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SIGN CHANGES OF HECKE EIGENVALUES
OF SIEGEL CUSP FORMS OF DEGREE 2

AMEYA PITALE AND RALF SCHMIDT

(Communicated by Ken Ono)

Abstract. Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal
Siegel eigenform F of degree 2. It is proved that if F is not in the Maaß space,
then there exist infinitely many primes p for which the sequence µ(pr), r > 0,
has infinitely many sign changes.

1. Introduction and preliminaries

Let F ∈ Sk(Sp(4, Z)) be a cuspidal Hecke eigenform of degree 2. Let µ(n),
n > 0, be the Hecke eigenvalues. It is known that F is in the Maaß space (i.e., F
is a Saito-Kurokawa lifting) if and only if µ(n) > 0 for all n; see [2]. On the other
hand, Kohnen has recently proved (see [6]) that if F is not in the Maaß space, then
the sequence µ(n), n > 0, has infinitely many sign changes. The proof made use of
the (as yet unpublished) Ramanujan estimate for non-Saito-Kurokawa cusp forms.

In this note we will strengthen the result on sign changes as follows: If F is
not in the Maaß space, then there exist infinitely many primes p for which the
sequence µ(pr), r > 0, has infinitely many sign changes. Our proof is also based
on a Ramanujan type result for the underlying group GSp4, however not the full
Ramanujan conjecture. We use the weaker statement, proved in [4], that a suitable
product of Satake p-parameters has absolute value one. We showed in [9] that
this result, combined with the classification of unitary, spherical representations
of GSp4(Qp), implies certain restrictions on the local components of the cuspidal,
automorphic representations of GSp4(A) attached to classical eigen-cusp forms. It
is these restrictions on the local representations that are exploited in the present
paper.

In fact, our proof works for cusp forms with level as well (as long as the weight
is greater than 2). In this case the statement “F is not in the Maaß space” is
to be replaced by “πF is not a theta lifing from the metaplectic group S̃L2(A)”;
here, πF is one of the cuspidal, automorphic representations of GSp4(A) attached
to F . For the full modular group these two statements are equivalent, and are
equivalent to the fact that πF is a CAP representation with respect to the Siegel
parabolic subgroup. For a higher level it is at least conceivable that πF might be
CAP without being a theta lifting (namely, πF might be a non-trivial twist of a
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theta lifting). Hence, for modular forms with level, we prefer not to translate the
“not a theta lifting” condition into purely classical language.

We will now recall the required results from our paper [9]. Let F ∈ Sk(Γ0(N))
be a Siegel cusp form of weight k > 2 and level N ≥ 1. Assume that F is a Hecke
eigenform with eigenvalues µ(n) for all n coprime to N . As explained in [9], section
2, F generates a space VF of cuspidal automorphic forms on GSp4(A) invariant
under right translation. This space may not be irreducible, but does decompose
into a finite number of irreducible, cuspidal, automorphic representations. Let πF

be one of these irreducible pieces. We can write πF as a restricted tensor product⊗
πF,p, where πF,p is an irreducible, admissible representation of GSp4(Qp). For

a prime p � N , the equivalence class of πF,p is independent of the choice of the
irreducible component πF of VF . For such primes, πF,p is the unramified (spherical)
constituent of a representation χ1 × χ2 � σ induced from the character⎛

⎜⎜⎝
a1 ∗ ∗ ∗
0 a2 ∗ ∗
0 0 λa−1

1 0
0 0 ∗ λa−1

2

⎞
⎟⎟⎠ �→ χ1(a1)χ2(a2)σ(λ)

of the Borel subgroup; here, χ1, χ2, σ are unramified characters of Q×
p . Since

πF,p has trivial central character, we have χ1χ2σ
2 = 1. We set a := σ(p) and

b := σ(p)χ1(p).
From [1], Proposition 3.35, we get the relation between Hecke eigenvalues µ(pr)

for r > 0 and a and b from the following formal power series identity:

(1)
∞∑

r=0

µ(pr)
(pr)k− 3

2
Xr =

1 − p−1X2

(1 − aX)(1 − a−1X)(1 − bX)(1 − b−1X)
.

Using partial fractions and geometric series, we have shown in [9], Proposition 4.1,
that

(2)
µ(pr)

(pr)(k−3/2)
= Aa,b(r) + (1 − 1/p)

[r/2]∑
t=1

Aa,b(r − 2t),

where

(3) Aa,b(j) =
( j∑

u=0

aj−ubu
)( j∑

u=0

(ab)−u
)
.

In [9], Theorem 3.2, we have shown that only three types of local representations
of πF,p can occur:

1.1 Proposition. Let N and k be positive integers with k > 2. Let F ∈ Sk(Γ0(N))
be a Hecke eigenform. For p � N let πF,p be the corresponding local representation
of GSp4(Qp). Then πF,p can only be one of the following:

(T) χ1 × χ2 � σ irreducible with |χ1| = |χ2| = |σ| = 1 (the tempered case);
or

(C) χ1 ×χ2 � σ irreducible with χ1 = νβχ, χ2 = νβχ−1, |χ| = 1, e(σ) = −β
with 0 < β < 1/2 (the complementary series case); or

(SK) χ1GL(2)�σ, the spherical constituent of ν1/2χ×ν−1/2χ�σ, with |χ| = 1
(the Saito–Kurokawa case).



SIGN CHANGES OF HECKE EIGENVALUES 3833

The characters χ1, χ2, χ and σ above are unramified, and ν is the p-adic valuation
of Qp normalized such that ν(p) = p−1.

2. Local results

We now want to give a result on the signs of the Hecke eigenvalues µ(pr) for
some sub-family of local representations.

2.1 Lemma. Let F ∈ Sk(Γ0(N)), k > 2, be a Hecke eigenform of degree 2 with
eigenvalues µ(n) for (n, N) = 1. For p � N let πF,p be the corresponding local
representation; it is the spherical constituent of an induced representation χ1×χ2�σ
as above. Let a = σ(p) and b = σ(p)χ1(p). If at least one of a and b is real, then
we have exactly one of the two following situations:

1. µ(pr) ≥ 0 for all r > 0,
2. µ(pr) > 0 for r ≡ 0 (mod 2) and µ(pr) < 0 for r ≡ 1 (mod 2).

Proof. The condition on the values a and b implies that πF,p is either of type (T)
with at least one of a and b equal to ±1 or of type (C) or type (SK). The proof is
based on the observation that µ(pr) is a positive linear combination of the numbers
Aa,b(j) defined in (3), where j has the same parity as r.

Case 1. πF,p is of type (C) or (SK).

In this case a = pβσ0 and b = χ(p)σ0, where 0 < β ≤ 1/2, σ0 = ±1 and
|χ(p)| = 1. Here β = 1/2 corresponds to type (SK) and 0 < β < 1/2 corresponds
to type (C). Using (3) we get

Aa,b(j) = (pβσ0)j
∣∣∣

j∑
u=0

(pβχ(p))−u
∣∣∣2.

Since |pβχ(p)| �= 1, the sum is never zero. Hence we are in the first case of the
lemma if σ0 = 1, and in the second case if σ0 = −1.

Case 2. πF,p is of type (T).

In this case our hypothesis implies that at least one of a or b equals ±1. Observe
that Aa,b(j) remains unchanged when we exchange a and b. Hence, without loss of
generality, we may assume that a is ±1. First assume that a = 1. Then, from (3)
we have

Aa,b(j) =
∣∣∣

j∑
u=0

bu
∣∣∣2 ≥ 0 for all j > 0.

Hence we are in the first case of the lemma. Now assume that a = −1. Then, from
(3),

Aa,b(j) = (−1)j
∣∣∣

j∑
u=0

(−b)u
∣∣∣2.

If b = 1, then we are in the first case of the proposition. If b = −1, then we are
in the second case of the proposition. Assume that b �= ±1. If r is even, then
Aa,b(0) = 1 occurs in (2). If r is odd, then Aa,b(1) = −|1 − b|2 occurs in (2). In
either case, µ(pr) �= 0, so that we are in the second case of the lemma. �
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We wish to remark here that we are able to prove the above proposition only
by using Proposition 1.1. We cannot carry out the above proof by merely using
the unitary classification from [10], [11]. Also, note that the hypothesis of the
theorem (at least one of a or b is real) forces the local representation to be either
the complementary series (type (C)) or the limits of complementary series – β = 1/2
that gives the type (SK) and β = 0 gives the tempered with at least one of a or b
equal to ±1.

Lemma 2.1 gives us the following information about the sign of the eigenvalues
µ(pr) for a fixed prime p � N if we do not make any assumption on the local
representation πF,p as in Lemma 2.1.

2.2 Proposition. Let F ∈ Sk(Γ0(N)) be a Hecke eigenform of degree 2 and weight
k > 2. For a fixed prime p � N let µ(pr) be the eigenvalue of F for any r > 0. Then
exactly one of the following is true:

1. µ(pr) ≥ 0 for all r > 0.
2. There are infinitely many r such that µ(pr) > 0 and infinitely many r such

that µ(pr) < 0.

Proof. We will distinguish two cases.

Case 1. µ(pr) ≥ 0 for almost all r.

In this case we shall prove that µ(pr) ≥ 0 for all r > 0.
To prove this we will use the following theorem due to Landau on Dirichlet series

with non-negative coefficients.

2.3 Theorem (Landau). Suppose G(s) is represented in the half plane Re(s) > c
by the series

(4) G(s) =
∞∑

n=1

a(n)
ns

,

where c ∈ R is finite and a(n) ≥ 0 for all n ≥ n0. Then either the series in (4)
converges for all values of s or the function G(s) has a singularity on the real line
at the abscissa of convergence of the series.

Let us return to the proof of Proposition 2.2. Consider the function

G(s) =
1 − p−1p−2s

(1 − ap−s)(1 − a−1p−s)(1 − bp−s)(1 − b−1p−s)
,

where a = σ(p) and b = σ(p)χ1(p) as before. Let us set a(pr) := µ(pr)
(pr)k−3/2 and

a(n) := 0 if n is not of the form pr for any r. From [9], Theorem 4.2, we know that
|µ(pr)| ≤ 36(pr)k−1, which implies that the series

∞∑
n=1

a(n)
ns

=
∞∑

r=0

µ(pr)
(pr)k− 3

2
(pr)−s

converges absolutely for Re(s) > 1/2. Hence, from (1), we get

(5)
1 − p−1p−2s

(1 − ap−s)(1 − a−1p−s)(1 − bp−s)(1 − b−1p−s)
=

∞∑
r=0

µ(pr)
(pr)k− 3

2
(pr)−s

for Re(s) >
1
2
.
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According to the assumption that only finitely many eigenvalues are negative, we
see that the above function satisfies the hypothesis of Landau’s theorem. Hence
either the series converges for all s (in which case G(s) is an entire function) or has
a pole on the real line at the abscissa of convergence. Since the function on the
left hand side clearly has poles, the first alternative cannot occur, so that there is
a pole on the real line. Hence at least one of a or b is real. From Lemma 2.1 we
now conclude that µ(pr) ≥ 0 for all r > 0.

Case 2. µ(pr) < 0 for infinitely many r.

In this case we shall prove that there are infinitely many r for which µ(pr) > 0.
Assume that there are only finitely many r for which µ(pr) > 0. Similarly as above,
we have

(6) − 1 − p−1p−2s

(1 − ap−s)(1 − a−1p−s)(1 − bp−s)(1 − b−1p−s)
=

∞∑
r=0

−µ(pr)
(pr)k− 3

2
(pr)−s

for Re(s) >
1
2
.

By our assumption, the Landau argument applies to the series on the right-hand
side, proving that at least one of a or b is real. But then Lemma 2.1 implies that
µ(pr) is positive for infinitely many r, a contradiction. �

Notice that in Proposition 2.2 we do not get the stronger result as in Lemma 2.1
since a priori it is possible that the local representation πF,p is a tempered repre-
sentation with both a and b not real.

3. Global results

To state the main result of this paper we need to introduce CAP representations
and theta lifts. Given an irreducible cuspidal automorphic representation π of
GSp4(A) and a proper parabolic subgroup P = MN with levi factor M , we say
that π is CAP (Cuspidal Associated to Parabolic) associated to the parabolic P
if there is an irreducible cuspidal automorphic representation τ of M such that
πp 	 π′

p for almost all p, where π′ is an irreducible component of IndGSp4(A)
P (A) (τ ).

Recall that GSp4 has only three parabolic subgroups (up to conjugation), the Siegel
parabolic subgroup P , the Klingen parabolic Q and the Borel subgroup B. We have
shown in [9], Corollary 4.5, that if we start with a holomorphic, cuspidal eigenform
F of degree 2, weight k > 2 and level N , then any of the corresponding irreducible,
cuspidal, automorphic representations πF of GSp4(A) can only be CAP to the Siegel
parabolic.

It is known that an irreducible, cuspidal, automorphic representation π of
GSp4(A) is CAP to the Siegel parabolic if and only if it is either a theta lift from
an irreducible, cuspidal, automorphic representation τ̃ of S̃L2(A), the metaplectic
cover of SL2, or a twist by an idele class character of such a theta lift. It is shown
in [8], Theorem 2.2, that π is a theta lift if and only if the degree four (spin) L-
function LSpin(s, π) of π has a pole. In [8], Lemma 3.1, it is also shown that the
only possible poles of LSpin(s, π) are at s = 3/2 and s = −1/2. If π is a twist of a
theta lift by a non-trivial character, then LSpin(s, π) has no poles.

If πF is one of the representations corresponding to a holomorphic Siegel cusp
form F of weight k > 2 and level N , then πF is CAP if and only if either it is a
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theta lift or it is a theta lift twisted by a quadratic character. We get the restriction
that the twisting character is quadratic because πF has a trivial central character.
We have the following information about the local representation πF,p for p � N if
πF is a CAP representation:

1. If πF is a theta lift, then for every p � N the local representation πF,p

is of type (SK) with πF,p being the spherical constituent of the induced
representation of the form ν1/2χ × ν1/2χ−1 � ν−1/2 with |χ| = 1.

2. If πF is a twist of a theta lift with a quadratic character σ0 =
⊗

σ0,p, then
for every p � N for which σ0,p is unramified the local representation πF,p

is of type (SK) with πF,p being the spherical constituent of the induced
representation of the form ν1/2χ × ν1/2χ−1 � ν−1/2σ0,p with |χ| = 1.

Now we state our main theorem.

3.1 Theorem. Let N and k be positive integers with k > 2. Let F ∈ Sk(Γ0(N))
be a Hecke eigenform with Hecke eigenvalues µ(n) for all n coprime to N . Let πF

be one of the corresponding irreducible, cuspidal, automorphic representations of
GSp4(A). Then the following two statements are equivalent:

1. πF is not a theta lift from an irreducible cuspidal automorphic representa-
tion of S̃L2(A), the metaplectic cover of SL2.

2. There exists an infinite set SF of prime numbers p � N such that if p ∈ SF ,
then there are infinitely many r such that µ(pr) > 0 and infinitely many r
such that µ(pr) < 0.

Moreover, if πF is a theta lift, then we have the stronger statement that µ(pr) > 0
for all p � N and r > 0.

Proof. First assume that πF is a theta lift. Then from the discussion before the
statement of the theorem we know that for all p � N the local representation πF,p is
the spherical constituent of an induced representation of the form ν1/2χ×ν1/2χ−1�
ν−1/2 with |χ| = 1. Using (3) we get

Aa,b(j) = (p1/2)j
∣∣∣

j∑
u=0

(p1/2χ(p))−u
∣∣∣2 > 0,

so that µ(pr) > 0 for all r > 0, as claimed.
Now we will prove the equivalence of the two statements in the theorem. If there

exists a prime p such that there are infinitely many r such that µ(pr) > 0 and
infinitely many r such that µ(pr) < 0, then from the previous paragraph it is clear
that πF is not a theta lift. Hence statement 2 implies 1.

Now assume that πF is not a theta lift. There are two possibilities :

Case 1. Suppose πF is a twist of a theta lift by a non-trivial quadratic character
σ0. Let SF := {p � N : σ0,p(p) = −1}. Since σ0 is a non-trivial character, SF is an
infinite set. Now let p ∈ SF . Again using (3) we get

Aa,b(j) = (−p1/2)j
∣∣∣

j∑
u=0

(p1/2χ(p))−u
∣∣∣2.

Thus, by (2), we conclude that µ(pr) > 0 if r is even and µ(pr) < 0 if r is odd.
This gives us the desired result.

Case 2. Suppose πF is not a CAP representation.
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Let S be the set of primes p � N such that the sequence µ(pr), r > 0, has
infinitely many sign changes. Let us assume, contrary to the assertion, that S is
finite. First observe that Proposition 2.2 implies that if p �∈ S, then µ(pr) ≥ 0 for
all r > 0. Set a(n) = µ(n)

nk−3/2 if (n, N) = 1 and (n, p) = 1 for all p ∈ S and a(n) = 0
otherwise. Then a(n) ≥ 0 for all n. We fix an ε > 0. From [9], Theorem 4.2, there
exists a constant Cε such that |a(n)| ≤ Cεn

1/2+ε. Let S̃ := S ∪ {p prime : p|N}.
From (1) we see that for Re(s) large enough (Re(s) > 3/2 + ε will work)

(7) LS̃
Spin(s, πF ) = ζ S̃(2s + 1)

∞∑
n=1

a(n)
ns

with

LS̃
Spin(s, πF ) =

∏
p�∈S̃

1
(1 − ap−s)(1 − a−1p−s)(1 − bp−s)(1 − b−1p−s)

,

ζ S̃(s) =
∏
p�∈S̃

1
1 − p−s

.

Landau’s Theorem applies to the series
∑∞

n=1
a(n)
ns . Hence the abscissa of conver-

gence, say c0, of this series is either −∞ (in which case the series represents an
entire function) or the series has a pole on the real line at the abscissa of conver-
gence. Now if c0 < 0, then the right-hand side of (7) has a pole at s = 0 (since
ζ S̃(2s + 1) has a pole at s = 0 and

∑∞
n=1

a(n)
ns is non-zero at s = 0). This implies

that LS̃
Spin(s, πF ), and hence LSpin(s, πF ), has a pole at s = 0. But this is not

possible, since we have already seen that the spin L-function can have a pole only
at s = 3/2 or s = −1/2. Hence c0 ≥ 0. Then Landau’s theorem forces c0 = 3/2.
This implies that LSpin(s, πF ) has a pole at s = 3/2 which forces πF to be a theta
lift. This contradicts our assumption that πF is not a CAP representation, hence
proving the theorem. �
3.2 Corollary. Let F ∈ Sk(Sp(4, Z)) be a Hecke eigenform with Hecke eigenvalues
µ(n) for all positive integers n. Let πF be one of the corresponding irreducible,
cuspidal, automorphic representations of GSp4(A). Then:

1. If F is in the Maaß space, then µ(n) > 0 for all n.
2. If F is not in the Maaß space, then there exists an infinite set SF of prime

numbers p such that if p ∈ SF , then there are infinitely many r such that
µ(pr) > 0 and infinitely many r such that µ(pr) < 0.

Proof. By [5] or [7], the eigenform F being in the Maaß space is equivalent to
LSpin(s, F ) having poles. By [8], this in turn is equivalent to πF being a theta
lifting from S̃L2(A). Hence the result is a consequence of Theorem 3.1. �
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