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Abstract In this paper, we give a new definition for the space of non-holomorphic Jacobi
Maaß forms (denoted by J nh

k,m) of weight k ∈ Z and index m ∈ N as eigenfunctions of a
degree three differential operator Ck,m. We show that the three main examples of Jacobi
forms known in the literature: holomorphic, skew-holomorphic and real-analytic Eisenstein
series, are contained in J nh

k,m. We construct new examples of cuspidal Jacobi Maaß forms Ff

of weight k ∈ 2Z and index 1 from weight k − 1/2 Maaß forms f with respect to �0(4)

and show that the map f �→ Ff is Hecke equivariant. We also show that the above map is
compatible with the well-known representation theory of the Jacobi group. In addition, we
show that all of J nh

k,m can be “essentially” obtained from scalar or vector valued half integer
weight Maaß forms.
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1 Introduction

The theory of Jacobi forms has been studied extensively in the last few decades. One of
the important features of Jacobi forms is that they form a bridge between the space of el-
liptic modular forms and Siegel modular forms. This fact is exploited to give a proof of
the Saito-Kurokawa conjecture, which states that there is a lifting from elliptic modular
forms to Siegel cusp forms of genus 2 (see [10]). In [13], Ikeda has used Jacobi forms of
higher genus to prove a conjecture of Duke and Imamoglu (see [8]), which generalizes the
Saito-Kurokawa conjecture. A very nice and systematic development of the theory of holo-
morphic Jacobi forms is given in the book [10] by Eichler and Zagier. In addition to the
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holomorphic Jacobi forms, there are two main examples of Jacobi forms, namely, skew-
holomorphic Jacobi forms and real analytic Eisenstein series. Analogous to Maaß forms
on GL2, one would like to have a theory of non-holomorphic Jacobi forms. Such a theory
should, at the least, include the above mentioned examples of Jacobi forms as subspaces and,
more ambitiously, should account for all possible automorphic forms on the Jacobi group.
A theory of non-holomorphic Jacobi forms is desirable for several reasons. Firstly, given an
irreducible automorphic representation of the adelic points of the Jacobi group, we would
be able to pick distinguished vectors in the representation and associate to them classical
modular forms. Secondly, a theory of non-holomorphic Jacobi forms of higher genus will
help obtain a lifting from representations of GL2, whose archimedean component is not a
holomorphic discrete series, to representations of the symplectic group of higher genus (in
analogy to Ikeda’s lift). Very little is known about the latter problem.

There have been a few attempts to define non-holomorphic Jacobi forms (see [5], [23]),
but the theory developed so far is somewhat unsatisfactory. In this paper, we introduce a
new way to define non-holomorphic Jacobi Maaß forms of weight k ∈ Z and index m ∈ N.
As mentioned earlier, there are three main examples of Jacobi forms with respect to GJ (Z)

available in the literature. Here GJ denotes the Jacobi group.

• In [10], Eichler and Zagier define the holomorphic Jacobi forms Fh of weight k > 0 and
index m with respect to GJ (Z).

• Skoruppa defines the skew-holomorphic Jacobi forms F sh of weight k > 0 and index m

in [20].
• In [1], Arakawa defines the real analytic Jacobi Eisenstein series Ek,m of weight k ∈ Z and

index m, which is a generalization of the holomorphic Jacobi Eisenstein series from [10].

If F is any one of Fh,F sh or Ek,m, and is a Hecke eigenform as well, one can construct an
irreducible automorphic representation πF of GJ (A). If F is either Fh or F sh, then πF is
cuspidal and if F = Ek,m then πF is not cuspidal.

Let πF = ⊗πF,p . Then in each of the three cases the non-archimedean local representa-
tions are spherical and completely determined by the classical Hecke eigenvalues. On the
other hand, the archimedean representations are completely different:

1. If F = Fh we see that πF,∞ is a lowest weight discrete series representation π+
m,k

(see [4]),
2. If F = F sh we see that πF,∞ is a highest weight discrete series representation π−

m,k

(see [3]) and
3. If F = Ek,m we see that πF,∞ is a principle series representation π2s−1,m,±1 (see [5]).

The notations for the archimedean representations will be explained in details in Proposi-
tion 7.3. The type of archimedean representation obtained depends on the scalar with which
the Casimir operator C (defined in (6)) of the Jacobi group acts on the representation πF,∞.
We pull back C to an operator Ck,m on functions on H × C, where H is the complex upper
half plane. Then the scalar used to determine πF,∞ is precisely the eigenvalue of the oper-
ator C∗,m acting on F , where ∗ is the weight of F . So, we see that the representation πF

is completely determined by the Hecke eigenvalues, the integers k,m and the eigenvalue of
the differential operator C∗,m acting on F .

The above discussion leads us to the conclusion that the most general notion of a Jacobi
form with respect to GJ (Z) (which would include the three examples above) is a function,
which is an eigenfunction of the degree 3 differential operator Ck,m and satisfies the auto-
morphy condition with respect to the non-holomorphic automorphy factor defined in (2).
We make this definition precise in Definition 3.2 and denote the space of Jacobi Maaß forms
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of weight k ∈ Z and index m > 0 with respect to GJ (Z) by J nh
k,m. (The nh in the superscript

corresponds to non-holomorphic.)
A general notion of a Jacobi form is worthwhile only if we can have explicit examples

which were not available earlier. We obtain, in Sect. 4, new examples of Jacobi Maaß forms
Ff of weight k ∈ 2Z and index m = 1 by constructing an injective map from the space
of weight k − 1/2 Maaß forms f with respect to �0(4) belonging to a non-holomorphic
analogue of the Kohnen plus space to J nh

k,1. The motivation for this construction is the anal-
ogous situation in the case of holomorphic Jacobi forms in [10]. However, contrary to the
holomorphic case, the image of this map is not all of J nh

k,1 but the proper subspace Ĵ nh
k,1 of

functions that are holomorphic in the z variable. This is shown in Theorem 4.5. Since the
space of weight k − 1/2 Maaß forms with respect to �0(4) in the non-holomorphic Kohnen
plus space is infinite dimensional we can conclude that the space J nh

k,1, for k even, is infinite
dimensional. For weight k ∈ Z and index m ≥ 1, we show in Theorem 4.6 that subspace
Ĵ nh

k,m of J nh
k,m, consisting of functions that are holomorphic in the z variable, is isomorphic to

a certain space of vector valued half integer weight Maaß forms. We notice that applying
differential operators to functions in Ĵ nh

k,m generates all of J nh
k,m and in this sense, one can say

that the Jacobi Maaß forms are “essentially” obtained from half integer weight Maaß forms.
Note that one usually constructs Eisenstein series as the first examples of any kind of

automorphic forms. But in this case, the real analytic Jacobi Eisenstein series defined by
Arakawa are precisely the Eisenstein series that one would obtain from such a construction.
We show this fact in Theorem 5.1 along with the result that the holomorphic and skew-
holomorphic Jacobi forms defined in [10] and [20] are indeed elements of J nh

k,m. This can be
described by the following diagram.

J nh
k,m J nh

1−k,m

F h : (k,m)

yk/2

Ek,m : (k,m)

yk/2

F sh : (k,m)

yk/2 (1)

Here the arrows correspond to the maps obtained by multiplying the function F by yk/2. This
shows that the definition of Jacobi Maaß forms (Definition 3.2) is indeed a generalization
of known Jacobi forms. Since the holomorphic, skew-holomorphic Jacobi forms and the
Eisenstein series are holomorphic in the z variable, we get the well-known fact that these
Jacobi forms are obtained from half-integer weight modular forms.

Since the definition of Jacobi Maaß forms is inspired from the representation theory of
the Jacobi group, it is important to verify that the classical Jacobi Maaß forms constructed
here conform with the representation theory. We ask the following question: Start with a
half integer weight Maaß cusp form f and consider the corresponding irreducible cuspi-
dal automorphic representation π̃f of the metaplectic group ˜SL2(A). We get an irreducible
cuspidal automorphic representation π of GJ (A) by setting π = π̃f ⊗ π1

SW where π1
SW is

the Schrödinger-Weil representation. (The map π̃ �→ π̃ ⊗πm
SW gives a 1 − 1 correspondence

between representations of ˜SL2(A) and GJ (A) with a fixed central character depending
on m.) Let Ff ∈ Ĵ nh

k,1 be the Jacobi Maaß form corresponding to f and let πF be the irre-
ducible cuspidal automorphic representation of GJ (A) corresponding to Ff . Then is it true
that π = πF ? In other words, is the definition of Jacobi Maaß forms compatible with the ex-
pected relationships of the representations involved? In Theorem 7.5, we indeed show that
the answer to this question is affirmative. To prove Theorem 7.5, the important ingredient is
the Hecke equivariance of the map f �→ Ff , which we show in Theorem 6.1.
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Finally, in Sect. 8, we list some comments and future steps that one can take in the theory
of Jacobi Maaß forms. This follows the ideas of what is known, due to works of others,
mainly, in the case of holomorphic and skew-holomorphic Jacobi forms.

2 Preliminaries on the Jacobi group

Let Sp4 be the symplectic group defined by

Sp4 := {g ∈ GL4 : t gJg = J } where J =
[

I2

−I2

]

.

The Jacobi group GJ is defined as the subgroup of Sp4 given by the matrices whose last
row is

[

0 0 0 1
]

. We can realize GJ as the semidirect product GJ = SL2 � H , where
H is the Heisenberg group consisting of elements (λ,μ,κ) =: (X,κ), where X = (λ,μ). It
is convenient to use the following coordinate systems on the real points of the Jacobi group
GJ (R):

1. The EZ-coordinates (due to Eichler-Zagier) (x, y, θ, λ,μ,κ) give us the element
M(X,κ) ∈ GJ (R) where

M =
[

1 x

0 1

][

y1/2 0
0 y−1/2

][

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

with x ∈ R, y ∈ R
+, 0 ≤ θ < 2π,

X = (λ,μ) ∈ R
2 and κ ∈ R.

2. The S-coordinates (due to Siegel) (x, y, θ,p, q, κ) give us the element (Y, κ)M ∈ GJ (R)

where M is as above and Y = (p, q) = XM−1 ∈ R
2.

The action of GJ (R) on H × C, where H = {τ = x + iy ∈ C : y > 0} is the complex upper
half plane, is given, in terms of the two coordinate systems, as follows:

1. If g = M(X,κ) ∈ GJ (R) is given in the EZ-coordinates, then for τ ∈ H, z ∈ C we have

g(τ, z) :=
(

M〈τ 〉, z + λτ + μ

cτ + d

)

where M =
[

a b

c d

]

and M〈τ 〉 = aτ + b

cτ + d
.

2. In the S-coordinates we have

GJ (R)/(SO(2) × R) ˜−→ H × C

g = (p, q, κ)M �→ g(i,0) = (τ,pτ + q) where τ = M〈i〉.
For more details regarding the Jacobi group we direct the reader to [5].

3 Non-holomorphic automorphy factor and differential operators

Let us now introduce the non-holomorphic automorphy factor j nh
k,m (k ∈ Z, m ∈ N) for the

Jacobi group in the EZ-coordinates as follows:

j nh
k,m(g, (τ, z)) := e2πim(κ− c(z+λτ+μ)2

cτ+d
+λ2τ+2λz+λμ)

(

cτ + d

|cτ + d|
)−k

(2)
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where g = M(X,κ) with M = [

a b

c d

]

, X = (λ,μ) and (τ, z) ∈ H × C (here the superscript
“nh” corresponds to non-holomorphic). In the S-coordinates, the above automorphy factor
looks much simpler. Let g = (x, y, θ,p, q, κ) ∈ GJ (R). Then we have

j nh
k,m(g, (i,0)) = e2πim(κ+pz)eikθ where z = p(x + iy) + q.

It is easy to check that the automorphy factor satisfies the following condition

j nh
k,m(g1g2, (τ, z)) = j nh

k,m(g1, g2(τ, z))j
nh
k,m(g2, (τ, z))

for all g1, g2 ∈ GJ (R), (τ, z) ∈ H × C. (3)

We can now define a slash operator on functions on H × C as follows: for g ∈ GJ (R),
(τ, z) ∈ H × C and a smooth function F : H × C → C we set

(F |k,mg)(τ, z) := j nh
k,m(g, (τ, z))F (g(τ, z)). (4)

From (3), we can see that

F |k,m(g1g2) = (F |k,mg1)|k,mg2.

This slash operator now allows us to construct a map �k,m from the functions on H × C

to the functions on the group GJ (R) as follows. Suppose we have a smooth function F :
H × C → C then define �k,mF : GJ (R) → C by the formula

(�k,mF )(g) := (F |k,mg)(i,0). (5)

In particular, if g = (p, q, κ)M with M = [ y1/2 xy−1/2

0 y−1/2

][ cos(θ) sin(θ)

− sin(θ) cos(θ)

]

then

(�k,mF )(g) = F(τ, z)e2πim(κ+pz)eikθ

where τ = x + iy and z = pτ + q .
Let us recall the following differential operators (in S-coordinates) on the functions on

GJ (R) coming from the Lie algebra of the Jacobi group, as given in [5, p. 12, 38]. Fix
m ∈ N.

Y+ = 1

2
y−1/2eiθ (∂p − τ̄ ∂q − z̄∂κ), Y− = 1

2
y−1/2e−iθ (∂p − τ∂q − z∂κ),

X+ = i

2
e2iθ (4y∂τ − ∂θ ), X− = − i

2
e−2iθ (4y∂τ̄ − ∂θ ),

Z = −i∂θ , D± = X± ± 1

4πm
Y 2

±, 
1 = Z + 1

4πm
(Y+Y− + Y−Y+).

Let us now define the following differential operators on smooth functions F on H × C. By
abuse of notation we will write F as F(τ, τ̄ , z, z̄). Fix k ∈ Z,m ∈ N.

Y k,m
+ F := i

(

τ − τ̄

2i

)1/2(

Fz + 4πim
z − z̄

τ − τ̄
F

)

, Y k,m
− F := −i

(

τ − τ̄

2i

)1/2

Fz̄,

Xk,m
+ F := (τ − τ̄ )Fτ + (z − z̄)Fz + 2πim

(z − z̄)2

τ − τ̄
F + k

2
F,
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Xk,m
− F := −(τ − τ̄ )Fτ̄ − (z − z̄)Fz̄ − k

2
F,

Dk,m
+ F :=

(

Xk,m
+ + 1

4πm
(Y k+1,m

+ Y k,m
+ )

)

F = (τ − τ̄ )Fτ − 1

4πm

(

τ − τ̄

2i

)

Fzz + k − 1

2
F,

Dk,m
− F :=

(

Xk,m
− − 1

4πm
(Y k−1,m

− Y k,m
− )

)

F

= −(τ − τ̄ )Fτ̄ − (z − z̄)Fz̄ − k

2
F + 1

4πm

(

τ − τ̄

2i

)

Fz̄z̄,



k,m
1 F :=

(

k + 1

4πm
(Y k−1,m

+ Y k,m
− + Y k+1,m

− Y k,m
+ )

)

F.

The relation between the differential operators acting on the functions on the group and
those acting on the functions on H × C is given in the following proposition.

Proposition 3.1 Let X±, Y±,D±,
1,X
k,m
± , Y

k,m
± ,D

k,m
± ,


k,m
1 be as defined above. Let F :

H × C → C be a smooth function. Then we have

X±(�k,mF ) = �k±2,m(Xk,m
± F), Y±(�k,mF ) = �k±1,m(Y k,m

± F),

D±(�k,mF ) = �k±2,m(Dk,m
± F), 
1(�k,mF ) = �k,m(


k,m
1 F).

Proof The proposition is proved by direct computation. �

Recall the Casimir operator defined in [5, p. 38] by the formula

C = D+D− + D−D+ + 1

2

2

1. (6)

It is shown in [5, p. 38] that C lies in the center of U(gJ
C
)/(Z0 − 4πm), where U(gJ

C
) is the

universal enveloping algebra of the complexified Lie algebra gJ
C

of the Jacobi group and Z0,
in the S-coordinates, is given by the differential operator −i∂κ . For more on the operator C ,
also see [6].

Using Proposition 3.1, we see that the differential operator

Ck,m := Dk−2,m
+ Dk,m

− + Dk+2,m
− Dk,m

+ + 1

2
(


k,m
1 )2

acting on the functions on H × C, satisfies

C(�k,mF ) = �k,m(Ck,mF ), (7)

i.e., Ck,m is the pullback of C using the non-holomorphic automorphy factor j nh
k,m. Substitut-

ing the definition of D
k,m
± and 


k,m
1 we get

Ck,mF = 5

8
F − 2(τ − τ̄ )2Fττ̄ − (k − 1)(τ − τ̄ )Fτ̄ − k(τ − τ̄ )Fτ

+ k(τ − τ̄ )

8πim
Fzz + (τ − τ̄ )2

4πim
Fτ̄zz
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+ k(τ − τ̄ )

4πim
Fzz̄ + (τ − τ̄ )(z − z̄)

4πim
Fzzz̄ − 2(τ − τ̄ )(z − z̄)Fτ z̄ + (τ − τ̄ )2

4πim
Fτz̄z̄

+
(

(z − z̄)2

2
+ k(τ − τ̄ )

8πim

)

Fz̄z̄ + (τ − τ̄ )(z − z̄)

4πim
Fzz̄z̄. (8)

Let us note here that the above operator simplifies significantly if one applies it to functions
F with some extra properties. For example, if F is holomorphic in the z variable then the
last two lines of (8) give us zero. In addition, if F is also holomorphic in the τ variable then
Ck,m reduces to 5

8F − k(τ − τ̄ )Fτ + k(τ−τ̄ )

8πim
Fzz, which is closely related to the heat operator

8πim∂τ − ∂2
z .

Consider the discrete subgroup �J := SL2(Z) � H(Z) of GJ (R).

Definition 3.2 A smooth function F : H ×C → C is called a Jacobi Maaß form of weight
k (k ∈ Z) and index m (m ∈ N) with respect to �J if

1. (F |k,mγ )(τ, z) = F(τ, z) for all γ ∈ �J and (τ, z) ∈ H × C,
2. Ck,mF = λF for some λ ∈ C and
3. F(τ, z) = O(yN) as y → ∞ for some N > 0.

If, in addition, F satisfies the condition

∫ 1

0

∫ 1

0
F

([

1 x

0 1

]

(0, u,0)(τ, z)

)

e−2πi(nx+ru)dx du = 0 for all n, r ∈ Z

such that 4nm − r2 = 0 (9)

then we say that F is a Jacobi Maaß cusp form.

Let us denote the vector space of all Jacobi Maaß forms of weight k and index m with
respect to �J by J nh

k,m and the subspace of cusp forms by J
nh,cusp
k,m .

4 Jacobi Maaß forms and half integer weight Maaß forms

In the holomorphic setting, it is shown by Eichler-Zagier [10] that the space of holomorphic
Jacobi forms of even weight k and index 1 is isomorphic to the space of weight k − 1/2
holomorphic modular forms in the Kohnen plus space. For higher index, they have obtained
a theta expansion in terms of vector valued half integral weight modular forms. These facts
are the motivation for the construction of Jacobi Maaß forms in this section. We will first
give some background and useful results regarding Maaß forms in the plus space. Then
we will introduce the non-holomorphic theta series and obtain the desired family of Jacobi
Maaß forms.

4.1 Half-integer weight Maaß forms

Since the motivation for the construction we want to present here is the holomorphic setting,
we first have to derive a few results about half -integer weight Maaß forms analogous to the
holomorphic half-integer weight forms. In particular, we need a non-holomorphic analogue
of Proposition 2 from [15, p. 255] and Lemma 2.1 from [13, p. 648]. This is achieved in
Propositions 4.1 and 4.2 below.
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Let S be the group which consists of all pairs (γ,φ(τ)), where γ = [

a b

c d

] ∈ GL+
2 (R) and

φ(τ) is a function on the upper half plane H such that φ(τ) = t det(γ )−1/4( cτ+d
|cτ+d| )

1/2 with
t ∈ C, |t | = 1. The group law is given by

(γ1, φ1(τ )) · (γ2, φ2(τ )) = (γ1γ2, φ1(γ2〈τ 〉)φ2(τ )),

where γ 〈τ 〉 := aτ + b

cτ + d
with γ =

[

a b

c d

]

. (10)

Let �0(4) := {[

a b

c d

] ∈ SL2(Z) : c ≡ 0 (mod 4)
}

. There exists an injective homomorphism
�0(4) �→ S given by γ �→ γ ∗ := (γ, j (γ, τ )), where

j (γ, τ ) :=
(

c

d

)

ε−1
d

(

cτ + d

|cτ + d|
)1/2

= θ(γ 〈τ 〉)
θ(τ )

,

γ =
[

a b

c d

]

∈ �0(4), θ(τ ) := y1/4
∞

∑

n=−∞
e2πin2τ

with

εd =
{

1, if d ≡ 1 (mod 4)

i, if d ≡ 3 (mod 4)

and ( c
d
) is defined as in [19, p. 442].

For an integer k define the slash operator ||k−1/2 (to distinguish it from the slash operator
defined in (4)) on functions on the upper half plane as follows:

(f ‖k−1/2(γ,φ))(τ ) := f (γ 〈τ 〉)φ(τ )−(2k−1). (11)

We say that a smooth function f : H → C is a Maaß form of weight k −1/2 with respect
to �0(4) if the following conditions are satisfied:

1. For every γ ∈ �0(4) we have f ‖k−1/2γ
∗ = f .

2. 
k−1/2f = �f for some � ∈ C where 
k−1/2 is the Laplace Beltrami operator given by


k−1/2 := y2

(

∂2

∂x2
+ ∂2

∂y2

)

−
(

k − 1

2

)

iy
∂

∂x
. (12)

3. f (τ) = O(yN) as y → ∞ for some N > 0.

If, in addition, f vanishes at all the cusps of �0(4), then we say that f is a Maaß cusp form.
Let us denote the space of Maaß forms of weight k − 1/2 with respect to �0(4) by

Mk−1/2(4) and the subspace of Maaß cusp forms by Sk−1/2(4). As shown in [18] or [14], if
f ∈ Mk−1/2(4) then f has the following Fourier expansion

f (τ) =
∑

n∈Z

c(n)Wsgn(n)
k−1/2

2 , il
2
(4π |n|y)e2πinx (13)

where � = −(1/4 + (l/2)2) and Wν,μ(y) is the classical Whittaker function (see [16]),
which is normalized so that Wν,μ(y) ∼ e−y/2yν as y → ∞. If f ∈ Sk−1/2(4) then we have
c(0) = 0 in the Fourier expansion above. Define the plus space by

M+
k−1/2(4) := {f ∈ Mk−1/2(4) : c(n) = 0 whenever (−1)k−1n ≡ 2,3 (mod 4)}. (14)
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This is the non-holomorphic analogue of the Kohnen plus space defined in [15]. Set
S+

k−1/2(4) = M+
k−1/2(4) ∩ Sk−1/2(4). Using the non-holomorphic Shimura correspondence

established in [14] and the fact that the Laplacian 
0 has infinitely many eigenvalues (see
Theorem 2.11 in [12]), we know that the space S+

1/2(4) is infinite dimensional. Applying the
raising, lowering and inverting operators (see [18, p. 3925]) one can see that S+

k−1/2(4) is
infinite dimensional for any integer k.

For every odd prime p we have the Hecke operator Tp2 acting on M+
k−1/2(4). If {c(p2)(n)}

denote the Fourier coefficients of Tp2f then we have the following relation

c(p2)(n) = p c(p2n) + p− 1
2

(

(−1)k−1n

p

)

c(n) + p−1c

(

n

p2

)

(15)

where
(

.

.

)

is the Legendre symbol and c(n) = 0 if n �∈ Z. From [14], we know that the space
S+

k−1/2(4) has a basis consisting of simultaneous eigenfunctions of Tp2 for all odd primes p.
Define the following operators on Mk−1/2(4).

(f |U)(τ) = 2k−1/2

4

3
∑

ν=0

f

(

τ + ν

4

)

= 1

4

3
∑

ν=0

(

f ||k−1/2

[(

1 ν

0 4

)

,2−1/2

])

(τ ), (16)

(f |W)(τ) =
(−iτ

|τ |
)−(k−1/2)

f

(−1

4τ

)

= 2−(k−1/2)

(

f ||k−1/2

[

(

0 −1
4 0

)

,2−1/2

(−iτ

|τ |
)1/2

])

(τ ). (17)

Note that |U and |W are the non-holomorphic analogues of the operators |U4 and |W4 from
[15, p. 250]. As in the holomorphic case, it can be checked that f |U and f |W are indeed
in Mk−1/2(4). Also, note that the operators |U and |W commute with 
k−1/2. If f has the
Fourier expansion given in (13) then a straightforward computation shows that f |U has the
Fourier expansion

(f |U)(τ) = 2k−1/2
∑

n∈Z

c(4n)Wsgn(n)
k−1/2

2 , il
2
(4π |n|y)e2πinx. (18)

In addition, if f ∈ M+
k−1/2(4) then we have the identity

2k−1/2

4

[

f

(

τ

4

)

+ f

(

τ + 2

4

)]

= 1

2
(f |U)(τ). (19)

Next, we show that, as in the holomorphic case, elements of M+
k−1/2(4) are eigenfunctions

of the operator |U |W .

Proposition 4.1 If f ∈ M+
k−1/2(4) then we have

f |U |W = 2k−1ik2−kf. (20)

Proof Write f |U |W = f1 + f2 where

f1 = 1

4

(

f ‖k−1/2

[(

1 1
0 4

)

,2−1/2

]

+ f ‖k−1/2

[(

1 3
0 4

)

,2−1/2

])∣

∣

∣

∣

W
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and

f2 = 2k−1/2

4

[

f

(

τ

4

)

+ f

(

τ + 2

4

)]∣

∣

∣

∣

W.

We have

2k− 1
2 4f1 = f ||k−1/2

[

(

4 −1
16 0

)

,2−1

(−iτ

|τ |
)1/2

]

+ f ||k−1/2

[

(

12 −1
16 0

)

,2−1

(−iτ

|τ |
)1/2

]

= f ||k−1/2

(

1 0
−4 1

)∗
||k−1/2

[

(

4 −1
16 0

)

,2−1

(−iτ

|τ |
)1/2

]

+ f ||k−1/2

(−1 1
−4 3

)∗
||k−1/2

[

(

12 −1
16 0

)

,2−1

(−iτ

|τ |
)1/2

]

= f ||k−1/2

[(

4 −1
0 4

)

,2−1e− iπ
4

]

+ f ||k−1/2

[(

4 1
0 4

)

,2−1e
iπ
4

]

= 22k−3/2
(

ik−1(1 + i)f (τ − 1/4) + i1−k(1 − i)f (τ + 1/4)
) = 22k−1/2ik2−kf (τ ).

We get the last equality because c(n) = 0 if (−1)k−1n ≡ 2,3 (mod 4). Now putting this
together with f2 = 1

2f |U |W (see 19) we get the result. �

For f (τ) = ∑

n∈Z
c(n)Wsgn(n)

k−1/2
2 , il

2
(4π |n|y)e2πinx ∈ M+

k−1/2(4), define the functions

f (0)(τ ) =
∑

n∈Z

c(4n)Wsgn(n)
k−1/2

2 , il
2
(4π |n|y)e2πinx, (21)

f (1)(τ ) =
∑

n∈Z

c(4n + ε)Wsgn(n)
k−1/2

2 , il
2

(

4π

∣

∣

∣

∣

n + ε

4

∣

∣

∣

∣

y

)

e2πi(n+ ε
4 )x (22)

where ε = (−1)k−1. We have by explicit computation

f (0)(τ ) = 1

4

3
∑

ν=0

f

(

τ + ν

4

)

, f (1)(τ ) = 1

4

3
∑

ν=0

(−εi)νf

(

τ + ν

4

)

,

f (τ ) = (f (0) + f (1))(4τ).

(23)

It is clear from the Fourier expansion (21), (22) or the relations (23) that both f (0) and f (1)

are eigenfunctions of 
k−1/2 with the same eigenvalue as f .

Proposition 4.2 With notations as above, we have
[

f (0)(τ + 1)

f (1)(τ + 1)

]

=
[

1 0
0 εi

][

f (0)(τ )

f (1)(τ )

]

,

[

f (0)(−τ−1)

f (1)(−τ−1)

]

=
(

τ

|τ |
)k−1/2(1 − εi

2

)[

1 1
1 −1

][

f (0)(τ )

f (1)(τ )

]

.

(24)
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Proof It follows from the definition that f (0)(τ + 1) = f (0)(τ ) and f (1)(τ + 1) =
e2πi ε

4 f (1)(τ ) = εif (1)(τ ), which gives us the first equation above. To obtain the second
equation, first note that f (0) = 2−(k−1/2)f |U . Hence

f (0)

(−1

4τ

)

= 2−(k− 1
2 )(f |U)

(−1

4τ

)

= 2−(k− 1
2 )

(−iτ

|τ |
)k− 1

2

(f |U |W)(τ)

= 2−(k− 1
2 )

(−iτ

|τ |
)k− 1

2

2k−1ik2−kf (τ ).

Here we have used the definition of the operator |W and Proposition 4.1. Note that
(−i)k−1/2ik2−k = 1−εi√

2
. Now substituting τ/4 for τ in the above equation and using (23)

we get

f (0)(−τ−1) =
(

τ

|τ |
)k−1/2(1 − εi

2

)

(f (0)(τ ) + f (1)(τ )). (25)

This gives us the first part. Now substituting −τ−1 for τ in (25) we get

f (0)(τ ) =
(−τ

|τ |
)−(k−1/2)(1 − εi

2

)

(

f (0)(−τ−1) + f (1)(−τ−1)
)

.

Solving for f (1)(−τ−1) and using (25), we get

f (1)(−τ−1) =
(

τ

|τ |
)k−1/2(1 − εi

2

)

(

f (0)(τ ) − f (1)(τ )
)

which gives us (24), as required. �

4.2 Jacobi Maaß forms of even weight k and index m = 1

Define the following theta series for τ = x + iy ∈ H and z ∈ C and j = 0,1:

˜�(j)(τ, z) := y
1
4

∑

r∈Z

r≡j (mod 2)

e2πiτ r2
4 e2πizr . (26)

From [10, p. 58–59], we have the following transformation formulae for the theta series.

[

˜�(0)(τ + 1, z)
˜�(1)(τ + 1, z)

]

=
[

1 0
0 i

][

˜�(0)(τ, z)
˜�(1)(τ, z)

]

,

[

˜�(0)(−1
τ

, z
τ
)

˜�(1)(−1
τ

, z
τ
)

]

= 2−1/2

(−iτ

|τ |
)1/2

e2πi z2
τ

[

1 1
1 −1

][

˜�(0)(τ, z)
˜�(1)(τ, z)

]

.

(27)

In the next lemma we state the differential equations satisfied by ˜�(j), which will be used in
the proof of Theorem 4.4.

Lemma 4.3 For j = 0,1 we have

5

8
˜�(j) − 2(τ − τ̄ )2

˜�
(j)

τ τ̄ − (k − 1)(τ − τ̄ )˜�
(j)

τ̄ − k(τ − τ̄ )˜�(j)
τ
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+ k
τ − τ̄

8πi
˜�(j)

zz + (τ − τ̄ )2

4πi
˜�

(j)

τ̄ zz = 0,

2(τ − τ̄ )˜�
(j)

τ̄ + 1

2
˜�(j) = 0,−2(τ − τ̄ )˜�(j)

τ + 1

2
˜�(j) + τ − τ̄

4πi
˜�(j)

zz = 0.

Proof The lemma is proved by direct computation. �

For f ∈ M+
k−1/2(4) with k ∈ 2Z, define Ff : H × C �→ C by the formula

Ff (τ, z) := f (0)(τ )˜�(0)(τ, z) + f (1)(τ )˜�(1)(τ, z). (28)

Theorem 4.4 Let f ∈ M+
k−1/2(4) with k ∈ 2Z and Ff be the smooth function on H × C

defined by (28). Then

1. Ff is a Jacobi Maaß form of weight k and index 1 with respect to �J , i.e., Ff ∈ J nh
k,1,

2. Ff is a Jacobi Maaß cusp form if and only if f ∈ S+
k−1/2(4),

3. If 
k−1/2f = �f then we have Ck,1Ff = 2�Ff .

Proof Using (24) and (27) we get

Ff (τ + 1, z) = Ff (τ, z), Ff

(−1

τ
,
z

τ

)

=
(

τ

|τ |
)k

e2πi z2
τ Ff (τ, z),

for all τ ∈ H and z ∈ C. Here we have used the fact that k is even. A direct calculation gives
the following for λ,μ ∈ Z, j = 0,1

˜�(j)(τ, z + λτ + μ) = e−2πi(λ2τ+2λz)
˜�(j)(τ, z)

⇒ Ff (τ, z + λτ + μ) = e−2πi(λ2τ+2λz)Ff (τ, z).

Since the group �J is generated by the elements
[ 1 1

0 1

]

(0,0,0),
[ 0 −1

1 0

]

(0,0,0), and
[ 1 0

0 1

]

(λ,μ,κ) for λ,μ,κ ∈ Z, we get

(Ff |k,1γ )(τ, z) = Ff (τ, z) for all γ ∈ �J , τ ∈ H, z ∈ C.

This gives us the first condition from Definition 3.2. Next we have to show that Ff is an
eigenfunction of the operator Ck,1. Since Ff is holomorphic in the z variable (by construc-
tion) we see that all the terms in Ck,1 which involve taking partial derivative with respect to
z̄ give 0. Using Lemma 4.3 we see that

Ck,1Ff = 2
∑

j=0,1

(

y2(f (j)
xx + f (j)

yy ) −
(

k − 1

2

)

iyf (j)
x

)

˜�(j)

= 2
∑

j=0,1

(
k−1/2f
(j))˜�(j) = 2�Ff .

This gives us the second condition from Definition 3.2. Since f (j) and ˜�(j) are of poly-
nomial growth in y, for j = 0,1, we see that Ff satisfies the third condition from Defini-
tion 3.2. This gives us Ff ∈ J nh

k,m.
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Substituting the definitions of the theta series and the Fourier expansion of f (j) in (28)
we get the following Fourier expansion of Ff

Ff (τ, z) =
∑

r,n∈Z

c(4n − r2)y
1
4 W

sgn(n− r2
4 )

k−1/2
2 , il

2

(

4π

∣

∣

∣

∣

n − r2

4

∣

∣

∣

∣

y

)

e−2π r2
4 ye2πinxe2πirz. (29)

If f ∈ S+
k−1/2(4), then c(0) = 0. This implies that c(4n− r2) = 0 for every n, r,∈ Z such that

4n− r2 = 0. This precisely gives us the criteria (9) for cuspidality of Ff . This completes the
proof of the theorem. �

Note that (29) implies that the map f → Ff is injective and hence we can conclude that,
for even k, the space J nh

k,1 is infinite dimensional. We will now characterize the image of this
map. For any integer k and index m define

Ĵ nh
k,m := {F ∈ J nh

k,m : Y k.m
− F = 0}. (30)

Elements of Ĵ nh
k,m are precisely the Jacobi forms that are holomorphic in the z variable.

Theorem 4.5 If k is an even integer then we have

Ĵ nh
k,1 = {F ∈ J nh

k,1 : there is a f ∈ M+
k−1/2such that F = Ff }. (31)

Proof The Fourier expansion (29) immediately tells us that the right hand side of (31) is
contained in the left hand side. Let us now show the opposite inclusion. Let F ∈ Ĵ nh

k,1, hence

it satisfies Y
k,1
− F = 0. We will first show that this forces F to have a Fourier expansion of

the form given in (29). Applying the element γ = I (0,1,0) ∈ �J to F we get F(τ, z+ 1) =
F(τ, z). Set z = u+ iv. Then we have F(τ, z) = ∑∞

r=−∞ Fr(τ, v)e2πiru. Now applying Y
k,1
−

to each summand we get

Y k,1
− (Fr(τ, v)e2πiru) = 0 ⇔ ∂

∂z̄
(Fr(τ, v)e2πiru) = 0

⇔ ∂

∂v
Fr(τ, v) = −2πrFr(τ, v) ⇔ Fr(τ, v) = F̂r (τ )e−2πrv.

This implies that F(τ, z) = ∑∞
r=−∞ F̂r (τ )e2πirz. Next apply

[ 1 1
0 1

]

(0,0,0) ∈ �J to F to get

F(τ + 1, z) = F(τ, z) and hence (with τ = x + iy) we have F(τ, z) = ∑∞
n,r=−∞

ˆ̂
Fn,r (y) ·

e2πinxe2πirz. Let us now set ˆ̂
Fn,r (y) = y1/4e−2π r2

4 ygn,r (y). For a fixed n, r , if we apply the

operator Ck,1 to the function ˆ̂
Fn,r (y)e2πinxe2πirz we get

−1

2
y

5
4 e−2π r2

4 ye2πinxe2πirz
(

π(4n − r2)(1 − 2k + (4n − r2)πy)gn,r (y) − 4yg′′
n,r (y)

)

.

Using the fact that Ck,1F = λF and a suitable change of variable, we see that gn,r satisfies
the differential equation corresponding to the Whittaker function [16, p. 256]. The growth
condition on F then forces gn,r (a) = c(n, r)W

sgn(n− r2
4 )(k−1/2)/2, il

2
(|a|), which gives us

F(τ, z) =
∞

∑

n,r=−∞
c(n, r)y

1
4 W

sgn(n− r2
4 )

k−1/2
2 , il

2

(

4π

∣

∣

∣

∣

n − r2

4

∣

∣

∣

∣

y

)

e−2π r2
4 ye2πinxe2πirz.
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Imitating the arguments given in Theorem 2.2 from [10] we can conclude that the Fourier
coefficients c(n, r) only depend on 4n− r2. If F is cuspidal then we have the extra condition
that c(n, r) = 0 if 4n − r2 = 0. Now define

cf (N) =
⎧

⎨

⎩

c(N
4 ,0), if N ≡ 0 (mod 4);

c(N+1
4 ,1), if N ≡ 3 (mod 4);

0, otherwise

and set

fF (τ) =
∑

N∈Z

cf (N)Wsgn(N)
k−1/2

2 , il
2
(4π |N |y)e2πiNx,

f
(0)
F (τ ) =

∑

N∈Z

cf (4N)Wsgn(N)
k−1/2

2 ,il/2(4π |N |y)e2πiNx, (32)

f
(1)
F (τ ) =

∑

N∈Z

cf (4N − 1)Wsgn(N)
k−1/2

2 ,il/2

(

4π

∣

∣

∣

∣

N − 1

4

∣

∣

∣

∣

y

)

e2πi(N− 1
4 )x .

Then, we have

fF (τ) = (f
(0)
F + f

(1)
F )(4τ) and F(τ, z) = f

(0)
F (τ )�̃(0)(τ, z) + f

(1)
F (τ )�̃(1)(τ, z). (33)

The automorphy condition on F and (27) imply that f
(0)
F and f

(1)
F satisfy the transformation

property given in (24). Hence, we get

fF (τ + 1) = f
(0)
F (4τ + 4) + f

(1)
F (4τ + 4) = f

(0)
F (4τ) + (−i)4f

(1)
F (4τ) = fF (τ)

and

fF

(

τ

4τ + 1

)

=
(

4τ + 1

|4τ + 1|
)k−1/2

fF (τ).

Since
[ 1 1

0 1

]

and
[ 1 0

4 1

]

generate the group �0(4), we conclude that fF ||k−1/2γ
∗ = fF for all

γ ∈ �0(4). The Fourier expansion (32) of fF implies that fF has polynomial growth in y

and 
k−1/2fF = (λ/2)fF . Hence fF ∈ Mk−1/2(4). Once again, the Fourier expansion (32)
of fF implies that cF (N) = 0 if N ≡ 1,2 (mod 4), which implies that fF ∈ M+

k−1/2(4). It is
clear from (33) that F = FfF

and hence, F belongs to the right hand side of (31). �

4.3 Jacobi forms of weight k ∈ Z and index m ≥ 1

Recall that Ĵ nh
k,m := {F ∈ J nh

k,m : Y k.m− F = 0} for k ∈ Z and m ≥ 1. Let F ∈ Ĵ nh
k,m with Ck,mF =

λF . Imitating the arguments in the proof of Theorem 4.5 we see that F has the Fourier
expansion

F(τ, z) =
∑

n,r∈Z

ĉ(n, r, y)e2πinτ e2πirz,

ĉ(n, r, y) = c(n, r)y
1
4 W

sgn(nm− r2
4 )

k−1/2
2 , il

2

(

4π

∣

∣

∣

∣

nm − r2

4

∣

∣

∣

∣

y

)

e2π(nm− r2
4 )y .

(34)
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Here, the coefficients c(n, r) only depend on 4nm − r2 and r (mod 2m). For μ ∈ Z/2mZ

and all integers N ≡ −μ2 (mod 4m), set

cμ(N) := c

(

N + r2

4m
,r

)

for any r ∈ Z, r ≡ μ (mod 2m) (35)

and extend to all N by setting cμ(N) = 0 if N �≡ −μ2 (mod 4m). Define

f (μ)(τ ) :=
∑

N∈Z

cμ(N)Wsgn(N)
k−1/2

2 , il
2

(

4π

∣

∣

∣

∣

N

4m

∣

∣

∣

∣

y

)

e2πi N
4m

x. (36)

Then 
k−1/2f
(μ) = λ/2f (μ) for all μ. Define the theta functions

˜�(μ)
m (τ, z) := y1/4

∑

r∈Z
r≡μ (mod 2m)

e2πiτ r2
4m e2πizr . (37)

From (34), (36) and (37) it is clear that

F(τ, z) =
∑

μ (mod 2m)

f (μ)(τ )˜�(μ)
m (τ, z). (38)

The theta functions ˜�(μ)
m satisfy transformation properties (see [10, pp. 58–59]) and differ-

ential equations analogous to (27) and Lemma 4.3. Using the theta transformation property
and the automorphy of F , we conclude that the functions f (μ),μ (mod 2m) satisfy

f (μ)(τ + 1) = e−2πi
μ2
4m f (μ)(τ ), (39)

f (μ)

(−1

τ

)

= 1 + i

2
√

m

(

τ

|τ |
)k−1/2

∑

ν (mod 2m)

e2πi
μν
2m f (ν)(τ ). (40)

In the reverse direction, if one starts with functions (f (μ),μ (mod 2m)) with Fourier expan-
sion (36), satisfying properties (39), (40) and bounded as Im(τ ) → ∞, then the function F

defined by (38) clearly satisfies the first condition from Definition 3.2 and has the Fourier
expansion (34). One can check that F is an eigenfunction of Ck,m directly from the Fourier
expansion (34) or by using the differential equations satisfied by the ˜�(μ)

m and f (μ). The
third condition from Definition 3.2 follows from the boundedness of f (μ) as Im(τ ) → ∞.
Finally, the Fourier expansion (34) tells us that Y k.m− F = 0. Let us summarize in the follow-
ing theorem.

Theorem 4.6 For any integer k and m ≥ 1, the equation (38) gives an isomorphism be-
tween Ĵ nh

k,m and the space of vector valued modular forms (f (μ),μ (mod 2m)) with Fourier
expansion (36), satisfying properties (39), (40) and bounded as Im(τ ) → ∞. In addition,
for k even and m = 1 the space Ĵ nh

k,1 is isomorphic to M+
k−1/2(4).

Remark The above theorem states that the subspace Ĵ nh
k,m is obtained from scalar or vec-

tor valued half integer weight Maaß forms. If F ∈ J nh
k,m, then one can actually write

F = ∑

l≤k αlY
k−1,m
+ · · ·Y l,m

+ Fl for some choice of functions Fl ∈ Ĵ nh
l,m. (This is obtained by

looking at how the differential operators act on the vectors in the archimedean representa-
tions for GJ (R) [5, pp. 35–36].) In this sense, one can say that all of J nh

k,m is “essentially”
obtained from half integer weight Maaß forms.
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5 Known examples

In this section we will consider the three known examples of Jacobi forms: the holomorphic
Jacobi forms considered by Eichler-Zagier, the skew-holomorphic Jacobi forms due to Sko-
ruppa and the real-analytic Jacobi Eisenstein series due to Arakawa. We will show that if
F is any one of the above Jacobi forms then a suitable modification F̂ is actually a Jacobi
Maaß form in the sense of Definition 3.2. We will first give the definition of the three types
of Jacobi forms mentioned above.

Holomorphic Jacobi forms [10, p. 9] A holomorphic function Fh : H × C → C is called
a holomorphic Jacobi form of weight k > 0 and index m if Fh satisfies

Fh

(

aτ + b

cτ + d
,
z + λτ + μ

cτ + d

)

= e−2πim(− c(z+λτ+μ)2
cτ+d

+λ2τ+2λz)(cτ + d)kF h(τ, z) (41)

where
[

a b

c d

]

(λ,μ,κ) ∈ �J and has a Fourier expansion of the form

Fh(τ, z) =
∑

n,r∈Z

4nm−r2≥0

c(n, r)e2πi(nτ+rz).

Skew-holomorphic Jacobi forms [20, p. 179] A smooth function F sh : H ×C → C is called
a skew-holomorphic Jacobi form of weight k > 0 and index m if it satisfies the following
conditions

1. ∂z̄F = (8πim∂τ − ∂2
z )F = 0

2. For every
[

a b

c d

]

(λ,μ,κ) ∈ �J we have

F

(

aτ + b

cτ + d
,
z + λτ + μ

cτ + d

)

= e−2πim(− c(z+λτ+μ)2
cτ+d

+λ2τ+2λz)

(

cτ + d

|cτ + d|
)1−k

|cτ + d|kF (τ, z) (42)

3. F sh has a Fourier expansion of the form

F(τ, z) =
∑

n,r∈Z

4nm−r2≤0

c(n, r)e2πi(nτ+iy(r2−4nm)/(2m)+rz).

Real-analytic Jacobi Eisenstein series [1, p. 132] Let �J∞,+ be the subgroup of �J con-

sisting of all elements of the form
[ 1 n

0 1

]

(0,μ, κ) with n,μ,κ ∈ Z. Fix k ∈ Z and m ∈ N. For
each integer r such that r2 ≡ 0 (mod 4m) and s ∈ C define a function φr,s : H × C → C by

φr,s(τ, z) = e
2πim( r2τ

4m2 + rz
m )

ys− k−1/2
2

where τ = x + iy. Then the real analytic Eisenstein series Ek,m,r ((τ, z), s) (defined in
[1, p. 132]) of weight k and index m is given by
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Ek,m,r ((τ, z), s)

=
∑

γ∈�J∞,+\�J

e2πim(− c(z+λτ+μ)2
cτ+d

+λ2τ+2λz)(cτ + d)−kφr,s

(

M〈τ 〉, z + λτ + μ

cτ + d

)

(43)

where γ = M(λ,μ,κ) ∈ �J with M = [

a b

c d

]

. The Eisenstein series is absolutely convergent
for Re(s) > 5/4 and, if k > 3, and s is evaluated at (k − 1/2)/2 then Ek,m,r ((τ, z), (k −
1/2)/2) coincides with the holomorphic Eisenstein series of [10]. The Eisenstein series
satisfies the following transformation law:

Ek,m,r

((

aτ + b

cτ + d
,
z + λτ + μ

cτ + d

)

, s

)

= e−2πim(− c(z+λτ+μ)2
cτ+d

+λ2τ+2λz)(cτ + d)kEk,m,r ((τ, z), s) (44)

where
[

a b

c d

]

(λ,μ,κ) ∈ �J . It is known that Ek,m,r depends only on r (mod 2m).

Theorem 5.1 Let F : H × C → C be one of the functions Fh or F sh or Ek,m,r defined
above. Set F̂ (τ, z) := yk/2F(τ, z). If F = Fh or Ek,m,r , then F̂ ∈ Ĵ nh

k,m and, if F = F sh, then

F̂ ∈ Ĵ nh
1−k,m.

Proof For M = [

a b

c d

]

, we have Im(M〈τ 〉) = |cτ + d|−2Im(τ ). Using this fact and the trans-

formation properties (41), (42) and (44) we see that the function F̂ satisfies the first condition
of Definition 3.2 in all three cases. In [5, p. 83], it has been shown that

C(�k,m
̂Fh) = (

(k − 1/2)(k − 5/2)/2
)

(�k,m
̂Fh),

C(�1−k,m
̂F sh) = (

(k − 1/2)(k − 5/2)/2
)

(�1−k,m
̂F sh),

C(�k,mF̂s) = (

((2s − 1)2 − 1)/2
)

(�k,mF̂s).

Using (7), we can now conclude that in all the three cases, F̂ is an eigenfunction of the
differential operator C∗,m (∗ is the weight of F̂ ), which gives us the second condition from
Definition 3.2. The third condition from Definition 3.2 follows from the definition of the
Jacobi forms F . The Fourier expansion of Fh,F sh and the definition of Ek,m,r implies that
in each case F̂ is annihilated by the appropriate Y

∗,m
− operator. Hence we get the theorem. �

6 Hecke equivariance

We want to relate the representation of ˜SL2(A) obtained from a half integer weight Maaß
form f to the representation of GJ (A) obtained from the corresponding Jacobi Maaß
form Ff . To relate the non-archimedean representations, the first step is to show the Hecke
equivariance of the map f �→ Ff . Let us assume that f ∈ M+

k−1/2(4) (k even) is a Hecke
eigenform for all odd primes p. Then we will show that Ff is also an eigenfunction of the
Hecke operators for every odd prime p. The proof closely follows the proof of the holomor-
phic analogue in [10, Theorem 4.5].
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Let us first recall the definition of the Jacobi Hecke operator Tp , for an odd prime p.
From [5, p. 168] or [10, p. 41], we have the following operator acting on Jacobi Maaß forms
F ∈ J nh

k,1

TpF := pk−4
∑

M∈SL2(Z)/M2(Z)

det(M)=p2

gcd(M)=1

∑

(λ,μ)∈(Z/pZ)2

F |k,1(det(M)− 1
2 M(λ,μ,0)). (45)

Theorem 6.1 Let f ∈ M+
k−1/2(4) (k even) be a Hecke eigenform with eigenvalue λp for every

odd prime p. Then for every odd prime p, the corresponding Jacobi Maaß form Ff defined
in (28) is an eigenfunction of the operator Tp defined above. Moreover, if TpFf = μpFf

then we have μp = pk−3/2λp .

Proof We have the following coset decomposition (see [5, p. 170])

{M ∈ M2(Z) : det(M) = p2,gcd(M) = 1}

= SL2(Z)

[

p2 0
0 1

]

�
(

⊔

h∈(Z/pZ)×
SL2(Z)

[

p h

0 p

])

�
(

⊔

b∈Z/p2Z

SL2(Z)

[

1 b

0 p2

])

. (46)

First consider the function F1 given by

F1(τ, z) =
∑

M∈SL2(Z)/M2(Z)

det(M)=p2

gcd(M)=1

(Ff |k,1(det(M)− 1
2 M))(τ, z)

= Ff (p2τ,pz) +
p−1
∑

h=1

Ff

(

τ + h

p
, z

)

+
p2−1
∑

b=0

Ff

(

τ

p2
+ b

p2
,

z

p

)

. (47)

Recall, from (29) that Ff has the Fourier expansion

Ff (τ, z) =
∑

n,r∈Z

ĉ(n, r, y)e2πinτ e2πirz,

ĉ(n, r, y) = c(4n − r2)y
1
4 W

sgn(n− r2
4 )

k−1/2
2 , il

2

(

4π |n − r2

4
|y

)

e2π(n− r2
4 )y .

Set δt,m = 1 if t = m and δt,m = 0 if t �= m. Hence, for two integers a, b, we have a|b ⇔
δ(a,b),a = 1. From (47) we get

F1(τ, z) =
∑

n∈Z,r∈ 1
p Z

ĉ1(n, r, y)e2πinτ e2πirz (48)
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where

ĉ1(n, r, y) =

⎧

⎪

⎨

⎪

⎩

p2ĉ(np2, rp,
y

p2 ), if r /∈ Z

δ(p2,n),p2δ(p,r),pĉ( n

p2 , r
p
,p2y) + (pδ(p,n),p − 1)ĉ(n, r, y) + p2ĉ(np2, rp,

y

p2 ),

if r ∈ Z.

Next let us consider the function

F2(τ, z) =
p−1
∑

μ=0

(F1|k,1(0,μ,0))(τ, z) =
∑

n,r∈Z

pĉ1(n, r, y)e2πinτ e2πirz. (49)

Corresponding to the three terms in ĉ1(n, r, y) let us define for j = 1,2,3

φj (τ, z) =
∑

n,r∈Z

c∗
j (n, r, y)e2πinτ e2πirz

where

c∗
1(n, r, y) = pδ(p2,n),p2δ(p,r),pĉ

(

n

p2
,

r

p
,p2y

)

, c∗
2(n, r, y)

= p(pδ(p,n),p − 1)ĉ(n, r, y), c∗
3(n, r, y) = p3ĉ

(

np2, rp,
y

p2

)

.

Now

(TpFf )(τ, z) = pk−4
p−1
∑

λ=0

(F2|k,1(λ,0,0))(τ, z) = pk−4
3

∑

j=1

p−1
∑

λ=0

e2πi(λ2τ+2λz)φj (τ, z + λτ)

= pk−4
3

∑

j=1

∑

N,R∈Z

p−1
∑

λ=0

c∗
j (N − Rλ + λ2,R − 2λ,y)e2πiNτ e2πiRz. (50)

For j = 1,2,3 we need to evaluate the term μj := ∑p−1
λ=0 c∗

j (N − Rλ + λ2,R − 2λ,y). We
have

μ1 = p
3
2 c

(

4N − R2

p2

)

y
1
4 W

sgn(N− R2
4 )

k−1/2
2 , il

2

(

4π

∣

∣

∣

∣

N − R2

4

∣

∣

∣

∣

y

)

e2π(N− R2
4 )y, (51)

μ2 = p2

(

R2 − 4N

p

)

c(4N − R2)y
1
4 W

sgn(N− R2
4 )

k−1/2
2 , il

2

(

4π

∣

∣

∣

∣

N − R2

4

∣

∣

∣

∣

y

)

e2π(N− R2
4 )y,

(52)

μ3 = p
7
2 c((4N − R2)p2)y

1
4 W

sgn(N− R2
4 )

k−1/2
2 , il

2

(

4π

∣

∣

∣

∣

N − R2

4

∣

∣

∣

∣

y

)

e2π(N− R2
4 )y . (53)

Substituting (51), (52) and (53) in (50) we get

(TpFf )(τ, z) =
∑

N,R∈Z

pk− 3
2

(

pc((4N − R2)p2) + p− 1
2

(−(4N − R2)

p

)

c(4N − R2)
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+ p−1c

(

4N − R2

p2

))

× y
1
4 W

sgn(N− R2
4 )

k−1/2
2 , il

2

(

4π

∣

∣

∣

∣

N − R2

4

∣

∣

∣

∣

y

)

e2π(N− R2
4 )ye2πiNτ e2πiRz

= pk− 3
2 λpFf . (54)

We have used (15) to get the last step. This completes the proof of the theorem. �

7 Automorphic representation

The main purpose of this section is to show that the classical definition of Jacobi Maaß
forms made in Definition 3.2 is compatible with the representation theory of the Jacobi
group. For this, we first recall the correspondence between the automorphic representations
π̃ of ˜SL2(A) and π of GJ (A). Let πm

SW be the global Schrödinger-Weil representation of
GJ (A) as defined in [5, Sect. 7.2]. Then from [5, Sect. 7.3] the map

π̃ �→ π := π̃ ⊗ πm
SW (55)

gives a 1–1 correspondence between (genuine) automorphic representations of ˜SL2(A) and
automorphic representations of GJ (A) with central character ψm. Here ψ is a fixed charac-
ter on Q\A and ψm(x) = ψ(mx) for any x ∈ A and m ∈ Q.

There is also a local correspondence similar to the one above. Namely, for any prime p

(including ∞), if π̃p is a representation of ˜SL2(Qp) then

π̃p �→ πp := π̃ ⊗ πm
SW,p (56)

gives a 1–1 correspondence between genuine representations of ˜SL2(Qp) and representa-
tions of GJ (Qp). These local and global correspondences are compatible.

We will now show that if f ∈ S+
k−1/2(4) and Ff ∈ Ĵ

nh,cusp

k,1 is the corresponding Jacobi
Maaß cusp form then the representations obtained from these forms obey (55). To do this let
us first give some details on the local correspondence (56).

Proposition 7.1 Archimedean Case: We have the following complete list of genuine unita-
rizable representations of the Lie algebra of ˜SL2(R).

(A) Principal series representation: For s ∈ C\{Z + 1/2}, ν = ±1/2 we have the rep-
resentation π̃ = π̃s,ν with weights 2Z + ν + 1/2. The Laplace Beltrami operator

 = − 1

4 (Z2 + 2X+X− + 2X−X+) acts by the scalar 1
4 (s2 − 1).

(B) Discrete series representation: For an integer k0 ≥ 1, we have the two representations
π̃ = π̃±

k0− 1
2

with weights ±(k0 − 1
2 + l) for l ∈ 2N0. The Laplace Beltrami operator 


acts by the scalar 1
4 ((k0 − 3

2 )2 − 1).

Non-Archimedean Case: The non-archimedean principal series representations of
˜SL2(Qp) are obtained as follows: Let m ∈ Q

×
p and χ be a character of Q

×
p such that

χ2 �= | |±1. Then we have the representation π̃ = π̃χ,−m of ˜SL2(Qp) induced from the char-
acter

([

a 0
0 a−1

]

, ε
) �→ εδ−m(a)χ(a) of the torus, where δ−m is the Weil character defined

using ψ−m by the formula given in [5, p. 26].
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For details on this proposition refer to [5, Sects. 3.1, 3.2, 5.3]. For the proof of Theo-
rem 7.5 below, we need the strong multiplicity one theorem [22, Theorem 3] for represen-
tations of ˜SL2(A). Following the notations of [22], let Ã00 be the space of genuine cuspidal
automorphic forms on ˜SL2(A) which are orthogonal to the space spanned by theta series
corresponding to quadratic forms in one variable. Then we have

Theorem 7.2 Let π̃1 and π̃2 be two genuine cuspidal automorphic representations of
˜SL2(A) lying in Ã00. Then π̃1 = π̃2 if and only if the following two conditions are satis-
fied

1. π̃1,p � π̃2,p for almost all primes p,
2. π̃1 and π̃2 have the same central character.

For a nice description of the space Ã00 and the space generated by theta series we re-
fer the reader to [11]. In particular, one has the fact that the archimedean component of a
representation corresponding to theta series can be only one of {π̃±

1
2
, π̃±

3
2
}.

Next we state the representations of the Jacobi group corresponding to the representations
of ˜SL2 given in Proposition 7.1 under the correspondence (56).

Proposition 7.3 We have the following correspondence of local representations.

1. Archimedean principal series: For any m > 0, s ∈ C\{Z + 1/2}, ν = ±1/2, the principal
series representation of the complexified Lie algebra of the Jacobi group is given by
πm,s,ν = π̃s,ν ⊗πm

SW,∞. The Casimir operator C defined in (6) acts by the scalar 1
2 (s2 −1).

2. Archimedean discrete series representation: For integers k0,m > 0, the two discrete se-
ries representations of the complexified Lie algebra of the Jacobi group are given by
π±

m,k0
= π̃±

k0− 1
2

⊗ πm
SW,∞. The Casimir operator C acts by the scalar 1

2 (k0 − 1/2)(k0 −
5/2) = 1

2 ((k0 − 3
2 )2 − 1).

3. Non-archimedean principal series: Let m ∈ Q
×
p and χ be a character of Q

×
p such that

χ2 �= ||±1. The principal series representation of GJ (Qp) given by πχ,m = π̃χ,−m ⊗πm
SW,p

is the representation induced from the character
[

a 0
0 a−1

]

(0,0, κ) �→ χ(a)ψm(κ). If p �

2m, the generator T̂p of the p-adic Hecke algebra (defined in [5, Sect. 6.1]) of the Jacobi
group acts on the spherical vector of πχ,m by the constant p3/2(χ(p) + χ(p)−1).

For details on this proposition and precise formulas for the action of the Lie algebra on
the representation space refer to [5, Sects. 3.1, 3.2, 5.4, 5.8, 6.4].

Now let us fix a Hecke eigenform f ∈ S+
k−1/2(4) (k even) such that for every odd prime

p we have Tp2f = λpf and 
k−1/2f = �f with � = 1
4 (s2 − 1). Let π̃f = ⊗π̃p be the

irreducible cuspidal (genuine) automorphic representation of ˜SL2(A) corresponding to f

(see [21, p. 386]). The local representations π̃p (p �= 2) are described in the next lemma.

Lemma 7.4 Let f ∈ S+
k−1/2(4) be as given above. Then we have

π̃∞ =

⎧

⎪

⎨

⎪

⎩

π̃s,− 1
2
, if s ∈ C\{Z + 1/2};

π̃+
k0− 1

2
, if s = (k0 − 3

2 ) with an integer k0 ≥ 1 and k > 0;
π̃−

k0− 1
2
, if s = (k0 − 3

2 ) with an integer k0 ≥ 1 and k < 0.

(57)
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For an odd prime p we have

π̃p = π̃χ,−1 with χ(p) + χ(p)−1 = λp. (58)

Proof The case of the archimedean representation is clear. To deduce the non-archimedean
representation one needs to use the non-holomorphic analogue of the calculation in Lem-
mas 3, 4 and Proposition 10 of [21]. �

Let Ff ∈ Ĵ
nh,cusp

k,1 be the Jacobi Maaß cusp form corresponding to f constructed in (28).
Then, from Theorem 4.4, we have Ck,1Ff = 2� = 1

2 (s2 −1) and, from Theorem 6.1, we have
TpFf = μpFf , where μp = pk−3/2λp , for every odd prime p. Let πF be the irreducible cus-
pidal automorphic representation of GJ (A) corresponding to Ff . To construct πF , one first
lifts Ff to a function φF on GJ (A) using the decomposition GJ (Z)GJ (R)

∏

p<∞ GJ (Zp)

as follows. If g = γg∞k0 ∈ GJ (A), with γ ∈ GJ (Q), g∞ ∈ GJ (R) and k0 ∈ ∏

p<∞ GJ (Zp),
then set

�F (g) := (Ff |k,mg∞)(i,0) = j nh
k,m(g∞, (i,0))Ff (g∞(i,0)).

Then πF is obtained as the space of all right translates of φF and the group GJ (A) acts by
right translation. See [5, Chapter 7] for details.

Theorem 7.5 With notations as above, we have

πF = π̃f ⊗ π1
SW .

Proof Let π̃ ′ be the irreducible cuspidal automorphic representation of ˜SL2(A) such that
πF = π̃ ′ ⊗ π1

SW . Such a representation exists by (55). We will use Theorem 7.2 to show that
π̃f = π̃ ′. Let πF = ⊗πF,p and π̃ ′ = ⊗π̃ ′

p .
The archimedean representation πF,∞ is given by

πF,∞ =

⎧

⎪

⎨

⎪

⎩

π1,s,− 1
2
, if s ∈ C\{Z + 1/2};

π+
1,k0

, if s = (k0 − 3
2 ) with an integer k0 ≥ 1 and k > 0;

π−
1,k0

, if s = (k0 − 3
2 ) with an integer k0 ≥ 1 and k < 0.

(59)

For an odd prime p, we know that the local representation is unramified and hence πF,p =
πχ̂,1 for an unramified character χ̂ of Q

×
p . In Theorem 6.4.6 of [5], it is shown that the p-

adic Hecke operator T̂p acts on a spherical vector in πχ̂,1 by the scalar p3/2(χ̂(p)+ χ̂−1(p)).
Using the relation Tp = pk−3T̂p from Proposition 6.6.5 of [5] and the fact that the classical
Hecke eigenvalue of Ff is μp = pk−3/2λp we get χ̂ (p) + χ̂−1(p) = λp ⇒ χ̂ (p) = χ(p)±1,
where χ is the unramified character obtained in Lemma 7.4. Hence for an odd prime p we
get

πF,p = πχ,1 with χ(p) + χ(p)−1 = λp. (60)

Using Proposition 7.3 and Lemma 7.4, we see that for every prime p �= 2 (including ∞) we
have

π̃ ′
p = π̃p.

If ωπ̃p and ωπ̃ ′
p

are central characters of π̃p and π̃ ′
p respectively, then we have ωπ̃p = ωπ̃ ′

p

for every prime p �= 2 (including ∞). We claim that this forces the central characters for
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p = 2 to be equal as well. For any prime p, the center of ˜SL2(Qp) is given by {(±1p,±1)},
where 1p is the identity element in SL2(Qp). Since the representations we are considering
here are genuine representations, the central character is completely determined by its value
on (−1p,1). Now consider the element (−1,1) = ⊗(−1p,1) ∈ ˜SL2(Q). Since the represen-
tations π̃ and π̃ ′ are automorphic, we get

1 = ωπ̃f
((−1,1)) =

∏

p≤∞
ωπ̃p ((−1p,1)) ⇒ ωπ̃2((−12,1)) =

∏

p≤∞
p �=2

ωπ̃p ((−1p,1))−1

and 1 = ωπ̃ ′((−1,1)) =
∏

p≤∞
ωπ̃ ′

p
((−1p,1))

⇒ ωπ̃ ′
2
((−12,1)) =

∏

p≤∞
p �=2

ωπ̃ ′
p
((−1p,1))−1

which gives us the claim. From [15] and Lemma 7.4, we see that both π̃∞ and π̃ ′∞ are not
one of {π̃±

1
2
, π̃±

3
2
}. Hence π̃ and π̃ ′ belong to Ã00. Now the theorem follows from the strong

multiplicity one Theorem 7.2 for representations of ˜SL2(A). �

Note that for the case when f corresponds to a holomorphic half integer weight form, the
above theorem is essentially done in [5]. For the case of holomorphic and skew-holomorphic
Jacobi forms also see [3], [4] for the archimedean representation. Theorem 7.5 indeed con-
firms that the classical definition of Jacobi Maaß form given in Definition 3.2 is compatible
with the representation theory of the Jacobi group. In that sense, it is the correct notion of
Jacobi Maaß forms.

8 Concluding remarks

1. To the best of our knowledge, the first attempt to define Jacobi Maaß forms is in [5,
Chapter 4]. If one considers Definition 4.1.8 in [5] of automorphic forms on the group
GJ (R) and pulls it back to functions on H × C via the non-holomorphic automorphy
factor j nh

k,m defined in (2) we get exactly the Definition 3.2. However, in Definition 4.1.7
of [5], the authors define Jacobi Maaß forms via a pull-back with the holomorphic au-
tomorphy factor and consider eigenfunctions of the degree 2 differential operator 
k,m

(a slight modification of the operator 

k,m
1 defined in Sect. 3). There has been some work

on the Jacobi forms as per Definition 4.1.7 of [5], for example, see [23] (no examples are
constructed here). Recently, in [7], Jacobi Maaß forms over complex quadratic fields are
defined using higher dimensional analogue of 
k,m and examples in the form of Eisen-
stein series are constructed. It would be interesting to see what one would obtain if the
higher dimensional analogue of the operator Ck,m is used instead.

2. The representation theory of the Jacobi group further tells us why Definition 3.2 of Ja-
cobi Maaß forms is the appropriate one. Suppose, one defines a Jacobi form F̃ using
some other automorphy factor and differential operator and assume that F̃ is a Hecke
eigenform. Then looking at the automorphic representation of GJ (A) obtained from F̃ ,
one can extract a vector corresponding to a Jacobi Maaß Hecke eigen-form F (according
to Definition 3.2) which has the same eigenvalue as F̃ for almost all primes p.
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3. In [2], Arakawa has defined holomorphic Jacobi forms for odd weight and index 1 using
holomorphic half integer weight forms of weight k − 1/2 (k odd) in the Kohnen plus
space. Arakawa obtains Jacobi forms not with respect to the full discrete group �J but
the subgroup �0(4) � H(Z). One should be able to obtain Jacobi Maaß forms of odd
weight and index 1 with respect to �0(4) � H(Z) in a similar fashion from functions in
M+

k−1/2(4) with k odd.
4. One can speculate that it is possible to construct a certain class of non-holomorphic Siegel

modular forms using the Jacobi Maaß forms of index 1 and suitable non-holomorphic in-
dex raising operators V nh

l . We expect that these would give us representations of GSp4(A)

that are not cuspidal but residual.
5. Following the methods in [5], one should be able to study the L-functions associated to

Jacobi Maaß forms. It would be nice to see that these L-functions have analytic continu-
ation and functional equation. (For the holomorphic case see [9]) These L-functions can
be used to prove an appropriate converse theorem in the non-holomorphic case. (For the
holomorphic case see [17])

6. It would be interesting to obtain a multiplicity one theorem for Jacobi Maaß forms similar
to Corollary 7.5.6 in [5]. We have not worked out the details of this problem.
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