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LIFTING TO GL(2) OVER A DIVISION QUATERNION
ALGEBRA, AND AN EXPLICIT CONSTRUCTION OF

CAP REPRESENTATIONS

MASANORI MUTO, HIRO-AKI NARITA and AMEYA PITALE

Abstract. The aim of this paper is to carry out an explicit construction

of CAP representations of GL(2) over a division quaternion algebra with

discriminant two. We first construct cusp forms on such a group explicitly by

lifting from Maass cusp forms for the congruence subgroup Γ0(2). We show that

this lifting is nonzero and Hecke-equivariant. This allows us to determine each

local component of a cuspidal representation generated by such a lifting. We

then show that our cuspidal representations provide examples of CAP (cuspidal

representation associated to a parabolic subgroup) representations, and, in fact,

counterexamples to the Ramanujan conjecture.

CONTENTS

1 Introduction 137
2 Basic notations 141
3 Some zeta integral of convolution type 147
4 Construction of the lifting 151
5 Actions of Hecke operators on the lifting 155
6 The automorphic representation corresponding

to the lifting 174
References 183

§1. Introduction

One of the fundamental problems in the theory of automorphic forms or

representations is to study the Ramanujan conjecture. To review it, let G be

a reductive algebraic group over a number field F , and let A :=⊗′v6∞Fv be

Received June 21, 2014. Accepted June 11, 2015.
2010 Mathematics subject classification. 11F55, 11F70.
The second author was partly supported by Grant-in-Aid for Scientific Research (C)

24540025, Japan Society for the Promotion of Science. The third author was partly
supported by National Science Foundation grant DMS-1100541.

c© 2016 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1017/nmj.2016.15


138 M. MUTO, H. NARITA AND A. PITALE

the ring of adeles for F , where Fv denotes the local field at a place v. The

study of the Ramanujan conjecture is to consider the following question.

Question. Let π =⊗′v6∞πv be an irreducible cuspidal representation of

G(A), where πv denotes the local component of π at a place v. Then, is πv
tempered for every v 6∞?

Nowadays it is widely known that there are cuspidal representations or cusp

forms answering negatively to this question, which we call counterexamples

to the Ramanujan conjecture. A well-known example is given by the Saito–

Kurokawa lifting to holomorphic Siegel cusp forms of degree two (cf. [17]).

Another well-known example is the work by Howe and Piatetski-Shapiro

[11], which gives a counterexample by a theta lifting from O(2) to Sp(4). In

fact, it is expected that liftings from automorphic forms on a smaller group

provide such counterexamples. On the other hand, let us recall that there is

the notion of CAP representation (cuspidal representation associated to a

parabolic subgroup), which was originally introduced by Piatetski-Shapiro

[25]. This is a representation theoretic approach to find counterexamples to

the Ramanujan conjecture.

We now note that the Ramanujan conjecture for the general linear

group GL(n) is strongly believed. In fact, by Jacquet and Shalika [14], it

can be shown that the CAP phenomenon never occurs for GL(n). More

generally, it is expected that the conjecture would hold for generic cuspidal

representations of quasisplit reductive groups, which should be referred to

as the generalized Ramanujan conjecture. In view of the Langlands functo-

riality principle for quasisplit groups and their inner forms, the Ramanujan

conjecture for the inner forms is quite natural and interesting to study, as

well as CAP representations. To define the notion of CAP representations

for the inner forms we follow Gan [8] and Pitale [22] (cf. Definition 6.6).

Let us note that the Saito–Kurokawa lifting deals with the case of the split

symplectic group GSp(4) of degree two. The case of the nonsplit inner form

GSp(1, 1)'GSpin(1, 4) of GSp(4) is considered in [8] and [22].

In this paper we take up the case of GL2(B) over the division quaternion

algebra B with discriminant two. Note that GL2(B) is an inner form of the

split group GL(4). Our results provide an explicit construction of cusp forms

on GL2(B) lifted from Maass cusp forms for the congruence subgroup Γ0(2),

and show that the cuspidal automorphic representations generated by such

lifts are CAP representations of GL2(B). The method of our construction

of the lifting follows [22], which deals with an explicit construction of lifting
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to GSp(1, 1). In fact, note that the cusp forms constructed by our lifting

are viewed as Maass cusp forms on the 5-dimensional real hyperbolic space,

while the lifting considered in [22] provides Maass cusp forms on the 4-

dimensional real hyperbolic space. As in [22], to prove the automorphy of

our lifts, we use the converse theorem [19] by Maass, which is useful for real

hyperbolic spaces of arbitrary dimension.

We explain the explicit construction of our lifting. Let f be a Maass cusp

form for Γ0(2) which is an eigenfunction of the Atkin–Lehner involution.

Let {c(n)}n∈Z\{0} be Fourier coefficients of f . From the c(n)s we define

numbers A(β) (cf. (4.2)) for β ∈B\{0} in order to construct our lifting to

a cusp form Ff on GL2(H) in the nonadelic setting. Actually, the A(β)s are

nothing but Fourier coefficients of Ff . The statement of our first result is

as follows (cf. Theorem 4.4).

Theorem 1.1. Let f be a nonzero Mass cusp form which is an eigen-

function of the Atkin–Lehner involution. Then Ff is a nonzero cusp form

on GL2(H).

Another result is that the cuspidal representations generated by the

Ff s are CAP representations of GL2(B) and provide counterexamples to

the Ramanujan conjecture. To be more precise, assume that f is a Hecke

eigenform. We can regard Ff as a cusp form on the adele group G(A) with

G = GL2(B). We can show that Ff is a Hecke eigenform (cf. Section 5).

Then, the strong multiplicity-one theorem proved by Badulescu and Renard

[2], [3] implies that Ff generates an irreducible cuspidal representation

π :=
⊗′

p6∞ πp of G(A). By our detailed study on Hecke eigenvalues of Ff ,

we can determine local representations πp for every p <∞. We can also

determine πp explicitly at p=∞ by the calculation of the eigenvalue for the

Casimir operator. For this we note that every πp is unramified (at p <∞) or

spherical (at p=∞). We can show that πp (respectively π∞) is nontempered

at every odd prime p (respectively tempered at p=∞). If we further assume

that f is a new form, we can also show the nontemperedness of πp at p= 2.

These lead to the following theorem (cf. Theorems 6.7, 6.8).

Theorem 1.2.

(1) Let f be a nonzero Hecke eigen cusp form, and let Ff be the lift. Let

σf and πF be irreducible cuspidal representations generated by f and

F = Ff respectively. Then πF is nearly equivalent to an irreducible con-

stituent of Ind
GL4(A)
P2(A) (|det|−1/2

A σf × |det|1/2A σf ). Here, P2 is the standard
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parabolic subgroup of GL4 with Levi subgroup GL2 ×GL2. Namely πF
is a CAP representation.

(2) The cuspidal representations πF are counterexamples to the Ramanujan

conjecture.

Let π′ be the unique irreducible quotient of Ind
GL4(A)
P2(A) (|det|−1/2

A σf ×

|det|1/2A σf ). This is denoted by MW(σf , 2) in [3, §18]. Then π′ is a

noncuspidal, discrete series representation of GL4(A). Since σf is not the

image of a cuspidal representation of B×A under the Jacquet–Langlands

correspondence, π′ is B-compatible according to [3, Proposition 18.2, part

(a)]. Hence, there exists a discrete series representation π of GL2(BA) which

maps to π′ under the Jacquet–Langlands correspondence. Moreover, from

[3, Proposition 18.2, part (b)], the representation π has to be cuspidal. By

the strong multiplicity-one theorem for GL2(B), the representation π has

to be exactly the same as πF obtained from the classical construction. The

novelty of our method is that we obtain an explicit formula for the lift in

terms of Fourier expansions which are valid for non-Hecke eigenforms as

well. In addition, the classical method immediately shows that the lifting is

a linear nonzero map.

Let us remark that Grobner [9] has also obtained examples of CAP

representations for GL2(B) using the results of [3]. The example by Grobner

[9] has a nontempered local component at the archimedean place, while

our cuspidal representation π has a tempered local component at the

archimedean place, as is remarked above.

In terms of representation theory, one naturally asks whether our classical

construction of the lifting is understood by a theta lifting. It is shown in

[25] that the classical Saito–Kurokawa lifting is a theta lifting. In addition,

[8] shows that the classical lifting to GSpin(1, 4) obtained in [22] is also a

theta lifting. We expect that the lifting constructed in this paper is also

a theta lifting given by the theta correspondence between SL(2) and the

orthogonal group O(5, 1) with the Witt index (5, 1). One might have to

use the techniques from [8] to prove such a result. We do not address this

question in the current paper.

The outline of this paper is as follows. In Section 2, we first introduce

the basic notation of algebraic groups and Lie groups. Next, we introduce

the automorphic forms that concern us in this paper. In Section 3, we

study a zeta integral attached to a Maass cusp form. This is needed in

order to apply Maass converse theorem. Then, the explicit construction of
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cusp forms on GL2(H) is given by lifts Ff in Section 4. In Section 5, we

view Ff as a cusp form on the adele group G(A) and prove that, given

a Hecke eigenform f , Ff is also a Hecke eigenform at every finite place.

Then, in Section 6, we determine the local components πp of the cuspidal

representation π generated by Ff for all places p6∞. We thus see that π

is a CAP representation and provides a counterexample to the Ramanujan

conjecture.

§2. Basic notations

2.1 Algebraic groups, real Lie groups and the 5-dimensional

hyperbolic space

Let B be the definite quaternion algebra over Q with discriminant dB = 2.

The algebra B is given by B = Q + Qi+ Qj + Qk with a basis {1, i, j, k}
characterized by the conditions

i2 = j2 = k2 =−1, ij =−ji= k.

Let G be the Q-algebraic group defined by its group of Q-rational points

G(Q) = GL2(B).

Here, GL2(B) is the general linear group over B, which consists of elements

in M2(B) whose reduced norms are nonzero. Let H =B ⊗Q R, which

is nothing but the Hamilton quaternion algebra R + Ri+ Rj + Rk. Let

H 3 x 7→ x̄ ∈H denote the main involution of H, and let tr(x) = x+ x̄ and

ν(x) := xx̄ be the reduced trace and the reduced norm of x ∈H respectively.

In what follows, we often use the notation |β| :=
√
ν(β) for β ∈H. We put

H− := {x ∈H | tr(x) = 0} to be the set of pure quaternions, and H1 := {x ∈
H | ν(x) = 1}.

Denote by G := GL2(H) the general linear group of degree two with

coefficients in the Hamilton quaternion algebra H. The Lie group G admits

an Iwasawa decomposition

G= Z+NAK,

where

Z+ :=

{[
c 0
0 c

]∣∣∣∣ c ∈ R×+
}
, N :=

{
n(x) =

[
1 x
0 1

]∣∣∣∣ x ∈H
}
,
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A :=

{
ay :=

[√
y 0

0
√
y−1

]∣∣∣∣ y ∈ R×+
}
, K := {k ∈G | tk̄k = 12}.(2.1)

The subgroup Z+ is contained in the center of G, and K is a maximal

compact subgroup of G, which is isomorphic to the definite symplectic group

of degree two.

Let us consider the quotient G/Z+K, which is realized as{[
y x
0 1

]∣∣∣∣ y ∈ R×+, x ∈H
}
.

This gives a realization of the 5-dimensional real hyperbolic space.

2.2 Lie algebras

The Lie algebra g of G is nothing but M2(H), and has an Iwasawa

decomposition

g = z⊕ n⊕ a⊕ k.

Here,

z :=

{[
c 0
0 c

]∣∣∣∣ c ∈ R
}
, n :=

{[
0 x
0 0

]∣∣∣∣ x ∈H
}
,

a :=

{[
t 0
0 −t

]∣∣∣∣ t ∈ R
}
, k := {X ∈M2(H) | tX̄ +X = 02},(2.2)

where z, n, a and k are the Lie algebras of Z+, N, A and K respectively.

We next consider the root space decomposition of g with respect to a.

Let H :=
[

1 0
0 −1

]
, and let α be the linear form of a such that α(H) = 1. Then

{±2α} is the set of roots for (g, a). For z ∈H we put

E
(z)
2α :=

[
0 z
0 0

]
, E

(z)
−2α :=

[
0 0
z 0

]
.

The set {E(1)
2α , E

(i)
2α , E

(j)
2α , E

(k)
2α } (respectively {E(1)

−2α, E
(i)
−2α, E

(j)
−2α, E

(k)
−2α})

forms a basis of n (respectively a basis of n̄ :=
{[

0 0
x 0

]∣∣∣ x ∈H
}
). Let za(k) :=

{X ∈ k | [X, A] = 0 ∀A ∈ a}, which coincides with{[
a 0
0 d

]∣∣∣∣ a, d ∈H−
}
.

Then z⊕ za(k)⊕ a is the eigen space with the eigenvalue zero. We then see

from the root space decomposition of g with respect to a that g decomposes
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into

g = (z⊕ za(k)⊕ a)⊕ n⊕ n̄.

We also introduce the simple Lie group SL2(H) consisting of elements in

GL2(H) with their reduced norms 1. The Lie algebra g0 = sl2(H) of SL2(H)

is the Lie algebra consisting of elements in M2(H) with their reduced traces

zero. For this we note that

GL2(H)/Z+ ' SL2(H), g/z' g0.

We introduce the differential operator Ω defined by the infinitesimal action

of

(2.3) Ω :=
1

32
H2 − 1

4
H +

1

8

∑
z∈{1,i,j,k}

E
(z)
2α

2
.

This differential operator Ω coincides with the infinitesimal action of the

Casimir element of g0 (see [15, p. 293, Proposition 5.28]) on the space of

right K-invariant smooth functions of G/Z+. To check this we note that

[E
(z)
2α , E

(z̄)
−2α] =H for z ∈H1 and Iwasawa decompositions E

(z)
−2α = E

(z̄)
2α +(

0 −z̄
z 0

)
for z ∈H. In what follows, we call Ω the Casimir operator.

2.3 Automorphic forms

For λ ∈ C and a discrete subgroup Γ⊂ SL2(R) we denote by S(Γ, λ) the

space of Maass cusp forms of weight 0 on the complex upper half plane h

whose eigenvalue with respect to the hyperbolic Laplacian is −λ.

For a discrete subgroup Γ⊂GL2(H) and r ∈ C we denote byM(Γ, r) the

space of smooth functions F on GL2(H) satisfying the following conditions:

(1) Ω · F =−1
2(r2/4 + 1)F , where Ω is the Casimir operator defined in

(2.3);

(2) for any (z, γ, g, k) ∈ Z+ × Γ×G×K, we have F (zγgk) = F (g);

(3) F is of moderate growth.

Let Kα, with α ∈ C, denote the modified Bessel function (see [1, §4.12]),

which satisfies the differential equation

y2d
2Kα

dy2
+ y

dKα

dy
− (y2 + α2)Kα = 0.
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Proposition 2.1. Let Γ be an arithmetic subgroup of GL2(H), and let

LΓ := {x ∈H | n(x) ∈N ∩ Γ} and L̂Γ be the dual lattice of LΓ with respect

to tr. Then F ∈M(Γ, r) admits a Fourier expansion

F (n(x)ay) = u(y) +
∑

β∈L̂Γ\{0}

C(β)y2K√−1r(4π|β|y)e2π
√
−1 tr(βx),

with a smooth function u on R>0.

Proof. A Maass form F ∈M(Γ; r) is left-invariant with respect to {n(β) |
β ∈ LΓ}. This implies that F (n(x+ α)g) = F (n(x)g) holds for α ∈ LΓ and

g ∈G. Therefore, F has an expansion

F (n(x)ay) =
∑
β∈L̂Γ

Wβ(y)e2π
√
−1 tr(βx),

with a smooth function Wβ on R×+. For ξ ∈H\{0} we put Ŵξ(y) :=

y−3/2Wξ(y). From the condition Ω · F =−1
2(r2/4 + 1)F we deduce that Ŵβ

satisfies the differential equation(
d2

dY 2
+

(
−1

4
+

1
4 + r2

Y 2

))
Ŵβ

(
Y

8π|β|

)
= 0

for β ∈ L̂Γ\{0}, where Y := 8π|β|y. This is precisely the differential equation

for the Whittaker function (see [1, §4.3]). With the Whittaker function

W0,
√
−1r parametrized by (0,

√
−1r) we thereby see that

F (n(x)ay) = u(y) +
∑

β∈L̂Γ\{0}

C ′(β)y3/2W0,
√
−1r(8π|β|y)e2π

√
−1 tr(βx),

with constants C ′(β) depending only on β. We now note the relation

W0,
√
−1r(2y) =

√
2y

π
K√−1r(y)

(see [21, §13, 13.18(iii), 13.18.9]). This means that F has the Fourier

expansion as in the statement of the proposition.

We consider the automorphic forms above with specified discrete sub-

groups of SL2(R) and GL2(H). As a discrete subgroup of SL2(R) we take

the congruence subgroup Γ0(2) of level 2. For a choice of a discrete subgroup
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of GL2(H) we recall that B denotes the definite quaternion algebra over Q
with discriminant dB = 2. Up to B×-conjugation this has a unique maximal

order. In fact, we have the maximal order O given by

O = Z + Zi+ Zj + Z
1 + i+ j + ij

2
,

which is called the Hurwitz order. As a discrete subgroup of GL2(H) we

take GL2(O).

Proposition 2.2. The group GL2(O) is generated by{[
0 1
−1 0

]
,

[
u 0
0 1

]
,

[
1 v
0 1

]∣∣∣∣ u ∈ O×, v ∈ O} .
Proof. Any element of the form

[
α β

0 δ

]
∈GL2(O) can be expressed as[

α 0
0 1

] [
1 0
0 δ

] [
1 α−1β
0 1

]
.

We see that α, δ ∈ O×, and thus α−1β ∈ O. We note that[
0 1
−1 0

] [
u 0
0 1

] [
0 −1
1 0

]
=

[
1 0
0 u

]
,

[
0 1
−1 0

]3

=

[
0 −1
1 0

]
.

These imply the assertion for
[
α β

0 δ

]
∈GL2(O). Next, we have the following

claim.

For a, b ∈ O with b 6= 0 there exist c, d ∈ O such that a= cb+ d, ν(d)<

ν(b). This follows from [16, Chap. I, Section 1, Corollary 1.8]. This reduces

the general case of
[
α β

γ δ

]
∈GL2(O), γ 6= 0, to the previous case. This

completes the proof of the proposition.

Let G(A) = GL2(BA), where BA denotes the adelization of B, and let U be

the compact subgroup of G(A) given by
∏
p<∞ GL2(Op), where Op denotes

the p-adic completion of O at a finite prime p. Then, the class number of G
with respect to U is defined as the number of cosets in UG(R)\G(A)/G(Q).

We next put P to be a standard Q-parabolic subgroup of G whose group

of Q-rational points is P(Q) =
{[

α β

0 δ

]
∈ G(Q)

}
. We now recall that, for an

arithmetic subgroup Γ⊂ G(Q), the cosets Γ\G(Q)/P(Q) are called the set

of Γ-cusps.
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Lemma 2.3.

(1) The class number of G with respect to U is one, namely we have G(A) =

G(Q)G(R)U .

(2) The number of cusps with respect to Γ := GL2(O) is one.

Proof. According to [24, Theorem 8.11] the class number of a reductive

group over a number field F is not greater than that of a parabolic F -

subgroup of it. Furthermore, the class number of a parabolic F -subgroup is

not greater than that of its Levi subgroup (see [24, Proposition 5.4]). Hence,

the class number of G with respect to U turns out to be not greater than that

of the Levi subgroup L defined by the Q-rational points B× ×B×. Since

the class number of B× with respect to
∏
p<∞ O×p is one, the class number

of G is also one, which means that G(A) = G(Q)G(R)U = UG(R)G(Q). This

completes the proof of (1).

The first assertion implies that there is a bijection

Γ\G(Q)/P(Q)' G(R)U\G(A)/P(Q).

Furthermore, note an Iwasawa decomposition

G(Qv) =

{
GL2(Op) · P (Qp) (v = p <∞),

K · P (R) (v =∞)

at every place v 6∞. We can then reduce the counting of the number of

Γ-cusps to that of the class number of the Levi subgroup L. This implies

that the number of cusps with respect to Γ is one, and completes the proof

of the lemma.

We define ΓT as a subgroup GL2(O) generated by

(2.4)

[
0 −1
1 0

]
,

[
1 β
0 1

]
(β ∈ O).

In what follows, we deal mainly with S(Γ0(2);−(1
4 + ( r2)2)), M(ΓT ; r) and

M(GL2(O), r). For this we should note that the Selberg conjecture for Γ0(2)

is verified (cf. [12, Corollary 11.5]). This means the following.

Proposition 2.4. If S(Γ0(2);−(1
4 + (r/2)2)) 6= {0}, we have 1

4 +

(r/2)2 > 1
4 , namely we can assume that r ∈ R.
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By Proposition 2.1, the Fourier expansion of F ∈M(GL2(O), r) is then

written as

F (n(x)ay) = u(y) +
∑

β∈ 1
2
S\{0}

C(β)y2K√−1r(4πν(β)y)e2π
√
−1 tr(βx)

= u(y) +
∑

β∈S\{0}

A(β)y2K√−1r(2π|β|y)e2π
√
−1 Re(βx),

with a smooth function u on R>0. Here,

(2.5) S := Z · (1− ij) + Z · (−i− ij) + Z · (−j − ij) + Z · 2ij

is the dual lattice of O with respect to the bilinear form on H×H defined

by Re = 1
2 tr.

Now we introduce $2 = 1 + i, which is a uniformizer of B⊗QQ2. We can

verify the following lemma by a direct computation.

Lemma 2.5. We have S =$2O.

§3. Some zeta integral of convolution type

In this section, we study certain zeta integrals which play a crucial role

in the proof of automorphy in Section 4.

Theta functions

Consider the space of harmonic polynomials of degree l on H. These are

homogeneous polynomials of degree l and are annihilated by the Laplace

operator in 4 variables. We can act on this space by the cyclic group of

order 8 generated by 1+i√
2
∈H. Let {Pl,ν}ν denote a basis for this space

consisting of eigenvectors under the above action. Hence,

(3.1) Pl,ν

(
1 + i√

2
x

)
= εl,νPl,ν(x),

for some 8th root of unity εl,v. Define the following theta function:

(3.2) Θl,ν(z) :=
∑
β∈S

Pl,ν(β)e2π
√
−1
|β|2

2
z =

∞∑
m=0

b(2m)e2π
√
−1mz

on the complex upper half plane h, where b(m) :=
∑

β∈S, |β|2=m Pl,ν(β).

Since S is invariant under β 7→ −β and Pl,ν(−x) = (−1)lPl,ν(x), we see that

Θl,ν(z) is the zero function if l is odd.

Lemma 3.1. Let l be an even nonnegative integer. Let Θl,ν be as defined

in (3.2), with Pl,ν satisfying (3.1). Then Θl,ν is a holomorphic modular form
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of weight l + 2 with respect to Γ0(2), and is a cusp form if l > 2. Moreover,

we have the following transformation formula:

(3.3) Θl,ν

(
−1

2z

)
=−ε−1

l,ν 2l/2+1zl+2Θl,ν(z).

Proof. Set

B =


1

1
1

−1 −1 −1 2

 and A= tBB.

By (2.5), we see that the map x 7→Bx is a bijection from Z4 ' Z + Zi+

Zj + Zk to B(Z4)' S. Here, we consider x as a column vector. For Pl,ν
in the statement of the lemma, set P (x) := Pl,ν(Bx), x ∈ Z4. Then P is

a homogeneous polynomial in 4 variables of degree l annihilated by the

operator

∆A =
4∑

i,j=1

bi,j
∂2

∂ xi∂ xj
, where A−1 = (bi,j).

One can then see that Θl,ν(z) = Θ(z;A, P ), where

Θ(z;A, P ) =
∑
m∈Z4

P (m)e2π
√
−1

tmAm
2

z

is as defined in [20, Corollary 4.9.5]. Since all diagonal entries of A and 2A−1

are even, [20, part (3) of Corollary 4.9.5] implies that Θl,ν is a holomorphic

modular form of weight l + 2 with respect to Γ0(2), and is a cusp form if

l > 2. Once again, by [20, part (3) of Corollary 4.9.5], we have

Θ

(
−1

2z
;A, P

)
=−2l+1zl+2Θ(z;A∗, P ∗),

where A∗ = 2A−1 and P ∗(x) = P (A−1x) = Pl,ν(tB−1x). Note that the map

x 7→ tB−1x can be regarded as a bijection between Z4 and O. Hence, we see

that

Θ(z;A∗, P ∗) =
∑
β∈O

Pl,ν(β)e2π
√
−1|β|2z

= ε−1
l,ν 2−l/2

∞∑
m=0

b(2m)e2π
√
−1mz = ε−1

l,ν 2−l/2Θl,ν(z).
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Here, we have used Lemma 2.5 and (3.1). This completes the proof of the

lemma.

Eisenstein series with respect to Γ0(2)

We introduce an Eisenstein series

Ẽ∞(z, s) := (4π)l/2
Γ(s+ l

2 + 1)

Γ(s)
(π−sΓ(s)ζ(2s))

1

2

×
∑

γ∈Γ∞\Γ0(2)

(
cz + d

|cz + d|

)l+2 ( Im(z)

|cz + d|2

)s
(3.4)

on h with a complex parameter s, where Γ∞ :=
{[

1 m
0 1

]∣∣∣m ∈ Z
}

. The

Eisenstein series satisfies the following functional equation.

Lemma 3.2. Let Ẽ0(z, s) := (z/|z|)l+2Ẽ∞(−1/2z, s). Then the func-

tional equation

Ẽ∞(z, 1− s) =
22s−2

1− 22s−2
Ẽ∞(z, s) +

2s−1(1− 22s−1)

1− 22s−2
Ẽ0(z, s)

holds.

Proof. This is settled by the argument in [7, Lemma 7] with the help of

the formula for the scattering matrices in [12, §11.2].

Let f ∈ S(Γ0(2);−(1
4 + (r/2)2)) be an eigenfunction with respect to the

Atkin–Lehner involution; that is, f(−1/2z) = εf(z) with some ε ∈ {±1}.
Suppose the form f has the Fourier expansion

f(x+
√
−1y) =

∑
n∈Z\{0}

c(n)W
0,
√
−1r
2

(4π|n|y)e2π
√
−1nx,

where W0,
√
−1r/2 denotes the Whittaker function with the parameter

(0,
√
−1r/2). Let l be an even nonnegative integer. Let Θl,ν be as defined in

(3.2), with Pl,ν satisfying (3.1). Let Ẽ∞(z, s) be the Eisenstein series defined

in (3.4). Let the zeta integral I(s) be defined by

(3.5) I(s) :=

∫
Γ0(2)\h

f(z)Θl,ν(z)Ẽ∞(z, s)yl+2/2dxdy

y2
.

A similar Rankin–Selberg integral was considered in [7, Theorem 6] (see also

[22, (3.16)]). This integral is the main tool to prove the analytic properties

of certain Dirichlet series associated with the lifting defined in Section 4.
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We would like to remark that the integral I(s) is, in general, not Eulerian

and does not represent an L-function of f .

By Lemma 3.1, the above integral is well defined. Let us now state the

theorem of this section.

Theorem 3.3. The zeta integral I(s) is entire and is bounded on vertical

strips. When εεl,ν = 1, we have

(2s − 1)I(s) = (21−s − 1)I(1− s).

When εεl,ν =−1, we have

(2s + 1)I(s) = (21−s + 1)I(1− s).

Proof. The entireness and boundedness on vertical strips of I(s) are

verified by the same argument as [22, §3.2]. We put

I0(s) :=

∫
Γ0(2)\h

f(z)Θl,ν(z)Ẽ0(z, s)yl+2/2dxdy

y2
.

Since Γ0(2) is stable under conjugation by
[

1/
√

2

−
√

2

]
∈ SL2(R), we can

make a change of variable z 7→ −1/(2z). Now, using the assumption

f(−1/2z) = εf(z), (3.3) and the definition of Ẽ0(z, s), we have

I0(s) =

∫
Γ0(2)\h

f

(
− 1

2z

)
Θl,ν

(
− 1

2z

)
Ẽ0

(
− 1

2z
, s

)
Im

(
−1

2z

)l+2/2 dxdy

y2

=

∫
Γ0(2)\h

[
εf(z)

] [
−ε−1

l,ν 2l/2+1zl+2Θl,ν(z)
]

×

[(
−|z|
z

)l+2

Ẽ∞(z, s)

] [
y

2|z|2

]l+2/2 dxdy

y2

= −ε−1
l,v εI(s).

From Lemma 3.2, we deduce

I(1− s) =
22s−2

1− 22s−2
I(s) +

2s−1(1− 22s−1)

1− 22s−2
I0(s).

Observe that

22s−2

1− 22s−2
− ε−1

l,ν ε
2s−1(1− 22s−1)

1− 22s−2
=


2s − 1

21−s − 1
if εl,νε= 1,

2s + 1

21−s + 1
if εl,νε=−1.

We have therefore proved the theorem.
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§4. Construction of the lifting

We now construct a lifting map from S(Γ0(2);−(1
4 + r2/4)) to

M(GL2(O); r), which is an analog of that of Pitale [22]. The fundamental

tool of our study is the converse theorem by Maass [19].

Theorem 4.1. (Maass) Let {A(β)}β∈S\{0} be a sequence of complex

numbers such that

A(β) =O(|β|κ) (∃κ > 0),

and put

F (n(x)ay) :=
∑

β∈S\{0}

A(β)y2K√−1r(2π|β|y)e2π
√
−1 Re(βx).

For a harmonic polynomial P on H of degree l we introduce

ξ(s, P ) := π−2sΓ

(
s+

√
−1r

2

)
Γ

(
s−
√
−1r

2

) ∑
β∈S\{0}

A(β)
P (β)

|β|2s
,

which converges for Re(s)> l + 4 + κ/2. Let {Pl,ν}ν be a basis of harmonic

polynomials on H of degree l.

Then F ∈M(ΓT ; r) is equivalent to the condition that, for any l, ν, the

ξ(s, Pl,ν) satisfies the following three conditions.

(1) It has analytic continuation to the whole complex plane.

(2) It is bounded on any vertical strip of the complex plane.

(3) The functional equation

ξ(2 + l − s, Pl,ν) = (−1)lξ(s, P̂l,ν)

holds, where P̂ (x) := P (x̄) for x ∈H.

Recall that ΓT is defined in (2.4). For this theorem we remark that the

infinitesimal action of the Casimir operator Ω on the space of smooth right

K-invariant functions on G/Z can be identified with a constant multiple

of the hyperbolic Laplacian on
{[

y x

0 1

]∣∣∣ x ∈H, y ∈ R×+
}

(for the hyperbolic

Laplacian, see [19, (3)]). We can therefore follow the argument in [19, §2] to

see that this theorem is useful also for our situation.

We wish to define {A(β)}β∈S\{0} from Fourier coefficients c(n) of

f ∈ S(Γ0(2);−(1
4 + r2/4)). Let $2 = 1 + i, as before. An easy computation

shows that $2O =O$2. This allows us to write any β ∈ O uniquely as
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β =$u
2dβ

′, where u> 0, d is an odd integer and β′ ∈ O is neither of the

form $2β
′
0 with some nonzero β′0 ∈ O nor a multiple of an element of O

by an odd integer. Hence, we can define $m
2 |β by m6 u with u as above.

Recall that, by Lemma 2.5, we have S =$2O. It thus makes sense to define

the set Sprim of primitive elements in S by

(4.1) Sprim := {β ∈ S\{0} |$2 | β, $2
2 - β, d - β for all odd integers d},

where d - β for d ∈ Z means that β is not a multiple of an element in S by

d.

Proposition 4.2. Let β ∈ S\{0} be expressed as

β =$2
udβ0,

where u is a nonnegative integer, d is an odd integer and β0 ∈ Sprim. Given

f ∈ S(Γ0(2);−(1
4 + r2/4)) with Fourier coefficients c(n) and eigenvalue ε ∈

{±1} of the Atkin–Lehner involution, we set

(4.2) A(β) := |β|
u∑
t=0

∑
n|d

(−ε)tc
(
− |β|2

2t+1n2

)
.

Let {Pl,ν}ν be a basis of harmonic polynomials on H of degree l satisfying

(3.1). Then we have

(4.3)

ξ

(
s+

l

2
+

1

2
, Pl,ν

)
=

{
21−l/2π−(l+1)(2s − εεl,ν)I(s) if εl,ν ∈ {±1},
0 if εl,ν 6∈ {±1},

and the ξ(s, Pl,ν) satisfies the three analytic conditions in Theorem 4.1.

Proof. Note that, if l is odd, then ξ(s, Pl,ν)≡ 0, since A(β) is invariant

under β 7→ −β and Pl,ν is homogeneous of degree l. For this we remark

that, from Section 3, I(s)≡ 0 also holds when l is odd. From now on we

assume that l is even. Now suppose that the condition εl,ν 6∈ {±1} is satisfied,

which is equivalent to ε2l,ν 6= 1. We see that Pl,ν(iβ) = ε2l,νPl,ν(β) 6= Pl,ν(β)

for β ∈H. In addition, we note that A(iβ)|iβ|−2s =A(β)|β|−2s for β ∈ S.

In the definition of ξ(s, Pl,ν), we can replace S by iS. Hence, we obtain

ξ(s, Pl,ν)≡ 0, if εl,ν 6∈ {±1}.
We now assume that εl,ν ∈ {±1}. By a formal calculation similar to [22,

Proposition 3.5] we get
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I(s) = π−2s2−2s−1Γ

(
s+

l

2
+

1

2
+

√
−1r

2

)
Γ

(
s+

l

2
+

1

2
−
√
−1r

2

)
× ζ(2s)

∞∑
m=1

c(−m)b(2m)

ms+l/2
.

We put Γl,r(s) := π−(2s+l+1)Γ(s+ l/2 + 1
2 +
√
−1r/2)Γ(s+ l/2 + 1

2 −√
−1r/2). We have

ξ(s+
l

2
+

1

2
, Pl,ν) = Γl,r(s)

∑
β∈S\{0}

A(β)Pl,ν(β)

|β|2(s+l/2+1/2)

= Γl,r(s)
∑

β∈S\{0}

u∑
t=0

∑
n|d

c(
−|β|2

2t+1n2
)(−ε)tPl,ν(β)

(|β|2)s+l/2

= Γl,r(s)
∑

β∈S\{0}

u∑
t=0

∑
n|d

c(− |β|2
2t+1n2 )(−ε)tPl,ν( β

2t/2n
)

(2tn2)s( |β|
2

2tn2 )s+l/2

= Γl,r(s)

∞∑
u=0

∑
d>1
d:odd

∑
β∈Sprim

u∑
t=0

∑
n|d

×
c(− 1

2 |$
u−t
2

d
nβ0|

2)(−εεl,ν)tPl,ν($u−t
2

d
nβ0)

(2tn2)s|$u−t
2

d
nβ0|2(s+l/2)

= Γl,r(s)

∞∑
u=0

×
∑
d>1
d:odd

 u∑
t=0

∑
n|d

∑
β∈Sprim

c(− 1
2 |$

t
2nβ|2)Pl,ν($t

2nβ)

(−2sεl,νε)u−t(
d
n )2s|$t

2nβ|2(s+l/2)


= Γl,r(s)

∞∑
u=0

1

(−2sεl,νε)u

∑
d>1
d:odd

1

d2s

×
∞∑
m=1

c(−m)
∑

β∈S,|β|2=2m

Pl,ν(β)

(2m)s+l/2

= 21−l/2
22s − 1

2s + εl,νε
2−2s−1Γl,r(s)ζ(2s)

∞∑
m=1

c(−m)b(2m)

ms+l/2

= 21−l/2π−(l+1)(2s − εl,νε)I(s).
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We note that ξ(s, P̂l,ν) = ξ(s, Pl,ν) since S = S̄. The formula just proved and

Theorem 3.3 then imply that ξ(s, Pl,ν) satisfies the desired three analytic

properties in Theorem 4.1.

Remark 4.3. Note that the definition (4.2) of A(β) is very similar to

the formula for the Fourier coefficient of the lift in the Saito–Kurokawa case

(see [7, page 348]) and the GSpin(1, 4) case [22, (3.4)].

Theorem 4.4. Let f ∈ S(Γ0(2);−(1
4 + r2/4)) with Fourier coefficients

c(n) and with eigenvalue ε of the Atkin–Lehner involution. Define

Ff (n(x)ay) :=
∑

β∈S\{0}

A(β)y2K√−1r(2π|β|y)e2π
√
−1 Re(βx)

with {A(β)}β∈S\{0} defined by (4.2). Then we have Ff ∈M(GL2(O); r) and

Ff is a cusp form. Furthermore, Ff 6≡ 0 if f 6≡ 0.

Proof. We can verify the left invariance of Ff with respect to{[
u 0
0 1

]
| u ∈ O×

}
in a straightforward way. Proposition 2.2, Theorem 4.1

and Proposition 4.2 thus imply Ff ∈M(GL2(O); r). Since GL2(O) has only

one cusp (see Lemma 2.3), the Fourier expansion of Ff means that Ff is

cuspidal. To show the nonvanishing we need the following lemma.

Lemma 4.5. Let f ∈ S(Γ0(2);−(1
4 + r2/4))\{0} with Fourier coeffi-

cients c(n) and with eigenvalue ε of the Atkin–Lehner involution. Then,

there exist N > 0, N ∈ Z, such that c(−N) 6= 0.

Proof. Assume that c(n) = 0 for all n < 0. Set f1(z) = (f(z) + f(−z̄))/2
and f2(z) = (f(z)− f(−z̄))/2. Then, f1, f2 are elements of S(Γ0(2);−(1

4 +

r2/4)) with the same eigenvalue ε of the Atkin–Lehner involution as f .

In addition, f1 is an even Maass form and f2 is an odd Maass form,

with the property that they have the exact same Fourier coefficients

corresponding to positive indices. This implies that the L-functions for f1

and f2 satisfy L(s, f1) = L(s, f2). On the other hand, L(s, f1) and L(s, f2)

satisfy functional equations with the gamma factors shifted by 1. Here,

we use that both f1 and f2 have the same Atkin–Lehner eigenvalue. If

L(s, f1) 6= 0, we obtain an identity of gamma factors, which can be checked

to be impossible. This gives us that f has to be zero, a contradiction.

Let N0 be the smallest positive integer such that c(−N0) 6= 0. Let β0 ∈ O
be such that |β0|2 =N0. Choose β =$2β0. Then, by the choice of N0 and

the definition of A(β), we see that A(β) =
√

2N0c(−N0) 6= 0, as required.
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Remark 4.6. Weyl’s law for congruence subgroups of SL2(Z) by Sel-

berg (cf. [12, §11.1]) implies that there exist Maass cusp forms for Γ0(2).

This and the theorem above imply the existence of nonzero lifts Ff .

§5. Actions of Hecke operators on the lifting

5.1 Adelization of automorphic forms

To study the actions of Hecke operators on our cusp forms constructed

by the lifting we need both adelic and nonadelic treatments of automorphic

forms.

For a complex number r ∈ C we introduce another space M(G(A), r) of

automorphic forms for G.

Definition 5.1. Let M(G(A), r) be the space of smooth functions Φ on

G(A) satisfying the following conditions:

(1) Φ(zγgufu∞) = Φ(g) for any (z, γ, g, uf , u∞) ∈ ZA × G(Q)× G(A)×
U ×K, where ZA denotes the center of G(A);

(2) Ω · Φ(g∞) =−1
2(r2/4 + 1)Φ(g∞) for any g∞ ∈ G(R) = GL2(H);

(3) Φ is of moderate growth.

According to part (1) of Lemma 2.3, the class number of G with respect

to U is one, which means that G(A) = G(Q)G(R)U . We can thus view F ∈
M(GL2(O), r) as a smooth function ΦF on G(A) by

ΦF (γg∞uf ) = F (g∞) ∀(γ, g∞, uf ) ∈ G(Q)× G(R)× U.

We therefore see the following.

Lemma 5.2. We have an isomorphism M(GL2(O), r)'M(G(A), r).

5.2 Hecke operators

For each place p6∞, let Gp := GL2(Bp), with Bp =B ⊗Q Qp. For a

finite prime p 6= 2, we have GL2(Bp)'GL4(Qp). Let Op be the p-adic

completion of O for p <∞. For a finite prime p 6= 2, Op 'M2(Zp) and

GL2(Op)'GL4(Zp). Set Kp = GL2(Op) for p <∞.

We denote by Hp =H(Gp, Kp) the Hecke algebra for GL2(Bp) with

respect to GL2(Op) for p <∞. According to [26, §8, Theorem 6], Hp has

the following generators:{
{ϕ±1

1 , ϕ2} if p= 2,

{φ±1
1 , φ2, φ3, φ4} if p 6= 2.
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Here, ϕ1, ϕ2 denote the characteristic functions for

(5.1) K2

[
$2 0
0 $2

]
K2, K2

[
$2 0
0 1

]
K2

respectively, and φ1, φ2, φ3, φ4 denote the characteristic functions for

Kp


p

p
p

p

Kp, Kp


p

p
p

1

Kp,

Kp


p

p
1

1

Kp, Kp


p

1
1

1

Kp(5.2)

respectively when p 6= 2. Recall that $2 denotes a prime element of B2. We

want to obtain the single coset decomposition for the above double cosets.

For that, we next review the Bruhat decomposition of Kp given by

Kp =
⊔

w∈Wp

TpwTp,

where Wp denotes the Weyl group of GL2(Bp), and Tp is the subgroup

of elements in Kp which are upper triangular modulo p for an odd

p (respectively, upper triangular modulo $2O2 for p= 2).

Let Np be the standard maximal unipotent subgroup of GL2(Bp)

defined over Qp. We put N0
p (Zp) := Tp ∩ tNp(Qp). We furthermore introduce

N(Zp) =Np(Qp) ∩Kp and D(Zp) =Dp(Qp) ∩Kp, where Dp denotes the

subgroup of diagonal matrices in GL2(Bp). Then we have the Iwahori

decomposition

Tp =N(Zp)D(Zp)N0
p (Zp)

(see [13, Theorem 2.5]). Let h be one of

14 (or 12),


p

p
p

p

 ,

p

p
p

1

 ,

p

p
1

1

 ,

p

1
1

1

 or

[
$2

1

]
.



LIFTING TO GL(2) OVER A DIVISION QUATERNION ALGEBRA 157

Lemma 5.3.

KphKp =
⊔

w∈Wp/Wp(h)

N(Zp)whKp,

where Wp(h) := {w ∈Wp | whw−1 = h}.

To describe this coset decomposition of KphKp explicitly, we need a set of

representatives for Wp/Wp(h).

Lemma 5.4.

(1) Let p= 2. For h=
[
$2 0

0 1

]
we can take

{
12,

[
0 1
1 0

]}
as a set of representatives for W2/W2(h).

(2) Let p 6= 2.

(a) When h=

[p
p
p

1

]
we can take

14,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




as a set of representatives for Wp/Wp(h).

(b) When h=

[p
1

1
1

]
we can take

14,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




as a set of representatives for Wp/Wp(h).
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(c) When h=

[p
p

1
1

]
we can take

14,


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




as a set of representatives for Wp/Wp(h).

By Lemmas 5.3 and 5.4, we are now able to write down the coset

decomposition of KphKp explicitly.

Lemma 5.5.

(1) Let p= 2 and h=
[
$2 0

0 1

]
. We have

K2hK2 =

[
1 0
0 $2

]
K2 t

⊔
x∈O2/$2O2

[
$2 0
0 1

] [
1 $−1

2 x
0 1

]
K2.

(2) Let p 6= 2.

(a) For h=

[p
p
p

1

]
we have

KphKp =
⊔

x14,x24,x34∈Zp/pZp


p

p
p x34

1




1 p−1x14

1 p−1x24

1
1

Kp

t
⊔

x12∈Zp/pZp


p x12

1
p

p

Kp

t
⊔

x13,x23∈Zp/pZp


p

p
1

p




1 p−1x13

1 p−1x23

1
1

Kp
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t


1

p
p

p

Kp.

(b) For h=

[p
1

1
1

]
we have

KphKp =
⊔

x12,x13,x14∈Zp/pZp


p x12

1
1

1



×


1 p−1x13 p−1x14

1
1

1

Kp

t
⊔

x34∈Zp/pZp


1

1
p x34

1

Kp

t
⊔

x23,x24∈Zp/pZp


1

p
1

1




1
1 p−1x23 p−1x24

1
1

Kp

t


1

1
1

p

Kp.

(c) For h=

[p
p

1
1

]
we have

KphKp =
⊔

x13,x14,x23,x24∈Zp/pZp


p

p
1

1





160 M. MUTO, H. NARITA AND A. PITALE

×


1 p−1x13 p−1x14

1 p−1x23 p−1x24

1
1

Kp

t
⊔

x24,x34∈Zp/pZp


1

p
p x34

1




1
1 p−1x24

1
1

Kp

t
⊔

x23∈Zp/pZp


1

p
1

p




1
1 p−1x23

1
1

Kp

t
⊔

x12,x14,x34∈Zp/pZp


p x12

1
p x34

1




1 p−1x14

1
1

1

Kp

t
⊔

x12,x13∈Zp/pZp


p x12

1
1

p




1 p−1x13

1
1

1

Kp

t


1

1
p

p

Kp.

We can now describe the actions of the Hecke operators defined by the

KphKps above. With the invariant measure dx of Gp normalized so that∫
Kp

dx= 1, we define KphKp · Φ by

(KphKp · Φ)(g) :=

∫
Gp

charKphKp(x)Φ(gx)dx

for Φ ∈M(G(A), r), where charKphKp denotes the characteristic function for

KphKp.

We provide the nonadelic description of KphKp · Φ, which enables us to

describe explicitly the influence of the KphKp-action on Fourier coefficients

of the lifting Ff .
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To this end we now introduce the sets

Cp := {α ∈ O | ν(α) = p}/O×, C ′p := {x ∈M2(Zp) | det(x) = p}/GL2(Zp),

(5.3)

and state the following lemma.

Lemma 5.6.

(1) There is a bijection

C ′p '
{[

1 0
0 p

]
,

[
p b
0 1

]∣∣∣∣ b ∈ Zp/pZp
}
.

(2) For an odd prime p, the isomorphism Op 'M2(Zp) induces the bijection

Cp ' C ′p.

Proof. The first assertion is verified by a direct calculation. We prove

the second assertion. As is remarked in the proof of [22, Proposition 5.2], we

have #Cp = p+ 1. Under the isomorphism Op 'M2(Zp), we can regard any

element in O as one lying in M2(Zp). Any two inequivalent representatives of

Cp are not equivalent to each other in {x ∈M2(Zp) | det(x) = p}/GL2(Zp).
Otherwise there are two inequivalent representatives α1 and α2 of Cp which

are equivalent under O×l -action for all primes l, since α1/α2 ∈ O×l for all

primes l. Note here that O×l 'GL2(Zl) for any odd primes l. This, however,

implies that two such representatives are equivalent to each other in Cp. We

therefore know that there is a injection from Cp into {x ∈M2(Zp) | det(x) =

p}/GL2(Zp). Since the latter set also has p+ 1 representatives as in the

statement, the injection is actually a bijection.

Let F ∈M(GL2(O), r) correspond to Φ. By KphKp · F we denote the

cusp form in M(GL2(O), r) corresponding to KphKp · Φ. Due to Lemma 2.3,

G(Q)\G(A)/U has a complete set of representatives in G(R), where G(R)

is viewed as a subgroup of G(A) in the usual manner. The cusp form

KphKp · Φ is thereby determined by its restriction to G(R), which is nothing

but KphKp · F . Moreover, we remark that an element in M(GL2(O), r) is

determined by its restriction to NA= {n(x)ay | x ∈H, y ∈ R×+} (see (2.1)).

Proposition 5.7. Let KphKp · F be as above, and let n(x) and ay be

as defined in (2.1). For p odd, let Cp be as defined in (5.3).
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(1) Let p= 2, and let h=
[
$2 0

0 1

]
. We have

(K2hK2 · F )(n(x)ay) = F (n($2x)a21/2y) + 22F (n($−1
2 x)a2−1/2y).

(2) Let p 6= 2.

(a) When h=

[p
p
p

1

]
, we have

(KphKp · F )(n(x)ay) =
∑
α∈Cp

F (n(αx)ap1/2y)

+ p2
∑
α∈Cp

F (n(xα−1)ap−1/2y).

(b) When h=

[p
1

1
1

]
, we have

(KphKp · F )(n(x)ay) =
∑
α∈Cp

F (n(xα)ap1/2y)

+ p2
∑
α∈Cp

F (n(α−1x)ap−1/2y).

(c) When h=

[p
p

1
1

]
, we have

(KphKp · F )(n(x)ay) = F (n(px)apy) + p4F (n(p−1x)ap−1y)

+ p
∑

(α1,α2)∈Cp×Cp

F (n(α−1
1 xα2)ay).

Proof. We prove only (2c). The other cases are settled similarly. We

make use of the isomorphism ψ :Op→M2(Zp), given explicitly as follows.

Since p is odd, we can find r, s ∈ Zp such that 1 + r2 + s2 = 0. Then, we

have

(5.4) ψ(a0 + a1i+ a2j + a3ij) =

[
a0 − a1r − a2s −a3 − a1s+ a2r
a3 − a1s+ a2r a0 + a1r + a2s

]
.

Let x1, x2, x3, x4 ∈ O such that

ψ(x1) ∈
[

1 0
0 0

]
+M2(pZp), ψ(x2) ∈

[
0 1
0 0

]
+M2(pZp),



LIFTING TO GL(2) OVER A DIVISION QUATERNION ALGEBRA 163

ψ(x3) ∈
[

0 0
1 0

]
+M2(pZp), ψ(x4) ∈

[
0 0
0 1

]
+M2(pZp).

For example, let r0, s0 ∈ {0, 1, . . . , p− 1} such that r − r0, s− s0 ∈ pZp.
Then, we can choose x4 = p+1

2 (1− r0i− s0j), where note that p+1
2 ∈ Z since

p is odd. Denote by α0, α1, α2, . . . , αp the representatives of Cp such that

ψ(α0) ∈
[

1
p

]
GL2(Zp) and ψ(αi) ∈

[
p i

1

]
GL2(Zp) for i ∈ {1, . . . , p}.

The left coset decomposition of KphKp in part (2c) of Lemma 5.5 can be

rewritten as

KphKp =
⊔

x∈O/pO

[
ψ(1) ψ(x)

ψ(1)

][
ψ(p)

ψ(1)

]
Kp

t
⊔

i,t∈{1,...,p}

[
ψ(1) tψ(x4)

ψ(1)

][
ψ(α0)

ψ(αi)

]
Kp

t
⊔

t∈{1,...,p}

[
ψ(1) tψ(x3)

ψ(1)

][
ψ(α0)

ψ(α0)

]
Kp

t
⊔

i,j,t∈{1,...,p}

[
ψ(1) tψ(x2)

ψ(1)

][
ψ(αi)

ψ(αj)

]
Kp

t
⊔

i,t∈{1,...,p}

[
ψ(1) tψ(x1)

ψ(1)

][
ψ(αi)

ψ(α0)

]
Kp

t
[
ψ(1)

ψ(p)

]
Kp.

We note that (KphKpΦ)((n(x)ay)∞
∏
v<∞ 1v) is the sum of terms of the

form Φ((n(x)ay)∞ · γp ·
∏
v 6=p,∞ 1v), where γp runs over the single coset rep-

resentatives above. Since we have chosen the coset representatives γp above

in M2(O), Φ((n(x)ay)∞ · γp ·
∏
v 6=p,∞ 1v) = Φ((γ−1

p n(x)ay)∞
∏
v<∞ 1v) =

F (γ−1
p n(x)ay). Here, we have used the left G(Q)-invariance and right Kv-

invariance of Φ.

Next, we substitute the Fourier expansion of F and perform an appropri-

ate change of variable for β to get the proposition. Note that, for the first

set of left cosets, we have to use that O/pO 3 x 7→ exp(2πi Re(βx/p)) is a

nontrivial character of (Z/pZ)4 if and only if p does not divide β.
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For this proposition we remark that the formulas above do not depend

on the choices of representatives of Cp, since F is left- and right-invariant

with respect to {
[u1

u2

]
| u1, u2 ∈ O×}. Let the Fourier decomposition of

(KphKp · F ) be given by

(KphKp · F )(n(x)ay) =
∑

β∈S\{0}

(KphKp · F )βy
2K√−1r(2π|β|y)e2π

√
−1 Re(βx).

The next proposition provides a formula for (KphKp · F )β in terms of the

Fourier coefficients A(β) of F .

Proposition 5.8.

(1) Let p= 2, and let h=
[
$2 0

0 1

]
. We obtain

(K2hK2 · F )β = 2(A(β$−1
2 ) +A(β$2)).

(2) Let p be an odd prime, and let β ∈ S\{0}.

(a) When h=

[p
p
p

1

]
,

(KphKp · F )β = p

∑
α∈Cp

A(βᾱ−1) +
∑
α∈Cp

A(ᾱβ)

 .

(b) When h=

[p
1

1
1

]
,

(KphKp · F )β = p

∑
α∈Cp

A(α−1β) +
∑
α∈Cp

A(βα)

 .

(c) When h=

[p
p

1
1

]
,

(KphKp · F )β = p2(A(p−1β) +A(pβ))

+ p
∑

(α1,α2)∈Cp×Cp

A(α−1
1 βα2).
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For this proposition we note that the automorphy of F with respect

to {
[u1

u2

]
| u1, u2 ∈ O×} implies A(u1βu2) =A(β) for β ∈ S\{0} and

u1, u2 ∈ O×. From this we see that the formulas in (2b) and (2c) do not

depend on the choices of representatives for Cp. For (2a) we furthermore

see that, given any complete set {αi | 0 6 i6 p} of representatives for Cp,

{ᾱi | 0 6 i6 p} also forms such a set. As a result, we see that the formula

in (2a) is also not dependent on the choices of representatives for Cp.

5.3 Hecke equivariance for p= 2

Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a new form (for the definition see [12,

§8.5]) with Hecke eigenvalue λp for p= 2. By the Hecke eigenvalue λ2 we

mean the eigenvalue of f for the U(2) operator defined by the action of the

double coset Γ0(2)[ 1
2 ] Γ0(2). Let us also assume that f is an eigenfunction

of the Atkin–Lehner involution with eigenvalue ε. It can be checked that λ2

and ε are related by

(5.5) λ2 =−ε.

Using the single coset decomposition

Γ0(2)

[
1

2

]
Γ0(2) = Γ0(2)

[
1 1

2

]
t Γ0(2)

[
1

2

]
,

we get

f

(
z + 1

2

)
+ f

(z
2

)
= λ2f(z).

In terms of Fourier coefficients of f , using (5.5), we get

(5.6) c(2m) =
λ2

2
c(m) =− ε

2
c(m), for all m ∈ Z.

Proposition 5.9. Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a new form and an

eigenfunction of the Atkin–Lehner involution with eigenvalue ε. Let F = Ff
be as defined in Theorem 4.4. Then,

(5.7)

(
K2

[
$2

1

]
K2

)
F =−3

√
2εF.

Proof. Let β =$u
2dβ0 be a decomposition according to Proposition 4.2.

Hence, u> 0, d is odd and β0 ∈ Sprim. Using (5.5) and (5.6), we see that

A(β) = (2u+1 − 1)|β|
∑
n|d

c
(−|β|2

2n2

)
,
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A(β$2) = (2u+2 − 1)
−ε√

2
|β|
∑
n|d

c
(−|β|2

2n2

)
,

A(β$−1
2 ) = (2u − 1)(−ε

√
2)|β|

∑
n|d

c
(−|β|2

2n2

)
.

Note that, if u= 0, then A(β$−1
2 ) = 0, and so is the right-hand side of the

third equality above. We have

2u+2 − 1√
2

+ (2u − 1)
√

2 =
3√
2

(2u+1 − 1).

Hence, we have

2(A(β$2) +A(β$−1
2 )) =−3

√
2εA(β).

The proposition now follows from part (1) of Proposition 5.8.

5.4 Hecke equivariance for odd primes

We assume that f ∈ S(Γ0(2);−(1
4 + r2/4)) is a Hecke eigenform with

Hecke eigenvalue λp for every odd prime p, but do not assume that f is

a new form. In terms of Fourier coefficients of f , the Hecke relation is given

by

(5.8) p1/2c(pn) + p−1/2c(n/p) = λpc(n),

where c(n/p) is assumed to be zero if p does not divide n. The following

lemma will play a key role in the computation of the Hecke operator.

Lemma 5.10. Let β ∈ Sprim. Then,

(5.9) #{α ∈ Cp : p | βα}= #{α ∈ Cp : p|αβ}=

{
1 if p | |β|2,
0 if p 6 | |β|2.

In addition, p2 does not divide αβ or βα for any α ∈ Cp.

Proof. Note that, by taking conjugates, it is enough to prove the

statement of the lemma for {α ∈ Cp : p | βα} for all β. Taking norms, it

is clear that p does not divide βα if p does not divide |β|2. Hence, assume

that p divides |β|2. Let β = β1 + β2i+ β3j + β4ij. The conditions p||β|2 and

p 6 | β, imply that there is a pair amongst the set {β1, β2, β3, β4} which

does not satisfy x2 + y2 ≡ 0 (mod p). From the proof it will be clear
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that we can take, without loss of generality, β2
3 + β2

4 6≡ 0 (mod p). Let

α= α1 + α2i+ α3j + α4ij. The condition p|βα is equivalent to the following

matrix equation modulo p:


β1 −β2 −β3 −β4

β2 β1 −β4 β3

β3 β4 β1 −β2

β4 −β3 β2 β1


︸ ︷︷ ︸

Pβ


α1

α2

α3

α4

=


0
0
0
0

 .

The matrix Pβ considered over Zp has rank 2. By our assumption β2
3 + β2

4 6≡
0 (mod p), we see that the kernel of Pβ is spanned by the first two rows of

Pβ. Hence, α is given by

α1 = aβ1 + bβ2, α2 =−aβ2 + bβ1, α3 =−aβ3 − bβ4, α4 =−aβ4 + bβ3,

for some a, b ∈ Zp. This gives us α2
3 + α2

4 = (a2 + b2)(β2
3 + β2

4) 6= 0. This is

because, by assumption, β2
3 + β2

4 6= 0, and |α|2 = (a2 + b2)|β|2 and p2 does

not divide |α|2.

In [23, page 69], it is shown that the set S1 = {α ∈ Cp : α2
3 + α2

4 6≡
0 (mod p)} is in bijection with the set S2 = {(x, y) ∈ Zp × Zp : x2 + y2 + 1≡
0 (mod p)}. The map from S1 to S2 is given as follows. For α ∈ S1, we obtain

(xα, yα) as the solution to the matrix equation modulo p given by

[
α3 α4

−α4 α3

] [
xα
yα

]
=

[
α1

α2

]
.

One can check that (x, y) ∈ S2 for the following choice of x and y:

(5.10) x=
−β1β3 − β2β4

β2
3 + β2

4

, y =
β2β3 − β4β1

β2
3 + β2

4

.

If we take α ∈ S1 to be the preimage of the above (x, y), then we can check

that α ∈Ker(Pβ). On the other hand, if α ∈ Cp belongs to Ker(Pβ), then it

can also be checked that the corresponding (xα, yα) are equivalent modulo

p to those in (5.10). This completes the proof of (5.9).
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If p2 divides βα or αβ for some α ∈ Cp, then it is clear that β cannot be

primitive. This completes the proof of the lemma.

Proposition 5.11. Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a Hecke eigenform

with Hecke eigenvalue λp for every odd prime p. Let F = Ff be as defined

in Theorem 4.4. For an odd prime p we then haveKp


p

p
p

1

Kp

 F =

Kp


p

1
1

1

Kp

 F = p(p+ 1)λpF.

(5.11)

Proof. Using Proposition 5.8 we can show that, if the Fourier coefficients

satisfy A(β) =A(β̄) for all β ∈ S and the second equality in (5.11) holds,

then so does the first equality. Since the Fourier coefficients of F = Ff satisfy

the above condition, we are reduced to showing the second equality in (5.11).

We will compute the action of the Hecke operator on the Fourier

coefficients A(β) of F . Since all the computations only involve the prime

p, it will be enough to consider the case β = psβ0 with s> 0 and β0 ∈ Sprim.

For such a β, we have

A(β) = ps|β0|
s∑

k=0

c
(−|β0|2p2s−2k

2

)
.

Note that α−1β0 = (1/p)ᾱβ0 for α ∈B with ν(α) = p. Hence, for such α,

α−1β0 ∈ S if and only if p divides ᾱβ0.

Let us first consider the case where p does not divide |β0|2. Hence, by

Lemma 5.10, we see that α−1β0 6∈ S and p does not divide β0α for any

α ∈ Cp. Hence, for any α ∈ Cp, we have

(5.12) A(βα) =
√
pps|β0|

s∑
k=0

c
(−|β0|2p2s+1−2k

2

)
and

(5.13) A(α−1β) =
1
√
p
ps|β0|

s−1∑
k=0

c
(−|β0|2p2s−1−2k

2

)
.



LIFTING TO GL(2) OVER A DIVISION QUATERNION ALGEBRA 169

Note that, if s= 0, both the left- and right-hand sides of the last equation

are zero. Now, using (5.8), we get for any α ∈ Cp

A(α−1β) +A(βα) = ps|β0|
( s−1∑
k=0

(
p−1/2c

(−|β0|2p2s−1−2k

2

)
+ p1/2c

(−|β0|2p2s+1−2k

2

))
+ p1/2c

(−|β0|2p
2

))
= ps|β0|

( s−1∑
k=0

λpc
(−|β0|2p2s−2k

2

)
+ λpc

(−|β0|2

2

))
= λpA(β).

Now, using the fact that the number of elements in Cp is p+ 1 and part

(2b) of Proposition 5.8, we get the result.

Next, let us assume that p divides |β0|2. By Lemma 5.10, there is a unique

α1 ∈ Cp such that p divides β0α1, and a unique α2 ∈ Cp such that α−1
2 β0 ∈ S.

If α ∈ Cp but α 6= α1, then the formula for A(βα) is the same as in (5.12).

For α= α1, we have

A(βα1) =
√
pps|β0|

s+1∑
k=0

c
(−|β0|2p2s+1−2k

2

)
.

For α ∈ Cp but α 6= α2, the formula for A(α−1β) is the same as in (5.13).

For α= α2, we have

A(α−1
2 β) =

1
√
p
ps|β0|

s∑
k=0

c
(−|β0|2p2s−1−2k

2

)
.

Hence, we get the following:∑
α∈Cp

(A(α−1β) +A(βα))

= pps|β0|
[ s∑
k=0

p1/2c
(−|β0|2p2s+1−2k

2

)
+

s−1∑
k=0

p−1/2c
(−|β0|2p2s−1−2k

2

)]

+ ps|β0|
[ s+1∑
k=0

p1/2c
(−|β0|2p2s+1−2k

2

)
+

s∑
k=0

p−1/2c
(−|β0|2p2s−1−2k

2

)]



170 M. MUTO, H. NARITA AND A. PITALE

= pps|β0|
[ s−1∑
k=0

λpc
(−|β0|2p2s−2k

2

)
+ p1/2c

(−|β0|2p
2

)]
+ ps|β0|

[ s∑
k=0

λpc
(−|β0|2p2s−2k

2

)
+ p1/2c

(−|β0|2

2p

)]

= λpA(β) + pps|β0|
[ s−1∑
k=0

λpc
(−|β0|2p2s−2k

2

)
+ p1/2c

(−|β0|2p
2

)
+ p−1/2c

(−|β0|2

2p

)]
= λpA(β) + pλpA(β) = (p+ 1)λpA(β).

This completes the proof of the proposition.

Proposition 5.12. Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a Hecke eigenform

with Hecke eigenvalue λp for every odd prime p. Let F = Ff be as defined

in Theorem 4.4. For an odd prime p we then have

(5.14)

Kp


p

p
1

1

Kp

 F =
(
p2λ2

p + p3 + p
)
F.

Proof. First observe that, using (5.8), one can show that, for all n,

(5.15) pc(np2) = (λ2
p − 1)c(n)− p−1/2λpc(n/p).

If we assume that p|n, then we can get another identity given by

(5.16) pc(np2) + p−1c(n/p2) = (λ2
p − 2)c(n).

As in the proof of Proposition 5.11, we can assume that β = psβ0, where

s> 0 and β0 ∈ Sprim. Let us abbreviate νp(β) = s. For such a β we have

A(β) = ps|β0|
s∑

k=0

c
(−|β0|2p2s−2k

2

)
.

Hence,

A(pβ) = ps+1|β0|
s+1∑
k=0

c
(−|β0|2p2s−2k+2

2

)
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and

A(p−1β) = ps−1|β0|
s−1∑
k=0

c
(−|β0|2p2s−2k−2

2

)
.

Next, we need to compute
∑
A(α−1

1 βα2) where the sum is over all α1, α2 in

Cp. We consider three cases depending on whether p 6 | |β0|2, or p| |β0|2 but

p2 6 | |β0|2 or p2| |β0|2.

Case 1 : Let us assume that p 6 | |β0|2. Applying Lemma 5.10 to β0, we see

that β0α2 ∈ Sprim for all α2 ∈ Cp. Again applying Lemma 5.10 to β0α2 for a

fixed α2, we see there is a unique α1,2 ∈ Cp such that νp(α
−1
1,2βα2) = s, and,

for all α1 6= α1,2, we have νp(α
−1
1 βα2) = s− 1. Hence,

∑
α1,α2∈Cp

A(α−1
1 βα2) =

∑
α2∈Cp

A(α−1
1,2βα2) +

∑
α1∈Cp
α1 6=α1,2

A(α−1
1 βα2)


= (p+ 1)A(β) + (p+ 1)pps|β0|

s−1∑
k=0

c
(−|β0|2p2s−2k

2

)
.

Putting this all together, we see that p2(A(pβ) +A(p−1β)) +

p
∑

α1,α2
A(α−1

1 βα2) is equal to

p2
(
ps+1|β0|

s+1∑
k=0

c
(−|β0|2p2s−2k+2

2

)
+ ps−1|β0|

s−1∑
k=0

c
(−|β0|2p2s−2k−2

2

))

+ p(p+ 1)A(β) + (p+ 1)p2ps|β0|
s−1∑
k=0

c
(−|β0|2p2s−2k

2

)

= p2ps|β0|
(

(λ2
p − 2)

s−1∑
k=0

c
(−|β0|2p2s−2k

2

)
+ pc

(−|β0|2p2

2

)
+ pc

(−|β0|2

2

))

+ p(p+ 1)A(β) + (p+ 1)p2ps|β0|
s−1∑
k=0

c
(−|β0|2p2s−2k

2

)
= p2ps|β0|

(
(λ2
p − 2)

s∑
k=0

c
(−|β0|2p2s−2k

2

)
− (λ2

p − 2)c
(−|β0|2

2

)
+ (λ2

p − 1)c
(−|β0|2

2

)
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+ pc
(−|β0|2

2

))
+ p(p+ 1)A(β) + (p+ 1)p2A(β)

− (p+ 1)p2ps|β0|c
(−|β0|2

2

)
=
(
p2(λ2

p − 2) + p(p+ 1) + p2(p+ 1)
)
A(β)

=
(
p2λ2

p + p3 + p
)
A(β).

Here, we have used both (5.15) and (5.16).

Case 2 : Let p| |β0|2 but p2 6 | |β0|2. Applying Lemma 5.10 to β0, we see

that there is a unique α̂2 ∈ Cp such that p|β0α̂2. For α2 6= α̂2, we have β0α2 ∈
Sprim. Let β0α̂2 = pβ′0. Then β′0 ∈ Sprim and p 6 | |β′0|2 (since we have assumed

that p2 6 | |β0|2). Hence, by Lemma 5.10, we see that, for all α1 ∈ Cp, we have

α−1
1 β0α̂2 = ᾱ1β

′
0 ∈ Sprim. This implies that νp(α

−1
1 βα̂2) = s for all α1 ∈ Cp.

If α2 6= α̂2, then Lemma 5.10 implies that there is a unique α1,2 ∈ Cp such

that νp(α
−1
1,2βα2) = s. For all α1 6= α1,2, we have νp(α

−1
1 βα2) = s− 1. This

gives us∑
α1,α2∈Cp

A(α−1
1 βα2)

=
∑
α1∈Cp

A(α−1
1 βα̂2) +

∑
α2∈Cp
α2 6=α̂2

(
A(α−1

1,2βα2) +
∑
α1∈Cp
α1 6=α1,2

A(α−1
1 βα2)

)

= (p+ 1)A(β) + pA(β) + p2ps|β0|
s−1∑
k=0

c
(−|β0|2p2s−2k

2

)
.

Putting this all together, we see that p2(A(pβ) +A(p−1β)) +

p
∑

α1,α2
A(α−1

1 βα2) is equal to

p2ps|β0|
(

(λ2
p − 2)

s−1∑
k=0

c
(−|β0|2p2s−2k

2

)
+ pc

(−|β0|2p2

2

)
+ pc

(−|β0|2

2

))

+ p(p+ 1)A(β) + p2A(β) + p3ps|β0|
s−1∑
k=0

c
(−|β0|2p2s−2k

2

)
= p2(λ2

p − 2)A(β) + p2ps|β0|
(
− (λ2

p − 2)c
(−|β0|2

2

)
+ (λ2

p − 2)c
(−|β0|2

2

)
+ pc

(−|β0|2

2

))
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+ p(p+ 1)A(β) + p2A(β) + p3A(β)− p3ps|β0|c
(−|β0|2

2

)
=
(
p2(λ2

p − 2) + p(p+ 1) + p2 + p3
)
A(β)

=
(
p2λ2

p + p3 + p
)
A(β).

Here, we have used (5.16) and p| |β0|2.

Case 3 : Let p2| |β0|2. As in Case 2 above, Lemma 5.10 applied to β0

implies that there is a unique α̂2 ∈ Cp such that p|β0α̂2. For α2 6= α̂2, we have

β0α2 ∈ Sprim. Let β0α̂2 = pβ′0. Then β′0 ∈ Sprim and p| |β′0|2 (since we have

assumed p2| |β0|2). Hence, by Lemma 5.10, there is a unique α̂1,2 ∈ Cp such

that νp(α̂
−1
1,2βα̂2) = s+ 1, and for all α1 6= α̂1,2, we have νp(α

−1
1 βα̂2) = s. If

α2 6= α̂2, then Lemma 5.10 implies that there is a unique α1,2 ∈ Cp such that

νp(α
−1
1,2βα2) = s. For all α1 6= α1,2, we have νp(α

−1
1 βα2) = s− 1. This gives

us that
∑
A(α−1

1 βα2) is equal to

A(α̂−1
1,2βα̂2) +

∑
α1 6=α̂1,2

A(α−1
1 βα̂2)

+
∑
α2 6=α̂2

(
A(α1,2βα2) +

∑
α1 6=α1,2

A(α−1
1 βα2)

)

= ps|β0|
s+1∑
k=0

c
(−|β0|2p2s−2k

2

)
+ pA(β)

+ pA(β) + p2ps|β0|
s−1∑
k=0

c
(−|β0|2p2s−2k

2

)
=A(β) + ps|β0|c

(−|β0|2

2p2

)
+ pA(β)

+ pA(β) + p2A(β)− p2ps|β0|c
(−|β0|2

2

)
.

Putting this all together, we see that p2(A(pβ) +A(p−1β)) +

p
∑

α1,α2
A(α−1

1 βα2) is equal to

p2(λ2
p − 2)A(β) + p2ps|β0|

(
− (λ2

p − 2)c
(−|β0|2

2

)
+ pc

(−|β0|2p2

2

)
+ pc

(−|β0|2

2

))
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+ p(1 + 2p+ p2)A(β) + p2ps|β0|
(
p−1c

(−|β0|2

2p2

)
− pc

(−|β0|2

2

))
=
(
p2(λ2

p − 2) + p(1 + 2p+ p2)
)
A(β)

=
(
p2λ2

p + p3 + p
)
A(β).

Here, we have used (5.16) and p2| |β0|2. This completes the proof of the

proposition.

§6. The automorphic representation corresponding to the lifting

In this section, we will use the Hecke equivariance from the previous

section to determine the local components of the automorphic representation

corresponding to the lifting. This will lead us to the conclusion that we have

obtained a CAP representation and have found a counterexample to the

Ramanujan conjecture.

6.1 The local components of the automorphic representation

Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a Hecke eigenform with Hecke eigen-

value λp for every odd prime p. Let F = Ff be as defined in Theorem 4.4.

Let ΦF : G(A)→ C be defined by

ΦF (γg∞uf ) = F (g∞) ∀(γ, g∞, uf ) ∈ G(Q)× G(R)× U.

See Section 5.1 for details. Let πF be the irreducible cuspidal automorphic

representation of G(A) generated by the right translates of ΦF . Note that

the irreducibility follows from the strong multiplicity-one result for G(A)

(see [2], [3]). The representation πF is cuspidal since F is a cusp form. Let

πF =
⊗′

p πp, where πp is an irreducible admissible representation of Gp :=

G(Qp) for p <∞, and π∞ is an irreducible admissible representation of G(R).

Recall that U =
∏
p<∞ Kp, where Kp is the maximal compact subgroup

of G(Qp) (cf. Section 2.3). Hence, for p <∞, the representation πp is a

spherical representation and can be realized as a subrepresentation of an

unramified principal series representation, that is a representation induced

from an unramified character of the Borel subgroup. The representation πp
is completely determined by the action of the Hecke algebra H(Gp, Kp) on

the spherical vector in πp, which, in turn, is completely determined by the

Hecke eigenvalues of F obtained in the previous section. See [4] for details.

For p= 2 we need to assume that f is a new form for the determination of

the Hecke eigenvalue of Ff (cf. Section 5.3).
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Description of πp for p odd

If p is an odd prime, then we have Gp = GL4(Qp) and Kp = GL4(Zp).
Given 4 unramified characters χ1, χ2, χ3, χ4 of Q×p , we obtain a character

χ of the Borel subgroup P of upper triangular matrices in G, by

(6.1) χ



a1 ∗ ∗ ∗

a2 ∗ ∗
a3 ∗

a4


= χ1(a1)χ2(a2)χ3(a3)χ4(a4).

The modulus character δP is given by

(6.2) δP



a1 ∗ ∗ ∗

a2 ∗ ∗
a3 ∗

a4


= |a3

1a2a
−1
3 a−3

4 |p,

where | ∗ |p denotes the p-adic absolute value. The unramified principal

representation corresponding to χ is given by I(χ), which consists of locally

constant functions f : GL4(Qp)→ C, satisfying

f(bg) = δP (b)1/2χ(b)f(g), for all b ∈ P, g ∈GL4(Zp).

The action of the Hecke algebra is as follows. If φ ∈H(GL4(Qp),GL4(Zp))
and f ∈ I(χ), define

(6.3)
(
φ ∗ f

)
(g) =

∫
GL4(Qp)

φ(h)f(gh)dh.

Recall that we have normalized the measure dh on GL4(Qp) so that the

volume of GL4(Zp) is 1. Let f = f0, the unique vector in I(χ) that is right-

invariant under GL4(Zp) and f0(1) = 1, and let φ= φh, a characteristic

function of GL4(Zp)hGL4(Zp) =
⊔
i hiGL4(Zp). It follows from (6.3) that

(6.4)
(
φh ∗ f0

)
(1) =

∑
i

f0(hi) = µh,

where µh is determined by the representation πp. The Hecke algebra

H(GL4(Qp),GL4(Zp)) is generated by {φ±1
1 , φ2, φ3, φ4}, defined in (5.2).

Lemma 6.1. Let µ1, µ2, µ3, µ4 be the constants obtained by the action

of φi, i= 1, 2, 3, 4, on the spherical vector f0 in πp according to (6.4). Then

µ1 = 1, µ2 = µ4 = p(p+ 1)λp and µ3 = p2λ2
p + p3 + p.
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Proof. The lemma follows from the fact that the action of the p-adic

Hecke algebra on the spherical vector in πp is exactly the same as that on

F (or ΦF ). First note that φ1 acts as the identity operator, which implies

that µ1 = 1. The other Hecke eigenvalues follow from Propositions 5.11 and

5.12.

Recall that Proposition 5.5 gives the double coset decompositions which

can be used to determine the action of φ on f0. Let us abbreviate αi = χi(p)

for i= 1, 2, 3, 4. Working in the induced model I(χ) of πp, we see that

(φ1 ∗ f0)(1) = α1α2α3α4,

(φ2 ∗ f0)(1) = p3p−3/2α1α2α3 + pp1/2α1α3α4

+ p2p−1/2α1α2α4 + p3/2α2α3α4

= p3/2α1α2α3α4(α−1
1 + α−1

2 + α−1
3 + α−1

4 ),

(φ4 ∗ f0)(1) = p3p−3/2α1 + pp1/2α3 + p2p−1/2α2 + p3/2α4

= p3/2(α1 + α2 + α3 + α4),

(φ3 ∗ f0)(1) = p4p−2α1α2 + p2α2α3 + ppα2α4

+ p3p−1α1α3 + p2α1α4 + p2α3α4

= p2(α1α2 + α2α3 + α2α4 + α1α3 + α1α4 + α3α4).(6.5)

Proposition 6.2. Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a Hecke eigenform

with Hecke eigenvalue λp for every odd prime p. Let F = Ff be as defined

in Theorem 4.4. Let πF =
⊗′

p πp be the corresponding irreducible cuspidal

automorphic representation of G(A). For an odd prime p, the representation

πp is the unique spherical constituent of the unramified principal series

representation I(χ), where, up to the action of the Weyl group of GL4,

the character χ is given by

χ1(p) = p1/2
λp +

√
λ2
p − 4

2
, χ2(p) = p1/2

λp −
√
λ2
p − 4

2
,

χ3(p) = p−1/2
λp +

√
λ2
p − 4

2
, χ4(p) = p−1/2

λp −
√
λ2
p − 4

2
.(6.6)

Proof. The representation I(χ) corresponding to πp is generated by the

spherical vector f0, and, hence, it is completely determined by the action

of the generators of the Hecke algebra on f0. The representation πp is also
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determined by the Hecke eigenvalues of F (or ΦF ) under the Hecke algebra

H(Gp, Kp). Substituting the values of αi = χi(p), i= 1, 2, 3, 4, from (6.6)

into (6.5) shows that we get the exact same eigenvalues as in Lemma 6.1.

This completes the proof of the proposition.

Let us remark here that we can use Lemma 6.1 to directly solve for αi
from (6.5). It is a tedious computation but results in the same answer as in

the statement of the above proposition.

Description of π2

Recall that B2 =B ⊗Q Q2, where B is a definite quaternion algebra over

Q with discriminant 2, and O2 is the completion of the Hurwitz order O
at 2. In this case, G2 = GL2(B2) and K2 = GL2(O2). Given two unramified

characters χ1, χ2 of B×2 , we obtain a character χ of the Borel subgroup of

upper triangular matrices on G by

χ

([
α ∗
0 β

])
= χ1(α)χ2(β).

The modulus character is given by

δ

([
α ∗
0 β

])
= |α/β|22.

Here, | |2 is the 2-adic absolute value of the reduced norm of B2. The

unramified principal series representation corresponding to χ is given by

I(χ), which consists of locally constant functions f : G2→ C, satisfying

f(bg) = δ(b)1/2χ(b)f(g), for all b ∈ Borel subgroup, g ∈ G2.

The action of the Hecke algebra is as follows. If φ ∈H(G2, K2) and f ∈ I(χ),

define

(6.7)
(
φ ∗ f

)
(g) =

∫
G2

φ(h)f(gh)dh.

Recall that we have normalized the measure dh on G2 so that the volume of

K2 is 1. Let f = f0, the unique vector in I(χ) that is right-invariant underK2

and f0(1) = 1, and let φ= φh, a characteristic function of K2hK2 =
⊔
i hiK2.

It follows from (6.3) that

(6.8)
(
φh ∗ f0

)
(1) =

∑
i

f0(hi) = µh,
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where µh is determined by the representation π2. The Hecke algebra

H(G2, K2) is generated by {ϕ±1
1 , ϕ2}, where ϕ1, ϕ2 denote the characteristic

functions for

K2

[
$2 0
0 $2

]
K2, K2

[
$2 0
0 1

]
K2.

Here, $2 is a uniformizer for B2.

Lemma 6.3. Let µ1, µ2 be the constants obtained by the action of φi, i=

1, 2, on the spherical vector f0 in π2 according to (6.8). Then µ1 = 1 and

µ2 =−3
√

2ε, where ε is the Atkin–Lehner eigenvalue of f .

Proof. The proof is the same as in the case of an odd prime.

Recall that Proposition 5.5 gives the double coset decompositions which

can be used to determine the action of φ on f0. Let us abbreviate αi = χi($2)

for i= 1, 2. Working in the induced model I(χ) of π2, we see that

(ϕ1 ∗ f0)(1) = α1α2,

(ϕ2 ∗ f0)(1) = 2(α1 + α2).(6.9)

Proposition 6.4. Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a new form with

Hecke eigenvalue λp for p= 2 and Atkin–Lehner eigenvalue ε, for which

λ2 =−ε holds (cf. (5.5)). Let F = Ff be as defined in Theorem 4.4. Let πF =⊗′
p πp be the corresponding irreducible cuspidal automorphic representation

of G(A). The representation π2 is the unique spherical constituent of the

unramified principal series representation I(χ), where, up to the action of

the Weyl group, the character χ is given by

(6.10) χ1($2) =−
√

2ε, χ2($2) =−1/
√

2ε.

Proof. The proof is the same as in the case of an odd prime.

Description of π∞

We now determine π∞. We note that F = Ff ∈M(GL2(O); r) implies

that the archimedean component π∞ of πF is spherical. Namely, π∞ has a

K∞-invariant vector, where we put K∞ :=K with K as in (2.1). In fact, up

to constant multiples, such a vector is unique for π∞, as we soon see.

We now introduce M∞ :=
{(

u1 0

0 u2

)∣∣∣ u1, u2 ∈H1
}

(see Section 2.1 for H1).

Let P∞ be the standard proper parabolic subgroup G∞ = GL2(H) given by{(
a ∗
0 d

)
∈ G∞

}
.
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We have P∞ := Z+NAM∞, where Z+, N and A are as in (2.1). The group

Z+AM∞ is nothing but the Levi subgroup of P∞. We now note that the

Langlands classification of real reductive groups (cf. [18]) implies that π∞
has to be embedded into some principal series representation IP∞ of G∞
induced from a quasicharacter of P∞. Since π∞ is spherical, IP∞ is also

spherical. As π∞ has the trivial central character, so does IP∞ . Combining

these with the Frobenius reciprocity for compact Lie groups (cf. [15,

Theorem 9.9]), one can verify that the quasicharacter of P∞ inducing IP∞
has to be trivial on Z+M∞, and that IP∞ and π∞ have a unique K∞-

invariant vector, up to constant multiples. For s ∈ C we introduce the

quasicharacter χs of P∞ defined by

χs

((
a ∗
0 d

))
= ν(ad−1)s,

where we recall that ν denotes the reduced norm of H (cf. Section 2.1). We

note that the quasicharacters of P∞ trivial on Z+M∞ should be of this form.

We furthermore introduce the modulus character δ∞ of P∞. The principal

series representation IP∞ is then expressed as

IP∞ = IndG∞P∞(δ∞χs).

Proposition 6.5. We have an isomorphism

π∞ ' IndG∞P∞(δ∞χ±
√
−1r)

as (g, K∞)-modules, where we recall that g denotes the Lie algebra of

G∞ (cf. Section2.2).

Proof. Let v be a unique K∞-invariant vector in the representation

space of IndG∞P∞(δ∞χs), which π∞ can be embedded into. Then, v can also

be regarded as a vector of π∞. We remark that π∞ can be viewed as a

representation of SL2(H)'GL2(H)/Z+ (cf. Section 2.2) since it has the

trivial central character. Consider the infinitesimal action of the Casimir

operator Ω (cf. (2.3)) on v. We then have

Ω · v =
1

2

(
s2

4
− 1

)
v =

1

2

(
−r

2

4
− 1

)
v,

which leads to s=±
√
−1r. Now recall that we can assume r ∈ R (cf. Propo-

sition 2.4). We thus know that the quasi-character χs is parametrized by



180 M. MUTO, H. NARITA AND A. PITALE

a purely imaginary number ±
√
−1r. By Harish-Chandra [10, §41, Theo-

rem 1], the spherical principal series representation IndG∞P∞(δ∞χ±
√
−1r) is

an irreducible unitary representation. For this see also [6, Remark (2.1.13)]

and note the accidental isomorphism Spin(5, 1)' SL2(H) as real Lie groups.

Consequently we have the isomorphism in the assertion.

6.2 CAP representations

Let us first give the definition of CAP representations.

Definition 6.6. Let G1 and G2 be two reductive algebraic groups

over a number field such that G1,v 'G2,v for almost all places v. Let

P2 be a parabolic subgroup of G2 with Levi decomposition P2 =M2N2.

An irreducible cuspidal automorphic representation π =
⊗′

v πv of G1(A)

is called cuspidal associated to parabolic (CAP) P2, if there exists an

irreducible cuspidal automorphic representation σ of M2 such that πv ' π′v
for almost all places v, where π′ =

⊗′
v π
′
v is an irreducible constituent of

Ind
G2(A)
P2(A) (σ).

See [8] and [22] for details on CAP representations defined for two groups

instead of just one. Take G1 = G = GL2(B) and G2 = GL4. Here, B is a

definite quaternion algebra with discriminant 2. Since these groups are inner

forms of each other, we have G1,p 'G2,p for all odd primes p. Let P2 be

the standard parabolic of GL4 with Levi subgroup M2 = GL2 ×GL2. Let

f ∈ S(Γ0(2);−(1
4 + r2/4)) be a Hecke eigenform with Hecke eigenvalue λp

for every odd prime p and Atkin–Lehner eigenvalue ε. Let σ =
⊗′

p σp be the

irreducible cuspidal automorphic representation of GL2 corresponding to f .

For an odd prime p, the representation σp is the unramified principal series

representation I(η), where η is given by

η

([
a b
d

])
= η0(a)η−1

0 (d).

Here, η0 is an unramified character of Q×p such that η0(p) + η−1
0 (p) = λp. For

p= 2 assume that f is a new form. Then, the representation σ2 is the twist

of the Steinberg representation of GL2(Q2) by an unramified character η′,

with η′(2) =−ε. The representation σ gives a representation |det|−1/2
A σ ×

|det|1/2A σ of M2, where | |A denotes the idele norm of A×. We have the

following theorem.

Theorem 6.7. Let f ∈ S(Γ0(2);−(1
4 + r2/4)) be a Hecke eigenform with

Hecke eigenvalue λp for every odd prime p and Atkin–Lehner eigenvalue ε.
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Let σ =
⊗′

p σp be the irreducible cuspidal automorphic representation of

GL2 corresponding to f . Let F = Ff be as defined in Theorem 4.4. Let

πF =
⊗′

p πp be the corresponding irreducible cuspidal automorphic rep-

resentation of G(A). Then πF is CAP to an irreducible constituent of

Ind
G2(A)
P2(A) (|det|−1/2

A σ × |det|1/2A σ).

Proof. The theorem follows from the observation that, for an odd

prime p, we have the isomorphism Ind
G2(Qp)
P2(Qp) (|det|−1/2

p σp × |det|1/2p σp)'
I(χp). Here, I(χp) is the representation described in Proposition 6.2. A

concrete map is given as follows. For s ∈ Ind
G2(Qp)
P2(Qp) (|det|−1/2

p σp × |det|1/2p |σp)
define the function g 7→ (s(g))(I2, I2). Note that δP2(diag(a1, a2, a3, a4)) =

|a1a2a
−1
3 a−1

4 |2p.

We can furthermore show that our cuspidal representations πF provide

counterexamples to the Ramanujan conjecture.

Theorem 6.8. Let πF =
⊗′

p πp be as in Theorem 6.7. For every odd

prime p (respectively p=∞), πp is nontempered (respectively tempered). If

we further assume that f is a new form, πp is nontempered for every finite

prime p and tempered for p=∞.

Proof. The temperedness of π∞ is due to Proposition 6.5 and [6, Remark

2.1.13]. For an odd prime p, the unramified characters χi with 1 6 i6 4 are

not unitary (cf. (6.6)). This means that πp is nontempered (cf. [27, (9)]).

Let p= 2, and suppose that f is a new form. We recall that f0 denotes the

spherical vector in π2, and introduce its dual vector f ′0 in the contragredient

representation of π2. With the invariant measure dg of Gp/Zp normalized so

that
∫
K2/Zp

dg = 1, for any δ > 0, we consider the following integral of the

matrix coefficient: ∫
G2/Z2

|〈π2(g)f0, f
′
0〉|2+δdg

over G2 modulo center Z2, where 〈∗, ∗〉 denotes the canonical pairing of π2

and its contragredient. If π2 is tempered, this integral should be convergent.

Now we note that the set
(⊔

n>0 K2

(
$n2 0

0 1

)
K2

)
/Z2 can be regarded as a

subdomain of G2/Z2 and that there is a decomposition

K2

(
$n

2 0
0 1

)
K2 =

⊔
x∈O2/$n2O2

(
$n

2 0
0 1

) (
1 $−n2 x
0 1

)
Kp t

(
1 0
0 $n

2

)
Kp.
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It is verified that the Hecke operator defined by K2

(
$n2 0

0 1

)
K2 acts on f0 as

follows: (
K2

(
$n

2 0
0 1

)
K2

)
· f0 = (−ε)n(23n/2 + 2n/2)f0.

We thereby have a divergent integral∫⊔
n>0 K2

$n
2 0

0 1

K2

/Zp |〈π2(g)f0, f
′
0〉|2+δdg

=

(∑
n>0

(23n/2 + 2n/2)2+δ

)
|〈f0, f

′
0〉|2+δ =∞,

which leads to a contradiction. We therefore see that π2 is nontempered. As

a result we are done.

Remark 6.9.

(1) According to Tadić [28], the parabolic induction I(χ) for p= 2 (cf. Sec-

tion 6.1) has two composition factors, one of which is a unique essen-

tially square integrable subquotient. Our nontempered representation

π2 is the remaining nonsquare integrable composition factor. Besides

our approach, there seem to be several ways to prove that the nonsquare

integrable composition factor is nontempered. In fact, Tadić pointed

out that the nontemperedness is proved by using the classification

of the nonunitary dual of GL(n) over a division algebra (cf. [28])

or by Casselman’s criterion on the temperedness of an admissible

representation.

(2) From Weyl’s law (cf. [12, (11.5)]), we can deduce that there exist

nonzero new forms in S(Γ0(2);−(r2/4 + 1
4)) for some r ∈ R. Let NΓ(T )

be the counting function of an orthogonal basis of the discrete spectrum

for a congruence subgroup Γ, as in [12, §11.1]. Put N∗Γ0(2)(T ) to be

such a counting function for new forms of Γ0(2). With the help of

Casselman’s local theory of old forms and new forms (cf. [5]), we deduce

N∗Γ0(2)(T ) =
Vol(h/Γ0(2))− 2Vol(h/SL2(Z))

4π
T 2 +O(T log T )

=
Vol(h/SL2(Z))

4π
T 2 +O(T log T )
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from Weyl’s law just mentioned. In view of Theorems 4.4 and 6.8, this

leads to the existence of a nonzero cuspidal representation πF whose

local component πp is nontempered at every p <∞. We remark that

the formula for N∗Γ0(2)(T ) can be generalized to the case of any prime

level.
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