e2πiRe(βαxα∗/p)e2πiRe(βδα∗/p).

(5.29)

Replace β by α ′βᾱ/p. Using Re(ab) = Re(ba) and |β|2 = |α ′βᾱ/p|2, we get

F
(

(αx + δ)α ′−1) =
∑
β∈Z

3

β�=0

A

(

α ′βᾱ
p

)

x
3/2
3 Kir

(

2π|β|x3
)

e2πiRe(βx)e2πiRe(βᾱδ/p).

(5.30)
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We assume that A(α ′βᾱ/p) = 0 if p does not divide α ′βᾱ. The indexing set in (5.30) can

be written as β ∈ Z3 by the same arguments as in (5.27). One can check that for every α

such that α ′βᾱ ≡ 0(modp), we have

∑
δ

e2πiRe(βᾱδ/p) = p. (5.31)

Finally, putting together (5.25), (5.27), (5.30), and (5.31) we get (5.18) as required. This

completes the proof of Proposition 5.8. �

We are now ready to state and prove the main theorem of this section. Let us re-

mind the reader of the definition of the Fourier coefficients A(β) of F given in (3.4): let

β = ps2ud(β0 + β1i1 + β2i2) with s, u ≥ 0, d odd such that p � d and gcd(β0, β1, β2) = 1.

Then

A(β) := 23/4|β|

s∑
m=0

u∑
t=0

(∑
n|d

c

(

−|β|2

(

2tpmn
)2

)

(

pmn
)−1/2

)

(−1)t2t/2. (5.32)

Theorem 5.9. Let f(z) =
∑
n�=0 c(n)Wsign(n)/4,ir/2(4π|n|y)e2πinx be a Hecke eigenform in

S+
1/2(4) with eigenvalue λp for every odd prime p. Then F defined by Fourier coefficients

A(β) as above satisfies

TpF =
(

p3/2λp + p(p + 1)
)

F (5.33)

for all odd prime numbers p. �

Proof. For everyβwe have to show that (TpF)(β) =(p3/2λp+p(p+1))A(β). From Proposition

5.8(2)(a) we know that the power of q �= p dividing β does not change when β is replaced

by α ′βᾱ/p. It will be clear from the proof that the computations only involve the prime

p. Hence it is enough to show the result for the case νq(β) = 0 for all q �= p. Hence let

β = ps(β0 + β1i1 + β2i2) =: psτwith gcb(β0, β1, β2) = 1. Then we have

A(pβ) = 23/4|β|

{
s−1∑
m=0

pc

(

−p2s|τ|2p2

p2m

)

p−m/2

+ pc
(

− |τ|2p2
)

p−s/2 + pc
(

− |τ|2
)

p−s/2p−1/2

}
,
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A

(

β

p

)

= 23/4|β|

s−1∑
r=0

p−1c

(

−p2s|τ|2

p2rp2

)

p−r/2,

A

(

α ′βᾱ
p

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(β) if νp

(

α ′βᾱ
p

)

= νp(β) = s;

A(β)−23/4|β|c
(

−|τ|2
)

p−s/2 if νp

(

α ′βᾱ
p

)

=νp(β)−1= s−1≥0;

A(β)+ 23/4|β|c

(

−|τ|2

p2

)

p−s/2p−1/2 if νp

(

α ′βᾱ
p

)

= νp(β)+1=s+1;

0 if νp

(

α ′βᾱ
p

)

< 0.

(5.34)

Here we have used the fact that |α ′βᾱ/p| = |β|. Using the following relation satisfied by

the coefficients c(n) of f:

pc
(

np2
)

+ p−1/2

(

n

p

)

c(n) + p−1c

(

n

p2

)

= λpc(n) (5.35)

and Proposition 5.8(2)(b), we get the result of Theorem 5.9. Notice that we get four dif-

ferent equations from (5.35) according to whether (n/p) = −1, n ≡ 0(modp) but n �≡
0(modp2), n ≡ 0(modp2), or (n/p) = +1. The four cases in Proposition 5.8(2)(b) corre-

spond to these when we set n = −(β20 + β21 + β22). �

5.3 Hecke operator Tp2

In this section we define the Hecke operator Tp2 and get a formula for Tp2 in terms of

the Fourier coefficients A(β) in Proposition 5.11. In Theorem 5.12 we show that if f ∈
S+
1/2(Γ0(4)) is a Hecke eigenfunction, then F defined in Section 3.2 is an eigenfunction of

Tp2 with eigenvalue (p + 1)p3/2λp + (p − 1)(p + 1), where λp is the pth eigenvalue of f.

We will now give the definition of the Hecke operator Tp2 .

Definition 5.10. Let F be a function on H3. For any odd prime p, define the Hecke operator

Tp2 by

(

Tp2F
)

(x) :=
∑
α

(

F
(

αxα∗) +
∑
δ

F

(

αxα∗

p2
+
δα∗

p2

)

)

+
∑
v

F

(

x +
v

p

)

. (5.36)

Here the sum over α, δ, and v is the same as in Proposition 5.4 and x ∈ H3.

Note that just as in the case of the Hecke operator Tp in the previous section, Tp2

maps an automorphic function F to an automorphic function.
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Let (Tp2F)(β) be the βth Fourier coefficient of Tp2F. The following proposition de-

scribes (Tp2F)(β) in terms of A(β).

Proposition 5.11. With notations as above, it holds that

(

Tp2F
)

(β) = p3/2
∑
α

(

A(α ′βᾱ) +A

(

α ′βᾱ
p2

))

+

(∑
v

e2πiRe(βv/p)

)

A(β), (5.37)

where α runs through the orbits of the action of the group of units in C2(Z) on the set

{α ∈ C2(Z) : |α|2 = p} and v runs through the set {v = v0 + v1i1 + v2i2 : v0, v1, v2 ∈ Z, 0 ≤
v0, v1, v2 ≤ p − 1, v �= 0, |v|2 ≡ 0(modp)}. Here, assume that A(α ′βᾱ/p2) = 0 if p2 does not

divide α ′βᾱ. �

Proof. We will evaluate (5.36) by substituting the Fourier expansion of F. Notice that the

third term on the right-hand side of (5.37) follows directly from the third term on the

right-hand side of (5.36). Fix α such that |α|2 = p,

F
(

αxα∗) =
∑
β∈Z

3

β�=0

A(β)
(

px3
)3/2

Kir
(

2π|β|px3
)

e2πiRe(βαxα∗). (5.38)

Here we have used that the coefficient of i3 in αxα∗ is equal to px3. Now replace β by

(α ′βᾱ)/p2 to get

F
(

αxα∗) =
∑
β∈Z

3

β�=0

p3/2A

(

α ′βᾱ
p2

)

x
3/2
3 Kir

(

2π|β|x3
)

e2πiRe(βx). (5.39)

Next, we have

F

(

αxα∗

p2
+
δα∗

p2

)

=
∑
β∈Z

3

β�=0

A(β)
(

x3

p

)3/2

Kir

(

2π|β|x3

p

)

e2πiRe(βαxα∗/p2)e2πiRe(βδα∗/p2).
(5.40)

Here we have used that the coefficient of i3 in αxα∗/p2 is equal to x3/p. Now replace β by

α ′βᾱ to get

F

(

αxα∗

p2
+
δα∗

p2

)

=
∑
β∈Z

3

β�=0

p−3/2A(α ′βᾱ)x3/23 Kir
(

2π|β|x3
)

e2πiRe(βx). (5.41)
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The indexing set in (5.39) and (5.41) can be taken as Z3 by arguments similar to those

in the proof of Proposition 5.8. In (5.41) we have used that e2πiRe(α ′βᾱδα∗/p2) =

e2πiRe(α∗α ′βᾱδ/p2) = e2πiRe(βᾱδ/p) = 1 because ᾱδ ≡ 0(modp) by the second condition

in Lemma 5.5. Since there are exactly p3 values of δ for each α, (5.39) and (5.41) complete

the proof of Proposition 5.11. �

Now we state the main theorem of this section.

Theorem 5.12. Let f ∈ S+
1/2(Γ0(4)) be a Hecke eigenfunction with eigenvalue λp for every

odd prime p. Let F be the function on H3 defined in Section 3.2. Then

Tp2F =
(

(p + 1)p3/2λp + (p − 1)(p + 1)
)

F. (5.42)
�

Proof. Let β = 2udpsτwith u, s ≥ 0, d odd not divisible by p, and τ = τ0 + τ1i1 + τ2i2 with

gcd(τ0, τ1, τ2) = 1. From Proposition 5.8(2)(a) we can assume without loss of generality

as in the proof of Theorem 5.9 that u = 0 and d = 1. Hence β = psτ. We will first evaluate

Rβ := p3/2
∑
α(A(α ′βᾱ) + A(α ′βᾱ/p2)) for different possibilities of s and |τ|2. We claim

that

Rβ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(p + 1)p3/2λpA(β) if p | β;

(p + 1)p3/2λpA(β) + p2A(β) if p | |β|2, p � β;

(p + 1)p3/2λpA(β) + p(p − 1)A(β) if − |β|2 is a square modp;

(p + 1)p3/2λpA(β) + p(p + 1)A(β) if − |β|2 is not a square modp.

(5.43)

Let us illustrate the computation of the fourth case above. We have s = 0 and from

Proposition 5.8(2)(b)(i) we have νp(α ′βᾱ) = νp(β) for all α:

Rβ = (p + 1)p3/223/4|β|pc
(

− p2|τ|2
)

= (p + 1)p3/2λpA(β) + (p + 1)pA(β).
(5.44)

We get the last equality by using the following formula for c(n) which is obtained by

substituting n = −|τ|2 in (5.35):

pc
(

− p2|τ|2
)

= λpc
(

− |τ|2
)

+ p−1/2c
(

− |τ|2
)

. (5.45)

�

We get the remaining cases by similar calculation. Now we get the theorem from

the following lemma.



Lifting from ˜SL(2) to GSpin(1,4) 3955

Lemma 5.13.

∑
v

e2πiRe(βv/p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2 − 1 if p | β;

−1 if p | |β|2, p � β;

p − 1 if − |β|2 is a square modp;

−(p + 1) if − |β|2 is not a square modp.

(5.46)

Here the sum on the left is over the set {v = v0 + v1i1 + v2i2 : v0, v1, v2 ∈ Z, 0 ≤ v0, v1, v2 ≤
p − 1, v �= 0, |v|2 ≡ 0(modp)}. �

Proof. The first case is obvious since the number of elements in the set K := {v ∈ Z/pZ +

Z/pZi1 + Z/pZi2 : v �= 0, |v|2 = 0} is p2 − 1. Denote by U = Z/pZ + Z/pZi1 + Z/pZi2 the

3-dimensional space over Z/pZ. Since v ∈ K ⇒ tv ∈ K for t = 1, . . . , p − 1, we can see that

the set K is the union of p + 1 lines without the origin. Let us fix p + 1 vectors v1, . . . , vp+1

such that K = {tvj : t = 1, . . . , p − 1 and j = 1, . . . , p + 1}. Define a map Iβ from U to Z/pZ by

Iβ(u) := Re(βu)(modp) for u ∈ U. Since β �= 0, the dimension of Ker(Iβ) is 2.

Case 1. Let |β|2 ≡ 0(modp) but p � β. We can show that if u ∈ Ker(Iβ) ∩ K, then u =

tβ̄(modp) for some t = 1, . . . , p − 1. From this we get

∑
v

e2πiRe(βv/p) =

p−1∑
t=1

e2πitRe(ββ̄/p) +
∑
vj �=β̄

p−1∑
t=1

e2πitRe(βvj/p)

= (p − 1) + p(−1) = −1

(5.47)

as required.

Case 2. Let −|β|2 ≡ x2(modp) for some x �≡ 0(modp). We can show that there are exactly

two linearly independent elements vx and v−x in Kwhich are in Ker(Iβ). Hence we have

∑
v

e2πiRe(βv/p) =

p−1∑
t=1

e2πitRe(βvx/p) +

p−1∑
t=1

e2πitRe(βv−x/p)

+
∑

vj �=vx,v−x

p−1∑
t=1

e2πitRe(βvj/p)

= 2(p − 1) + (p − 1)(−1) = p − 1

(5.48)

as required.
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Case 3. Let us assume that −|β|2 is not a square modp. We can show that Ker(Iβ)
⋂

K is

empty. So we have

∑
v

e2πiRe(βv/p) =

p+1∑
j=1

p−1∑
t=1

e2πitRe(βvj/p)

= (p + 1)(−1) = −(p + 1).

(5.49)

This completes the proof of Lemma 5.13 and hence the proof of Theorem 5.12. �

6 Automorphic representation corresponding to F

In this section we will give the classical to adelic calculation. Starting from the auto-

morphic cuspidal function F defined in (3.4), which is an eigenfunction for the Hecke

operators Tp and Tp2 for every odd prime p, we define a cuspidal automorphic form on

the adelic group. This form gives an irreducible automorphic representation and we will

explicitly calculate its p-adic component for p �= 2.
In Sections 2–5 we have considered the function F : H3 → C as an automorphic

function for the group SV2(R) � Spin(1, 4)(R). Since H3 is also a symmetric space for

GSV+
2 (R) � GSpin+(1, 4)(R), the similitude group,we can consider F to be an automorphic

function for the group GSpin+(1, 4)(R) with trivial central character.

Let us denote by G := GSpin(1, 4) the similitude group. Let A be the ring of adeles

for the global field Q. We have the following strong approximation for G:

G(A) � G(Q)G+(R)K0, where K0 :=
∏
p<∞

G
(

Zp
)

. (6.1)

We refer the reader to [26, Theorem 104 : 4] for details on the above strong approxima-

tion result. Note that the hyperbolic upper-half space H3 is also a symmetric space for

GSV+
2 (R) � G+(R). Given a cuspidal automorphic Hecke eigenform F : H3 → C write g =

gQg∞k0 where g ∈ G(A), gQ ∈ G(Q), g∞ ∈ G+(R), and k0 ∈ K0 and define ΦF : G(A) → C

asΦF(g) := F(g∞ (i3)).ΦF satisfies the following properties:

(1) ΦF(ρg) = ΦF(g) for ρ ∈ G(Q),

(2) ΦF(gk0) = ΦF(g) for k0 ∈ K0,
(3) ΦF(gz) = ΦF(g) for z ∈ Z(A) � GL1(A).

Since F is a cusp form, we can show that ΦF is cuspidal as in [1, Lemma 5]. Now we

consider the representation of G(A) obtained from ΦF by right translations. Denote by

(πF, VF) an irreducible component containingΦF. (We will drop the subscript Fwhenever

there is no confusion.)
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Write π � ⊗ ′
pπp where πp is a representation of Gp := G(Qp). Note that for p,

an odd prime, πp is an irreducible unramified representation of Gp. From [5] we know

that there exists an unramified character χ of the Borel subgroup of Gp, unique up to

the Weyl group orbit, such that πp is isomorphic to the unique spherical constituent πχ

of the normalized induced representation IndGp

B (χ). Again from [5] we have a one-to-one

correspondence between unramified representations ofGp and algebra homomorphisms

of the Hecke algebraH(Gp, Kp) to C. Here Kp = G(Zp). We will use the calculation involv-

ing the classical Hecke algebra in Section 5 to obtain the Hecke algebra homomorphism

corresponding to πp. Using this homomorphism we will get an explicit formula for the

unramified character χ.

6.1 Unramified calculation

For the rest of the section, p is an odd prime. As seen in Section 5, the classical Hecke al-

gebraHp is generated by double cosets ΓMΓ whereM∈GSpin(1, 4)+(Z[p−1]) =: G+(Z[p−1]).

Here Z[p−1] is the set of rational numbers with only powers of p in the denominator.

In Theorem 5.6 we gave the four algebraically independent generators of this algebra.

H(Gp, Kp) is the convolution algebra ofKp-biinvariant compactly supported functions on

Gp. This is generated by the characteristic functions of double cosets KpgKp with g ∈ Gp.

Proposition 6.1. With notations as above

Hp � H(Gp, Kp
)

. (6.2)
�

Proof. We have the following bijections from the natural inclusions:

Γ\G+
(

Z
[

p−1
])

/Γ � G(Z)\G
(

Z
[

p−1
])

/G(Z) � Kp\Gp/Kp. (6.3)

The first bijection is obvious since G(Z) = Γ ∪ (

1 0
0 −1

)

Γ and G(Z[p−1]) = G+(Z[p−1]) ∪
(

1 0
0 −1

) × G+(Z[p−1]). To get the second one, note that we get injectivity from the fact

that G(Z[p−1]) ∩ Kp = G(Z). We get surjectivity from the isomorphism Gp � G(Q)Kp �
G(Z[p−1])Kp. This tells us that the two Hecke algebras are isomorphic as vector spaces.

We get similar bijections for single cosets. This is used to check that the classical double-

coset multiplication coincides with the convolution product on the p-adic Hecke algebra.

�

HenceH(Gp, Kp) is generated by the functionsφ1 := (1/Vol(Kp)) char(Kp
(

1
p

)

Kp),

φ2 := (1/Vol(Kp)) char(Kp
(

α̂
pα̂ ′

)

Kp), φ3 := (1/Vol(Kp)) char
(

Kp
(

p
p

)

Kp
)

, and φ4 :=

(1/Vol(Kp)) char
(

Kp
(

p−1

p−1

)

Kp
)

. Since the representation πp is unramified, we have
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a unique (up to a scalar) Kp fixed unramified vector F0p ∈ Vπp . Now Proposition 6.1, The-

orems 5.9 and 5.12 give us the following proposition.

Proposition 6.2. With notations as above, φ1F0p = (p3/2λp + p(p + 1))F0p, φ2F
0
p = ((p +

1)p3/2λp + (p2 − 1))F0p, φ3F
0
p = F0p, and φ4F0p = F0p. �

Since the φi generate the Hecke algebra freely, Proposition 6.2 gives us an alge-

bra homomorphism ofH(Gp, Kp). Our next step is to find the unramified character which

corresponds to this homomorphism. For this it is convenient to work in the setting of

the symplectic group. Define GSp4(Qp) := {M =
(

A B
C D

) ∈ Mat4(Qp) : AtD − BtC =

μ(M)I2, μ(M) ∈ Q×
p , B

tD = DtB, AtC = CtA}.

Proposition 6.3. Let p be an odd prime. Then with notations as above, Gp � GSp4(Qp)

and Kp � GSp4(Zp). �

Proof. Fix r, s ∈ Zp such that r2 + s2 = −1. (We can always choose r, s as above since p

does not divide the discriminant of Zp[
√

−1] and hence every unit in Zp[
√

−1] is a norm.)

For α = α0+α1i1+α2i2+α3i1i2 ∈ C2(Qp), defineψp : C2(Qp) → Mat2(Qp) by the formula

ψp(α) :=

(

α0 − α1r − α2s −α3 − α1s + α2r

α3 − α1s + α2r α0 + α1r + α2s

)

. (6.4)

ψp satisfies the following properties:

(1) ψp is an isomorphism of Qp-algebras,

(2) det(ψp(α)) = |α|2,

(3) ψp(α ′) = ptψp(α)−1, ψp(α∗) = tψp(α), and ψp(ᾱ) = pψp(α)−1.

Extend this map to ψp : Gp → GSp4(Qp):

M =

(

α β

γ δ

)

�−→
(

ψp(α) ψp(β)

ψp(γ) ψp(δ)

)

. (6.5)

This is well defined since according to the definition ofGp, we have αδ∗−βγ∗ = μ(M),αγ∗

and βδ∗ are vectors which gives us the precise conditions of the definition of GSp4(Qp)

above. Hence we get the isomorphism Gp � GSp4(Qp). One can also check that ψp maps

Kp onto GSp4(Zp). �

From now on, we will use the notationGp for GSp4(Qp) and Kp for GSp4(Zp). Fol-

lowing Asgari-Schmidt [1],Gp = BKp where B is the Borel subgroup. LetN :=
{(

tD−1 X
0 D

)

:

D upper triangular with 1 on the diagonal, X symmetric
}

be the unipotent radical and let

A := {a =

( a1
a2

a−1
1 a0

a−1
2 a0

)

: a0, a1, a2 ∈ Q×
p } be the torus so that B = NA. Then



Lifting from ˜SL(2) to GSpin(1,4) 3959

δB(a) = |a−3
0 a

2
1a
4
2|p is the modular function coming from the Haar measure. Given un-

ramified characters χ0, χ1, χ2 on Q×
p (trivial on Z×

p ), define the character χ onA by χ(a) :=

χ0(a0)χ1(a1)χ2(a2). Extend χ to a character of B = NA by setting it to be trivial on N.

Define I(χ) := IndGp

B (χ) = {f : Gp → C : locally constant function such that f(nag) =

δ
1/2
B (a)χ(a)f(g) for n ∈ N, a ∈ A, g ∈ Gp}. Gp acts on this space by right translation and

we get the normalized induced representation I(χ).

We will now find the unramified character χ such that πp is isomorphic to the

unique spherical constituent πχ of I(χ). The strategy is to apply the generators of the

Hecke algebraH(Gp, Kp) to the unramified vector by convolution and evaluate at identity.

The values will be polynomials in χ0(p), χ1(p), χ2(p) and then from Proposition 6.2 we get

a relation between the character values and the eigenvalues of our lift F. We solve these

equations to get the character χ.

Note that χ is unique up to the action of the Weyl groupW. The Weyl group of Gp

is of order 8 and is generated by the matrices

w1 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, w2 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, w3 :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(6.6)

The Weyl group acts on the character χ by the formula χw(a) := χ(w−1aw). If χ(a) =

χ0(a0)χ1(a1)χ2(a2), then χw1(a) = χ0(a0)χ2(a1)χ1(a2), χw2(a) = (χ0χ1)(a0)χ−1
1 (a1)χ2(a2),

and χw3(a) = (χ0χ2)(a0)χ1(a1)χ−1
2 (a2).

Let F0p be the unramified vector in the space of πχ satisfying F0p(1) = 1. Then

F0p(nak) = δ
1/2
B (a)χ(a) where n ∈ N, a ∈ A, k ∈ Kp. Any φ ∈ H(Gp, Kp) acts on F0P by

convolution according to the formula

(

φ ∗ F0p
)

(h) :=

∫
Gp

φ(g)F0p(gh)dg for h ∈ Gp. (6.7)

We will use Proposition 6.2 and the action of H(Gp, Kp) on F0p above to get equations sat-

isfied by χ. For this we need the following right coset decomposition.
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Proposition 6.4.

Kp

⎛

⎜

⎜

⎜

⎜

⎝

1

1

p

p

⎞

⎟

⎟

⎟

⎟

⎠

Kp =
⋃

bi(modp)
i=1,2,3

⎛

⎜

⎜

⎜

⎜

⎝

p b1 b2

p b2 b3

1

1

⎞

⎟

⎟

⎟

⎟

⎠

Kp
⋃

⎛

⎜

⎜

⎜

⎜

⎝

1

1

p

p

⎞

⎟

⎟

⎟

⎟

⎠

Kp

p−1
⋃

b=0

⎛

⎜

⎜

⎜

⎜

⎝

1 ∗ ∗
−b p ∗ ∗

p b

1

⎞

⎟

⎟

⎟

⎟

⎠

Kp
⋃

⎛

⎜

⎜

⎜

⎜

⎝

p ∗ ∗
1 ∗ ∗
1

p

⎞

⎟

⎟

⎟

⎟

⎠

Kp.

(6.8)

In the third and fourth terms, there are exactly p choices for the upper right-hand corner.

Moreover,

Kp

(

ψp(α̂)

ptψp(α̂)−1

)

Kp

=

p−1
⋃

b=0

⎛

⎜

⎜

⎜

⎜

⎝

1

−b p

p2 bp

p

⎞

⎟

⎟

⎟

⎟

⎠

Kp
⋃

⎛

⎜

⎜

⎜

⎜

⎝

p

1

p

p2

⎞

⎟

⎟

⎟

⎟

⎠

Kp

⋃

⎛

⎜

⎜

⎜

⎜

⎝

p2 ∗ ∗
p ∗ ∗

1

p

⎞

⎟

⎟

⎟

⎟

⎠

Kp

p−1
⋃

b=0

⎛

⎜

⎜

⎜

⎜

⎝

p ∗ ∗
−bp p2 ∗ ∗

p b

1

⎞

⎟

⎟

⎟

⎟

⎠

Kp
⋃

⎛

⎜

⎜

⎜

⎜

⎝

p ∗ ∗
p ∗ ∗

p

p

⎞

⎟

⎟

⎟

⎟

⎠

Kp.

(6.9)

In the third and fourth terms, there are exactly p3 choices for the upper right-hand corner

and in the fifth term there are exactly p2 − 1 choices. �

Proof. The proposition follows from Propositions 5.2, 5.4, and 6.3. �

Now let φ = char(KpMKp) ∈ H(Gp, Kp) with KpMKp =
⋃

iMiKp. Let Mi = niai.

Then

(

φ ∗ F0P
)

(e) =

∫
Gp

φ(g)F0p(g)dg =

∫
KpMKp

F0P(g)dg =
∑
i

∫
MiKp

F0p(g)dg

= Vol
(

Kp
)
∑
i

F0p
(

niai
)

= Vol
(

Kp
)
∑
i

δ
1/2
B

(

ai
)

χ
(

ai
)

.

(6.10)
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Apply (6.10) with φ = φ1 = (1/Vol(Kp)) char
(

Kp

( 1
1
p
p

)

Kp

)

. Then by the single-coset

decomposition obtained in (6.8) and Proposition 6.2 we get

p3/2λp + p(p + 1) = p3/2χ0(p)
[

χ1(p)χ2(p) + 1 + χ2(p) + χ1(p)
]

. (6.11)

Now take φ = φ2 = (1/Vol(Kp)) char
(

Kp
(ψp(α)

ptψp(α)−1

)

Kp
)

in (6.10). Then by the

single-coset decomposition obtained in (6.9) and Proposition 6.2 we get

(p + 1)p3/2λp +
(

p2 − 1) = p2χ20(p)
[

χ2(p) + χ1(p) + χ21(p)χ2(p) + χ1(p)χ22(p)
]

+
(

p2 − 1
)

χ20(p)χ1(p)χ2(p).

(6.12)

Finally take φ = φ3 = (1/Vol(Kp)) char
(

Kp

( p
p
p
p

)

Kp

)

in (6.10) to get

1 = χ20(p)χ1(p)χ2(p). (6.13)

This tells us that πχ has trivial central character. Equation (6.13) implies χ0(p) =

(χ1(p)χ2(p))−1/2. Using this we get

p3/2λp + p(p + 1)

= p3/2

(

(

χ1(p)χ2(p)
)1/2

+
1

(

χ1(p)χ2(p)
)1/2

+

(

χ1(p)
χ2(p)

)1/2

+

(

χ2(p)
χ1(p)

)1/2
)

,

(p + 1)p3/2λp = p2
(

1

χ1(p)
+

1

χ2(p)
+ χ1(p) + χ2(p)

)

.

(6.14)

From the earlier remark on the Weyl group of Gp, it is clear that the above equations are

not changed if we replace the character χ with χw for any w ∈ W the Weyl group. Hence

the solutions to the above equations will be in the same Weyl group orbit as expected.

Theorem 6.5. Up to the action of the Weyl group the character χ is given by

χ1(p) = p1/2
λp +

√

λ2p − 4

2
, χ2(p) = p1/2

λp −
√

λ2p − 4

2
, χ0(p) = p−1/2.

(6.15)
�
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Proof. Denote a = (χ1(p)χ2(p))1/2 + (χ1(p)χ2(p))−1/2 and b = (χ1(p)/χ2(p))1/2 + (χ2(p)/

χ1(p))1/2. Then we have χ1(p) + χ2(p) + χ1(p)−1 + χ2(p)−1 = ab. Hence from (6.14) we get

p3/2λp + p(p + 1) = p3/2(a + b),

(p + 1)p3/2λp = p2ab.
(6.16)

Hence we get the equation

p2ab

p + 1
− p3/2(a + b) + p(p + 1) =

(

p2a

p + 1
− p3/2

)

(

b − p−1/2(p + 1)
)

= 0. (6.17)

If a = p−1/2(p + 1) = p1/2 + p−1/2, then b = λp and this implies (χ1(p)χ2(p))1/2 = p±1/2

and (χ1(p)/χ2(p))1/2 = (λp ±
√

λ2p − 4)/2. This gives us four solutions:

χ1(p) = p±1/2
λp ±

√

λ2p − 4

2
,

χ2(p) = p±1/2
λp ∓

√

λ2p − 4

2
.

(6.18)

If b = p−1/2(p + 1) = p1/2 + p−1/2, then a = λp and this implies (χ1(p)χ2(p))1/2 =

(λp ±
√

λ2p − 4)/2 and (χ1(p)/χ2(p))1/2 = p±1/2. This gives us four more solutions:

χ1(p) = p±1/2
λp ±

√

λ2p − 4

2
,

χ2(p) = p∓1/2
λp ±

√

λ2p − 4

2
.

(6.19)

From the comments before Proposition 6.4 regarding the Weyl group action on charac-

ters, one can check that the 8 choices for the character χ obtained above are in the same

Weyl group orbit. This completes the proof of Theorem 6.5. �

Since χ1χ2 = |·|−1, it follows from [29, Lemma 3.2] that the induced representation

I(χ) obtained above is not irreducible. From the classification of automorphic represen-

tations of GSp(4) given in [30], we can conclude that the representation πχ is a represen-

tation of type IIb.
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6.2 CAP representation

Definition 6.6. Let G1 and G2 be two groups such that G1,ν � G2,ν for almost all places

ν and P2 be a parabolic subgroup of G2. Then an irreducible cuspidal automorphic rep-

resentation π of G1 is called a CAP representation associated to P2 if there is an irre-

ducible cuspidal automorphic representation σ of M2, the Levi component of P2, such

that πν � π ′
ν for almost all places ν, where π ′ is an irreducible component of IndG2

P2
(σ).

To define the normalized induction, extend (σ, Vσ) to a representation of P2 =

M2N2 by setting it to be trivial on the unipotent radical N2 and let δP2
be the modular

function obtained from the Haar measure. Then

IndG2

P2
:=

{
f : G2 −→ Vσ | f smooth, f(pg) = δ

1/2
P2

(p)σ(p)f(g) for p ∈ P2, g ∈ G2
}
.

(6.20)

Let G1 := GSpin(1, 4) and G2 := GSp4. Then from Proposition 6.3, we have G1,p � G2,p for

every odd prime p. Let

P :=

{(

g B

μtg−1

)

: g ∈ GL2, B symmetric matrix, μ the similitude

}
(6.21)

be the Siegel parabolic subgroup of G2. We will now construct an irreducible cuspidal

automorphic representation σ of the Levi subgroup of P. Consider f ∈ S+
1/2(Γ0(4)) which

is a Hecke eigenform with eigenvalue λp for every odd prime p. Let h be the weight 0Maaß

form with respect to SL2(Z) corresponding to f by the Shimura correspondence given in

[17]. If we define the Hecke operator T(p) on weight 0Maaß forms by

(

T(p)h
)

(z) :=

p−1∑
j=0

h

(

z + j

p

)

+ h(pz), (6.22)

then from [17, pages 199 and 223] we know that T(p)h = p1/2λp. Let σ be the irreducible

cuspidal automorphic representation of GL2(A) obtained from h by the strong approxi-

mation of GL2. Write σ � ⊗ ′
pσp, where σp is given by σp � I(η1, η2) := {̂f : GL2(Qp) → C |

̂f smooth, ̂f(bg) = δB2
(b)1/2η(b)̂f(g) ∀b ∈ B2, g ∈ GL2}. Here B2 :=

{
b =

(

a1 0
a3 a2

)}
is the

standard lower-triangular Borel subgroup of GL2, δB2

((

a1 0
0 a2

))

= |a−1
1 a2| is the modular

function obtained from the Haar measure on GL2, and η
((

a1 0
a3 a2

))

:= η1(a1)η2(a2) where

η1 and η2 are unramified unitary characters of Q∗
p. (We consider the lower-triangular

Borel subgroup here instead of the upper triangular since we have used the notations
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of [1] for our calculations regarding the symplectic group.) Following calculations simi-

lar to (6.10), (6.11), (6.12) we get η1(p) + η2(p) = λp and η1(p)η2(p) = 1.

Theorem 6.7. Let πF be the representation of G1 from the previous section. Then πF is

CAP to an irreducible component of IndG2

P (η0 × σ × | det |−1/2) where σ is as above and

η0(μ) := |μ|1/2 is an unramified character that acts on the similitude. �

Proof. By transitivity of induction, we can show that for every odd prime p we have

IndG2,p

B (χ) � IndG2,p

P (η0 × σp × | det |−1/2) with χ as in Theorem 6.5. We can then take

π ′ to be the irreducible automorphic constituent of IndG2

P (η0 × σ × | det |−1/2) such that

the p-adic component of π ′ is the spherical constituent of IndG2,p

P (η0 × σp × | det |−1/2).

It follows from [23, Lemma 1] that we can always find a π ′ with the above property. Then

we have πF,p � π ′
p for every odd prime p and hence we get the result of the theorem. �

We note that from [31, Lemma 2.2] and Theorem 6.7 above we can conclude that

the representation πF,p is precisely the local Saito-Kurokawa lift of σ.

We want to point out that Definition 6.6 is not the same as the definition of CAP

representation found in the literature in the sense that we allow two different groups

G1 and G2 satisfying G1,ν � G2,ν for almost all places ν instead of considering just one

group. To the best of our knowledge this is the first example where such CAP representa-

tions are constructed.

One can explain why we get CAP representation involving two different groups

if we consider Langlands functoriality. The two groups GSpin(1, 4) and GSp4 are inner

forms of each other. Hence they have the same L-groups. Langlands functoriality tells

us that corresponding to the identity L-homomorphism, we should get a lifting of auto-

morphic representations from the inner form GSpin(1, 4) to the split group GSp4. Locally,

when GSpin(1, 4)ν � GSp4,ν, the lifting is given by an isomorphism which is the content

of Theorem 6.7. Hence one can say that Theorem 6.7 is a special case of the Langlands

functoriality expected in this situation.
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