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Abstract. We give conditions for when two Euler products are the same

given that they satisfy a functional equation and their coe�cients satisfy a

partial Ramanujan bound and do not di�er by too much. Additionally, we

prove a number of multiplicity one type results for the number-theoretic objects

attached to L-functions. These results follow from our main result about L-

functions.

1. Introduction

An L-function is a Dirichlet series that converges absolutely in some right half
plane, has a meromorphic continuation to a function of order 1, with �nitely many
poles, satis�es a functional equation, and admits an Euler product. For example,
the (incomplete) L-functions attached to tempered, cuspidal automorphic repre-
sentations, or the Hasse-Weil L-functions attached to non-singular, projective, al-
gebraic varieties de�ned over a number �eld, conjecturally satisfy these conditions.

In this paper, using standard techniques from analytic number theory, we prove
a strong multiplicity one result for such L-functions (without reference to any un-
derlying automorphic or geometric object). We closely follow the work [10] and we
redo their arguments for two reasons. First, our results are more general in that
they have slightly weaker hypotheses. Second, we think that the techniques should
be better known, especially to those who study L-functions automorphically.

One of the de�ning axioms for the class of L-functions we consider is the ex-
istence of an Euler product. There exists a number d, called the degree of the
L-function, such that the local Euler factor is of the form Qp(p

−s)−1, where Qp(X)
is a polynomial satisfying Qp(0) = 1, and Qp(X) has degree d for almost all primes.
We say that a given L-function satis�es the Ramanujan conjecture, if the roots of
Qp are of absolute value at least 1, for all p.

The multiplicity one results we discuss in this paper are statements which assert
that if two L-functions are su�ciently close, then they must be equal. A model
example is:

Theorem 1.1. Suppose L1(s) =
∑
a1(n)n−s and L2(s) =

∑
a2(n)n−s are Dirich-

let series which continue to meromorphic functions of order 1 satisfying appropriate
functional equations and having appropriate Euler products. Assume that L1(s) and
L2(s) satisfy the Ramanujan conjecture. Assume also that a1(p) = a2(p) for almost
all p. Then L1(s) = L2(s).

The precise conditions on the functional equation and Euler product are de-
scribed in Section 2.1. A weaker version of Theorem 1.1, requiring equality of the
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local Euler factors instead of the pth Dirichlet coe�cients, is given in [20]. Theo-
rem 1.1 is also a consequence of the main result in [10]. The result we will actually
prove, Theorem 2.2, is stronger. First, instead of requiring equality of the pth
Dirichlet series coe�cients, we only require that they are close on average. Second,
the Ramanujan hypothesis can be slightly relaxed.

We will present three applications of strong multiplicity one for L-functions. The
�rst application is to cuspidal automorphic representations of GL(n,AQ), where
AQ denotes the ring of adeles of the number �eld Q. Any such representation
π factors as π = ⊗πp, where πp is an irreducible admissible representation of
GL(n,Qp) (we mean Qp = R for p = ∞). Attached to π is an automorphic L-
function L(s, π), whose �nite part is Lfin(s, π) =

∏
p<∞ L(s, πp). The completion

of Lfin(s, π) is known to be �nice�, and hence Lfin(s, π) is the kind of function
to which Theorem 1.1 applies. At almost all primes p we have L(s, πp) = det(1 −
A(πp)p

−s)−1, where A(πp) = diag(α1,p, . . . , αn,p) is a diagonal matrix whose entries
are the Satake parameters at p. The Ramanujan conjecture is the assertion that
each πp is tempered, which in this context implies that |αj,p| = 1. In particular
note that L(s, πp) is a polynomial in p−s and this polynomial has all its roots on
the unit circle.

An easy consequence of Theorem 1.1 is the following.

Theorem 1.2. Suppose that π and π′ are (unitary) cuspidal automorphic repre-
sentations of GL(n,AQ) satisfying tr(A(πp)) = tr(A(π′p)) for almost all p. Assume

that both Lfin(s, π) and Lfin(s, π′) satisfy the Ramanujan conjecture. Then π = π′.

Most statements of strong multiplicity one in the literature are phrased in terms
of A(πp) and A(π′p) being conjugate, instead of the much weaker condition of the
equality of their traces. Using the stronger version of Theorem 1.1, we will in fact
prove a stronger result which only requires that the traces are close enough on
average; see Theorem 3.1 for the precise statement.

Our second application is to Siegel modular forms of degree 2. For such modular
forms Weissauer [27] has proved the Ramanujan conjecture. The Dirichlet coe�-
cients ai(p) appearing in Theorem 1.1 are essentially the Hecke eigenvalues for the
Hecke operator T (p). We therefore have the following:

Theorem 1.3. Suppose Fj, for j = 1, 2, are Siegel Hecke eigenforms of weight

kj for Sp(4,Z), with Hecke eigenvalues µj(n). If p3/2−k1µ1(p) = p3/2−k2µ2(p) for
all but �nitely many p, then k1 = k2 and F1, F2 have the same eigenvalues for the
Hecke operator T (n) for all n.

The remarkable fact here is that the Hecke operator T (p) alone does not generate
the local Hecke algebra at p. This Hecke algebra is generated by T (p) and T (p2).
The fact that the coincidence of the eigenvalues for T (p) is enough is of course a
global phenomenon. Using the result of [21], we see that if Böcherer's conjecture
is true then not only are the Hecke eigenvalues of F1, F2 in Theorem 1.3 equal but
we get F1 = F2. Again, using the averaged version of Theorem 2.2, we can prove a
stronger result; see Theorem 3.2.

Our third application concerns the Hasse-Weil zeta function of hyperelliptic
curves; see Proposition 3.3. This Proposition is in a similar spirit to those men-
tioned above. Assuming the L-functions satisfy a functional equation of a form
they are expected to satisfy, we can apply our analytic theorems to prove a result
about the underlying (in this case) geometric object.
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Notation. We review some notation from analytic number theory for complete-
ness. Given two functions f(x), g(x),

• we write f(x) ∼ g(x) as x→∞ if limx→∞ f(x)/g(x) = 1;
• we write f(x) � g(x) as x → ∞ if there exists C > 0 and x0 > 0 so that
if x > x0 then |f(x)| ≤ C|g(x)|; this is also written as f(x) = O(g(x)) as
x→∞.

In this paper we drop the phrase �as x→∞� when using the above notation.

2. Multiplicity one for L-functions

In this section we describe the L-functions for which we will prove a multiplicity
one result. As in other approaches to L-functions viewed from a classical per-
spective, such as that initiated by Selberg [23], we consider Dirichlet series with
a functional equation and an Euler product. However, in contrast to Selberg, we
strive to make all our axioms as speci�c as possible. Presumably (as conjectured by
Selberg) these di�erent axiomatic approaches all describe the same objects: L(s, π)
where π is a cuspidal automorphic representation of GL(n).

2.1. L-function background. Before getting to L-functions, we recall two bits
of terminology that will be used in the following discussion. An entire function
f : C→ C is said to have order at most α if for all ε > 0:

f(s) = O(exp(|s|α+ε)).

Moreover, we say f has order equal to α if f has order at most α, and f does not have
order at most γ for any γ < α. The notion of order is relevant because functions
of �nite order admit a factorization as described by the Hadamard Factorization
Theorem and the Γ-function and L-functions are all of order 1.

In order to ease notation, we use the normalized Γ-functions de�ned by:

ΓR(s) := π−s/2 Γ(s/2) and ΓC(s) := 2(2π)−s Γ(s).

An L-function is a Dirichlet series

(2.1) L(s) =

∞∑
n=1

a(n)

ns
,

where s = σ + it is a complex variable. We assume that L(s) converges absolutely
in the half-plane σ > 1 and has a meromorphic continuation to all of C. The
resulting function is of order 1, admitting at most �nitely many poles, all of which
are located on the line σ = 1. Finally, L(s) must have an Euler product and satisfy
a functional equation as described below.

The functional equation involves the following parameters: a positive integer
N , complex numbers µ1, . . . , µJ and ν1, . . . , νK , and a complex number ε. The
completed L-function

Λ(s) := Ns/2
J∏
j=1

ΓR(s+ µj)

K∏
k=1

ΓC(s+ νk) · L(s)(2.2)

is a meromorphic function of �nite order, having the same poles as L(s) in σ > 0,
and satisfying the functional equation

Λ(s) = εΛ(1− s).(2.3)

The number d = J + 2K is called the degree of the L-function.
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We require some conditions on the parameters µj and νj . The temperedness
condition is the assertion that <(µj) ∈ {0, 1} and <(νj) a positive integer or half-
integer. With those restrictions, there is only one way to write the parameters in
the functional equation, as proved in Proposition 2.1. This restriction is not known
to be a theorem for most automorphic L-functions. In order to state theorems
which apply in those cases, we will make use of a �partial Selberg bound,� which is
the assertion that <(µj), <(νj) > − 1

2 .
The Euler product is a factorization of the L-function into a product over the

primes:

(2.4) L(s) =
∏
p

Fp(p
−s)−1,

where Fp is a polynomial of degree at most d:

(2.5) Fp(z) = (1− α1,pz) · · · (1− αd,pz).

If p|N then p is a bad prime and the degree of Fp is strictly less than d, in other
words, αj,p = 0 for at least one j. Otherwise, p is a good prime, in which case the
αj,p are called the Satake parameters at p. The Ramanujan bound is the assertion
that at a good prime |αj,p| = 1, and at a bad prime |αj,p| ≤ 1.

The Ramanujan bound has been proven in very few cases, the most prominent
of which are holomorphic forms on GL(2) and GSp(4). See [22] for a survey of what
progress is known towards proving the Ramanujan bound. Also see [6].

We write |αj,p| ≤ pθ, for some θ < 1
2 , to indicate progress toward the Ramanujan

bound, referring to this as a �partial Ramanujan bound.�
We will need to use symmetric and exterior power L-functions associated to a

L-function L(s). Let S be the �nite set of bad primes p of L(s). The partial
symmetric and exterior square L-functions are de�ned as follows.

(2.6) LS(s, symn) =
∏
p 6∈S

∏
i1+...+id=n

(1− αi11,p . . . α
id
d,pp

−s)−1

(2.7) LS(s, extn) =
∏
p 6∈S

∏
1≤i1<...<in≤d

(1− αi1,p . . . αin,pp−s)−1.

We do not de�ne the local Euler factors at the bad primes since there is no universal
recipe for these. It is conjectured that the symmetric and exterior power L-functions
are in fact L-functions in the sense described above. In that case, Proposition 2.1
tells us that the bad Euler factors are uniquely determined. For applications that
we present in this paper, the partial L-functions su�ce.

In most cases it is not necessary to specify the local factors at the bad primes
because, by almost any version of the strong multiplicity one theorem, an L-function
is determined by its Euler factors at the good primes. For completeness we state a
simple version of the result.

In the following proposition we use the term �L-function� in a precise sense,
referring to a Dirichlet series which satis�es a functional equation of the form (2.2)-
(2.3) with the restrictions <(µj) ∈ {0, 1} and <(νj) a positive integer or half-integer,
and having an Euler product satisfying (2.4)-(2.5). We refer to the quadruple
(d,N, (µ1, . . . , µJ : ν1, . . . , νK), ε) as the functional equation data of the L-function.
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Proposition 2.1. Suppose that Lj(s) =
∏
p Fp,j(p

−s)−1, for j = 1, 2, are L-

functions which satisfy a partial Ramanujan bound for some θ < 1
2 . If Fp,1 = Fp,2

for all but �nitely many p, then Fp,1 = Fp,2 for all p, and L1 and L2 have the same
functional equation data.

In particular, the proposition shows that the functional equation data of an L-
function is well de�ned. There are no ambiguities arising, say, from the duplication
formula of the Γ-function. Also, we remark that the partial Ramanujan bound is
essential. One can easily construct counterexamples to the above proposition using
Saito-Kurokawa lifts, which do not satisfy the partial Ramanujan bound.

Proof. Let Λj(s) be the completed L-function of Lj(s) and consider

λ(s) =
Λ1(s)

Λ2(s)

=
(N1

N2

)s/2∏
j ΓR(s+ µj,1)

∏
k ΓC(s+ νk,1)∏

j ΓR(s+ µj,2)
∏
k ΓC(s+ νk,2)

∏
p

Fp,1(p−s)−1

Fp,2(p−s)−1
.(2.8)

By the assumption on Fp,j , the product over p is really a �nite product. Thus,
(2.8) is a valid expression for λ(s) for all s.

By the partial Ramanujan bound and the assumptions on µj and νj , we see
that λ(s) has no zeros or poles in the half-plane <(s) > θ. But by the functional
equations for L1 and L2 we have λ(s) = (ε1/ε2)λ(1 − s). Thus, λ(s) also has no
zeros or poles in the half-plane <(s) < 1 − θ. Since θ < 1

2 , we conclude that λ(s)
has no zeros or poles in the entire complex plane.

If the product over p in (2.8) were not empty, then the fact that {log(p)} is
linearly independent over the rationals implies that λ(s) has in�nitely many zeros
or poles on some vertical line. Thus, Fp,1 = Fp,2 for all p.

The Γ-factors must also cancel identically, because the right-most pole of ΓR(s+
µ) is at −µ, and the right-most pole of ΓC(s + ν) is at −ν. This leaves possible
remaining factors of the form ΓC(s+ 1)/ΓR(s+ 1), but that also has poles because
the ΓR factor cancels the �rst pole of the ΓC factor, but not the second pole. Note
that the restriction <(µ) ∈ {0, 1} is a critical ingredient in this argument.

This leaves the possibility that λ(s) = (N1/N2)s/2, but such a function cannot
satisfy the functional equation λ(s) = (ε1/ε2)λ(1 − s) unless N1 = N2 and ε1 =
ε2. �

2.2. The strong multiplicity one theorem for L-functions. In this section
we state a version of strong multiplicity one for L-functions which is stronger than
Proposition 2.1 because it only requires the Dirichlet coe�cients a(p) and a(p2) to
be reasonably close. This is a signi�cantly weaker condition than equality of the
local factor.

Although the main ideas behind the proof appear in Kaczorowski-Perelli [10]
and Soundararajan [26], we give a slightly stronger version which assumes a partial
Ramanujan bound θ < 1

6 , plus an additional condition, instead of the full Ra-
manujan conjecture. We provide a self-contained account because we also wish to
bring awareness of these techniques to people with a more representation-theoretic
approach to L-functions.
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Theorem 2.2. Suppose L1(s), L2(s) are Dirichlet series with Dirichlet coe�cients
a1(n), a2(n), respectively, which continue to meromorphic functions of order 1 sat-
isfying functional equations of the form (2.2)-(2.3) with a partial Selberg bound
<(µj), <(νj) > − 1

2 for both functions, and having Euler products satisfying (2.4)-

(2.5). Assume a partial Ramanujan bound for some θ < 1
6 holds for both functions,

and that the Dirichlet coe�cients at the primes are close to each other in the sense
that

(2.9)
∑
p≤X

p log(p)|a1(p)− a2(p)|2 � X.

We have L1(s) = L2(s) if either of the following two conditions are satis�ed

1)
∑
p≤X

|a1(p2)− a2(p2)|2 log p� X.

2) For each of L1(s) and L2(s), separately, any one of the following holds:
a) The Ramanujan bound θ = 0.
b) The partial symmetric square (2.6) of the function has a meromorphic con-

tinuation past the σ = 1 line, and only �nitely many zeros or poles in σ ≥ 1.
c) The partial exterior square (2.7) of the function has a meromorphic contin-

uation past the σ = 1 line, and only �nitely many zeros or poles in σ ≥ 1.

Note that condition (2.9) is satis�ed if |a1(p) − a2(p)| � 1/
√
p, in particular,

if a1(p) = a2(p) for all but �nitely many p, or more generally if a1(p) = a2(p) for
all but a su�ciently thin set of primes. In particular, a1(p) and a2(p) can di�er
at in�nitely many primes. Also, by the prime number theorem [2, Theorem 4.4] in
the form

(2.10)
∑
p<X

log(p) ∼ X,

condition 2a) for both L-functions implies condition 1).
The condition θ < 1

6 arises from the p−3s terms in the proof of Lemma 2.4.
Those terms do not seem to give rise to a naturally occuring L-function at 3s, so it
may be di�cult to replace the θ < 1

6 condition by a statement about the average
of certain Dirichlet coe�cients.

2.3. Some technical lemmas. In this section we provide the lemmas required for
the proof of Theorem 2.2. There are two types of lemmas we require. The �rst
deals with manipulating Euler products and establishing zero-free half-planes via
the convergence of those products. The second deals with possible zeros at the edge
of the half-plane of convergence.

2.3.1. Coe�cients of related L-functions. If L(s) =
∑
a(n)n−s then for ρ = symn

or extn we write

(2.11) L(s, ρ) =
∑
j

a(j, ρ) j−s.

Lemma 2.3. If p is a good prime then

• a(p, symn) = a(pn),
• a(p, ext2) = a(p)2 − a(p2),
• a(p, ext3) = a(p3) + a(p)3 − 2a(p)a(p2), and
• a(p2, sym2) = a(p4)− a(p)a(p3) + a(p2)2.
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Proof. Let p be a good prime. Expanding the Euler factor Lp(s) for L(s) we have
(2.12)

Lp(s) =

d∏
j=1

1

(1− αj,p p−s)
=

d∏
j=1

∞∑
`=0

α`j,p p
−`s =

∞∑
`=0

p−`s
∑

n1+···+nd=`

αn1
1,p · · ·α

nd

d,p ,

where the nj are restricted to non-negative integers. Expanding the Euler factor
for LS(s, symn) we have

Lp(s, symn) =
∏

i1+···+id=n

(1− αi11,p · · ·α
id
d,pp

−s)−1

=
∏

i1+···+id=n

∞∑
`=0

(
αi11,p · · ·α

id
d,p

)`
p−`s.(2.13)

The coe�cient of p−s in (2.13) is

(2.14)
∑

i1+···+id=n

αi11,p · · ·α
id
d,p,

which equals the coe�cient of p−ns in (2.12).
The other identities in the lemma just involve expanding the de�nitions and

checking particular coe�cients. �

2.3.2. Manipulating L-functions. The next lemma tells us that if there are zeros
in the critical strip for σ ≥ 1

2 , these zeros come from Euler factors involving the

coe�cients a(p) or a(p2) of the Dirichlet series or the Euler factors of the symmetric
or exterior square L-functions.

Lemma 2.4. Suppose

L(s) =
∑
n

ann
−s

=
∏
p bad

dp∏
j=1

(1− αj,pp−s)−1
∏

p good

d∏
j=1

(1− αj,pp−s)−1,(2.15)

where |αj,p| ≤ pθ for some θ ∈ R. Then for σ > 1 + θ,

L(s) =
∏
p

(1 + a(p)p−s) ·
∏
p

(1 + a(p2)p−2s) · h0(s),

=
∏
p

(1 + a(p)p−s) · LS(2s, sym2) · h1(s),

=
∏
p

(1 + a(p)p−s + a(p)2p−2s) · LS(2s, ext2)−1 · h2(s),(2.16)

where hj(s) is regular and nonvanishing for σ > 1
3 + θ.

Proof. We can write the Euler product in the form

(2.17) L(s) =
∏
p

∞∑
j=0

a(pj)p−js,

where

(2.18) a(pj)�j p
jθ � pj(θ+ε),
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with the implied constant depending only on ε. We manipulate the Euler product,
introducing coe�cients Aj , and Bj where Aj(p), Bj(p)�j p

jθ � pj(θ+ε). We have

L(s) =
∏
p

∞∑
j=0

a(pj)p−js

=
∏
p

(
1 + a(p)p−s +A2(p)p−2s +

∞∑
j=3

Aj(p)p
−js
)

×
(

1 + (a(p2)−A2(p))p−2s +

∞∑
j=2

B2j(p)p
−2js

)
×
(
1 +O(p3θp−3s)

)
(2.19)

= F1(s)F2(s)F3(s),(2.20)

say. Note that by the assumptions on Aj and Bj we have

(2.21)

∞∑
j=3

Aj(p)p
−js = O(p3θp−3s) and

∞∑
j=2

B2j(p)p
−2js = O(p4θp−4s).

Combining this with (2.18) justi�es (2.19).
For the �rst assertion, set Aj(p) = 0 and Bj(p) = 0 and note that F1(s) converges

absolutely for σ > 1 + θ and F2(s) converges absolutely for σ > 1
2 + θ, and F3(s)

converges absolutely for σ > 1
3 + θ.

For the second assertion, set Aj(p) = 0. For good primes p, choose Bj(p) so
that F2(s) = LS(2s, sym2). For bad primes p, choose Bj(p) = 0. Note that (by
the construction of the symmetric square) this choice of Bj satis�es the required
bounds. The �nitely many factors at the bad primes together with F3(s) give h1(s).

For the third assertion, the only modi�cation is to set A2(p) = a(p)2, Aj(p) = 0
for j ≥ 3, and use the second identity in Lemma 2.3 and appropriate choices for
Bj(p) so that F2(s) = LS(2s, ext2)−1. �

2.3.3. Zeros at the edge of the half-plane of convergence. The absolute convergence
of an Euler product in a half-plane σ > σ0 implies that the function has no zeros
or poles in that region. If the Euler product has a meromorphic continuation to a
larger region, it could possibly have zeros or poles on the σ0-line. The lemma in this
section, which is standard and basically follows the proof of Lemma 1 of [10], says
that if the Dirichlet coe�cients a(p) are small on average then there are �nitely
many zeros or poles on the σ0-line. Our modi�cation is that we only require the
L-function to satisfy a partial Ramanujan bound.

Note that the lemma is stated with σ0 = 1 as the boundary of convergence.
Applying the lemma in contexts with a di�erent line of convergence, as in the proof
of Theorem 2.2, just involves a simple change of variables s→ s+A.

Lemma 2.5. Let

(2.22) L(s) =
∏
p

∞∑
j=0

a(pj)p−js
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and suppose there exists M1,M2 ≥ 0 and θ < 2
3 so that |a(pj)| � pθj and∑

p≤X

|a(p)|2 log p ≤M2
1X + o(X),(2.23)

∑
p≤X

p−2|a(p2)|2 log p ≤M2
2X + o(X).(2.24)

Then L(s) is a nonvanishing analytic function in the half-plane σ > 1. Furthermore,
if L(s) has a meromorphic continuation to a neighborhood of σ ≥ 1, then L(s) has
at most (M1 + 2M2)2 zeros or poles on the σ = 1 line.

Note that, by the prime number theorem (2.10), the condition (2.23) on a(p) is
satis�ed if |a(p)| ≤ M1. Also, if θ < 1

2 then condition (2.24) on a(p2) holds with
M2 = 1.

The proof of Lemma 2.5 is in Section 2.5.

2.4. Proof of Theorem 2.2. Now we have the ingredients to prove Theorem 2.2.
The proof begins the same as that of Proposition 2.1, by considering the ratio of
completed L-funtions:

(2.25) λ(s) :=
Λ1(s)

Λ2(s)
,

which is a meromorphic function of order 1 and satis�es the functional equation
λ(s) = ελ(1− s), where ε = ε1/ε2.

Lemma 2.6. λ(s) has only �nitely many zeros or poles in the half-plane σ ≥ 1
2 .

Assuming the lemma, we complete the proof of Theorem 2.2 as follows. By the
functional equation, λ(s) has only �nitely many zeros or poles, so by the Hadamard
factorization theorem

(2.26) λ(s) = eAsr(s)

where r(s) is a rational function.
By (2.26), as σ →∞,

(2.27) λ(σ) = C0σ
m0eAσ

(
1 + C1σ

−1 +O(σ−2)
)
,

for some C0 6= 0 and m0 ∈ Z. On the other hand, if b(n0) is the �rst non-zero
Dirichlet coe�cient (with n0 > 1) of L1(s)/L2(s), then by (2.25) and Stirling's
formula, as σ →∞,

(2.28) λ(σ) =
(
B0σ

B1eB2σ log σ+B3σ(1 + o(1))
)(

1 + b(n0)n−σ0 +O((n0 + 1)−σ).

Comparing those two asymptotic formulas, the leading terms must be equal, so
B0 = C0, B1 = m0, B2 = 0, and B3 = A. Comparing second terms, we have
polynomial decay equal to exponential decay, which is impossible unless b(n0) = 0
and C1 = 0. But b(n0) was the �rst nonzero coe�cient of L1(s)/L2(s), so we
conclude that L1(s) = L2(s), as claimed. �

The rest of this section is devoted to the proof of Lemma 2.6. By (2.8) and the
partial Selberg bound assumed on µ and ν, only the product

P (s) =
∏
p

Fp,1(p−s)−1

Fp,2(p−s)−1
=
∏
p

1 + a1(p)p−s + a1(p2)p−2s + · · ·
1 + a2(p)p−s + a2(p2)p−2s + · · ·
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could contribute any zeros or poles to λ(s) in the half-plane σ ≥ 1
2 .

By the �rst line in equation (2.16) of Lemma 2.4 we have

P (s) =
∏
p

1 + a1(p)p−s

1 + a2(p)p−s
·
∏
p

1 + a1(p2)p−2s

1 + a2(p2)p−2s
·H1(s)

= A1(s)H1(s),(2.29)

say, where H1(s) is regular and nonvanishing for σ > 1
3 + θ.

Lemma 2.7. Assuming θ < 1
6 , bound (2.9), and condition 1) in Theorem 2.2, with

A1(s) as de�ned in (2.29) we have

A1(s) =
∏
p

(1 + (a1(p)− a2(p))p−s) ·
∏
p

(1 + (a1(p2)− a2(p2))p−2s) ·H2(s),

(2.30)

where H2(s) is regular and nonvanishing for σ > 5
12 .

We �nish the proof of Lemma 2.6 and then conclude with the proof of Lemma 2.7.
Using the notation of Lemma 2.7, write (2.30) as A1(s) = A2(s)H2(s). Since

A1(s) and H2(s) are meromorphic in a neighborhood of σ ≥ 1
2 , so is A2(s). Chang-

ing variables s 7→ s+ 1
2 , which divides the nth Dirichlet coe�cient by 1/

√
n, we can

apply Lemma 2.5, using the estimate (2.9) and condition 1) to conclude that A2(s)
has only �nitely many zeros or poles in σ ≥ 1

2 . Since the same is true of H1(s) and

H2(s), we have shown that P (s) has only �nitely many zeros or poles in σ ≥ 1
2 .

This completes the proof for conditions 2a) and 1).
In the other cases, the proof is almost the same, using Lemma 2.4 to rewrite

equation (2.29) in terms of LSj (s, sym2) or LSj (s, ext2), and using Lemma 2.5 for
the factors that remain. This concludes the proof of Lemma 2.6. �

Proof of Lemma 2.7. Using the identities

(2.31)
1 + ax

1 + bx
= 1 + (a− b)x− b(a− b)x2

1 + bx

and

(2.32) 1 + ax+ bx2 = (1 + ax)

(
1 +

bx2

1 + ax

)
we have

(2.33)
1 + ax

1 + bx
= (1 + (a− b)x)

(
1− b(a− b)x2

(1 + (a− b)x)(1 + bx)

)
.

Thus∏
p

1 + a1(p)p−s

1 + a2(p)p−s
=
∏
p

(
1 + (a1(p)− a2(p))p−s

)
×
∏
p

(
1− a2(p)(a1(p)− a2(p))p−2s

(1 + (a1(p)− a2(p))p−s)(1 + a2(p)p−s)

)

=
∏
p

(
1 + (a1(p)− a2(p))p−s

)
· h(s)

(2.34)
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say. We wish to apply Lemma 2.5 to show that h(s) is regular and nonvanishing
for σ > σ0 for some σ0 <

1
2 . Since θ < 1

6 , if σ ≥
1
6 and p > P0 where P0 depends

only on θ, then |1 + a2(p)p−σ| ≥ 1
2 and |1 + (a1(p)− a2(p))p−σ| ≥ 1

2 . Using those

inequalities and |a2(p)| � pθ we have∑
P0≤p≤X

∣∣∣∣ a2(p)(a1(p)− a2(p))

(1 + (a1(p)− a2(p))p−σ)(1 + a2(p)p−σ)

∣∣∣∣2 log p

≤ 16
∑

P0≤p≤X

|a2(p)(a1(p)− a2(p))|2 log p

� X2θ
∑

P0≤p≤X

|(a1(p)− a2(p))|2 log p

� X
1
2 +2θ.(2.35)

Changing variables s→ s
2−

1
12 and applying Lemma 2.5, we see that h(s) is regular

and nonvanishing for σ > 5
12 .

Applying the same reasoning to the second factor in (2.30) completes the proof.
�

2.5. Proof of Lemma 2.5. Two basic results which are used in this section are:

Lemma 2.8. If
∑
n≤X |a(n)| � X1+ε for every ε > 0, then

∞∑
n=1

a(n)

ns
converges

absolutely for all σ > 1.

Lemma 2.9. If
∑
n≤X |a(n)| ≤ CX as X →∞, then

∞∑
n=1

a(n)

nσ
≤ C

σ − 1
+O(1)

as σ → 1+.

Both of those results follow by partial summation.
We �rst state and prove a simpli�ed version of Lemma 2.5.

Lemma 2.10. Let

(2.36) L(s) =
∏
p

∞∑
j=0

a(pj)p−js

and suppose there exists M ≥ 0 and θ < 1
2 so that |a(pj)| � pjθ and

(2.37)
∑
p≤X

|a(p)|2 log p ≤ (1 + o(1))M2X.

Then L(s) is a nonvanishing analytic function in the half-plane σ > 1. Furthermore,
if L(s) has a meromorphic continuation to a neighborhood of σ ≥ 1, then L(s) has
at most M2 zeros or poles on the σ = 1 line.

Note that, by the prime number theorem (2.10), the condition on a(p) is satis�ed
if |a(p)| ≤M .
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Proof. We have

L(s) =
∏
p

∞∑
j=0

a(pj)p−js

=
∏
p

(
1 + a(p)p−s +

∑
j≥2

a(pj)p−js
)

=
∏
p

(
1 + a(p)p−s

)
×
∏
p

(
1 + a(p2)p−2s + (a(p3)− a(p)a(p2))p−3s

+ (a(p4)− a(p)a(p3) + a(p)2a(p2))p−4s + · · ·
)

=
∏
p

(
1 + a(p)p−s

)∏
p

(
1 +

∞∑
j=2

b(pj)p−js
)
,(2.38)

say, where b(pj)� jM jpjθ � pj(θ+ε) for any ε > 0.
Writing (2.38) as L(s) = f(s)g(s) we have

(2.39) log g(s) =
∑
p

log(1 + Y ) =
∑
p

(
Y +O(Y 2)

)
,

where Y =

∞∑
j=2

b(pj)p−js. Now,

|Y | ≤
∞∑
j=2

|b(pj)|p−jσ

�
∞∑
j=2

pj(θ−σ+ε)

=
p2(θ−σ+ε)

1− pθ−σ+ε
.(2.40)

If σ > 1
2 + θ we have |Y | � 1/p1+δ for some δ > 0. Therefore the series (2.39)

for log(g(s)) converges absolutely for σ > 1
2 + θ, so g(s) is a nonvanishing analytic

function in that region. By (2.37), Cauchy's inequality, and Lemma 2.8, f(s) is
a nonvanishing analytic function for σ > 1, so the same is true for L(s). This
establishes the �rst assertion in the lemma.

Now we consider the zeros of L(s) on σ = 1. Since θ < 1
2 , the zeros or poles of

L(s) on the σ = 1 line are the zeros or poles of f(s). Furthermore, by (2.38) and
the properties of g(s), for σ > 1 we have

(2.41)
L′

L
(s) =

∑
p

−a(p) log(p)

ps
+ h(s),

where h(s) is bounded in σ > 1
2 + θ+ ε for any ε > 0. Suppose s1, . . . , sJ are zeros

or poles of L(s), with sj = 1 + itj having multiplicity mj . We have

(2.42)
L′

L
(σ + itj) ∼

mj

σ − 1
, as σ → 1+,
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therefore

(2.43)
∑
p

−a(p) log(p)

pσ+itj
∼ mj

σ − 1
, as σ → 1+.

Now write

(2.44) k(s) =

J∑
j=1

mj

∑
p

−a(p) log(p)

ps+itj
.

By (2.43) we have

(2.45) k(σ) ∼
∑J
j=1m

2
j

σ − 1
, as σ → 1+.

On the other hand, for σ > 1 we have

|k(σ)| =

∣∣∣∣∣∣
∑
p

a(p) log(p)

pσ

J∑
j=1

mjp
−itj

∣∣∣∣∣∣
≤

(∑
p

|a(p)|2 log(p)

pσ

) 1
2

∑
p

log p

pσ

∣∣∣∣∣∣
J∑
j=1

mjp
−itj

∣∣∣∣∣∣
2


1
2

≤ (1 + o(1))

(
M2

σ − 1

) 1
2

 J∑
j=1

J∑
`=1

mjm`

∑
p

log p

pσ+i(tj−t`)

 1
2

∼
(
M2

σ − 1

) 1
2

 J∑
j=1

m2
j

σ − 1

 1
2

as σ → 1+.(2.46)

On the �rst line we used the Cauchy-Schwartz inequality, on the next-to-last line
we wrote the sum over a(p) as a Stieltjes integral and used (2.37) and Lemma 2.9,
and on the last line we used the fact that the Riemann zeta function has a simple
pole at s = 1 and no other zeros or poles on the σ = 1 line.

Combining (2.43) and (2.46) we have
∑J
j=1m

2
j ≤ M2. Since m2

j ≥ 1, we see

that J ≤M2, as claimed. �

The proof of Lemma 2.5 is similar to Lemma 2.10.
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Proof of Lemma 2.5. We have

L(s) =
∏
p

∞∑
j=0

a(pj)p−js

=
∏
p

(
1 + a(p)p−s + a(p2)p−2s +

∑
j≥3

a(pj)p−js
)

=
∏
p

(
1 + a(p)p−s

) (
1 + a(p2)p−2s

)
×
(
1 + (a(p3)− a(p)a(p2))p−3s

+ (a(p4)− a(p)a(p3) + a(p)2a(p2))p−4s + · · ·
)

=
∏
p

(
1 + a(p)p−s

) (
1 + a(p2)p−2s

)∏
p

(
1 +

∞∑
j=3

c(pj)p−js
)

= f(s)g(s),(2.47)

say.
We have c(pj)� jM jpjθ � pj(θ+ε) for any ε > 0. We use this to show that g(s)

is a nonvanishing analytic function in σ > 1
3 + θ. Writing g(s) =

∏
p(1 + Y ) we

have

(2.48) log g(s) =
∑
p

log(1 + Y ) =
∑
p

(
Y +O(Y 2)

)
,

where Y =

∞∑
j=3

b(pj)p−js. Now,

|Y | ≤
∞∑
j=3

|b(pj)|p−jσ

�
∞∑
j=3

pj(θ−σ+ε)

=
p3(θ−σ+ε)

1− pθ−σ+ε
.(2.49)

If σ > 1
3 + θ we have |Y | � 1/p1+δ for some δ > 0. Therefore by Lemma 2.8

the series (2.48) for log(g(s)) converges absolutely for σ > 1
3 + θ, so g(s) is a

nonvanishing analytic function in that region. By the same argument, using (2.23)
and (2.24), f(s) is a nonvanishing analytic function for σ > 1, so the same is true
for L(s). This establishes the �rst assertion in the lemma.

Now we consider the zeros of L(s) on σ = 1. Since θ < 2
3 , the zeros or poles

of L(s) on the σ = 1 line are the zeros or poles of f(s). Taking the logarithmic
derivative of (2.47) and using the same argument as above for the lower order terms,
we have

L′

L
(s) =

∑
p

−a(p) log(p)

ps
+ 2

a(p)2 log(p)

p2s
− 2

a(p2) log(p)

p2s
+ h1(s)

=
∑
p

−a(p) log(p)

ps
− 2

a(p2) log(p)

p2s
+ h2(s),(2.50)
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where hj(s) is bounded in σ > 1
3 + θ + ε for any ε > 0. By (2.23) and Lemma 2.8,

the middle term in the sum over primes in (2.50) converges absolutely for σ > 1
2 ,

so it was incorporated into h1(s).
Suppose s1, . . . , sJ are zeros or poles of L(s), with sj = 1+itj having multiplicity

mj . We have

(2.51)
L′

L
(σ + itj) ∼

mj

σ − 1
, as σ → 1+,

therefore

(2.52)
∑
p

(
−a(p) log(p)

pσ+itj
− 2

a(p2) log(p)

p2(σ+itj)

)
∼ mj

σ − 1
, as σ → 1+.

Now write

(2.53) k(s) =
J∑
j=1

mj

∑
p

(
−a(p) log(p)

ps+itj
− 2

a(p2) log(p)

p2(s+itj)

)
By (2.52) we have

(2.54) k(σ) ∼
∑J
j=1m

2
j

σ − 1
, as σ → 1+.

We will manipulate (2.53) so that so that we can use (2.23) and (2.24) to give a
bound on

∑
m2
j in terms of M1 and M2.

By Cauchy's inequality and Lemma 2.9 we have

|k(σ)| ≤

∣∣∣∣∣∣
∑
p

a(p) log(p)

pσ

J∑
j=1

mj

pitj

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
∑
p

p−σa(p2) log(p)

pσ

J∑
j=1

mj

p2itj

∣∣∣∣∣∣
≤

(∑
p

|a(p)|2 log(p)

pσ

) 1
2

∑
p

log p

pσ

∣∣∣∣ J∑
j=1

mjp
−itj

∣∣∣∣2
 1

2

+ 2

(∑
p

p−2σ|a(p2)|2 log(p)

pσ

) 1
2

∑
p

log p

pσ

∣∣∣∣ J∑
j=1

mjp
−2itj

∣∣∣∣2
 1

2

≤(1 + o(1))

((
M2

1

σ − 1

) 1
2
( J∑
j=1

J∑
`=1

mjm`

∑
p

log p

pσ+i(tj−t`)

) 1
2

+ 2

(
M2

2

σ − 1

) 1
2
( J∑
j=1

J∑
`=1

mjm`

∑
p

log p

pσ+2i(tj−t`)

) 1
2

)

∼M1 + 2M2

(σ − 1)
1
2

 J∑
j=1

m2
j

σ − 1

 1
2

as σ → 1+.(2.55)

In the last step we used the fact that the Riemann zeta function has a simple pole
at 1 and no other zeros or poles on the 1-line.

Combining (2.54) and (2.55) we have

J∑
j=1

m2
j ≤ (M1 + 2M2)2. Since mj ≥ 1, the

proof is complete. �
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3. Applications

3.1. Strong multiplicity one for GL(n). Let π = ⊗πp and π′ = ⊗π′p be cuspidal
automorphic representations of the group GL(n,AQ). For a �nite prime p for which
πp and π′p are both unrami�ed, let A(πp) (resp. A(π′p)) represent the semisimple
conjugacy class in GL(n,C) corresponding to πp (resp. π

′
p). The strong multiplicity

one theorem for GL(n) states that if A(πp) = A(π′p) for almost all p, then π = π′.
The following result implies, in particular, that the equality of traces tr(A(πp)) =
tr(A(π′p)) for almost all p is su�cient to reach the same conclusion. The traces
could even be di�erent at every prime, if those di�erences decreased su�ciently
rapidly as a function of p.

Theorem 3.1. Suppose that π and π′ are (unitary) cuspidal automorphic repre-
sentations of GL(n,AQ) satisfying

(3.1)
∑
p≤X

p log(p)
∣∣trA(πp)− trA(π′p)

∣∣2 � X.

Assume a partial Ramanujan bound for some θ < 1
6 holds for both incomplete L-

functions Lfin(s, π) and Lfin(s, π′). Then π = π′.

Proof. We apply Theorem 2.2 to L1(s) = Lfin(s, π) and L2(s) = Lfin(s, π′). The
condition on the spectral parameters <(µj), <(νj) > − 1

2 is satis�ed by Proposition
2.1 of [4]. By [7], the partial symmetric square L-function for GL(n) has meromor-
phic continuation to all of C and only �nitely many poles in σ ≥ 1. Using the fact
that the partial Rankin-Selberg L-function of a representation of GL(n) with itself
has no zeros in σ ≥ 1 (see [25]) and that the partial exterior square L-function of
GL(n) has only �nitely many poles (see [5]), we see that partial symmetric square
L-function for GL(n) has only �nitely many zeros in σ ≥ 1. This gives us condition
2b) of Theorem 2.2. The conclusion of Theorem 2.2 is that L1(s) = L2(s). By the
familiar strong multiplicity one theorem for GL(n), this implies π1 = π2. �

3.2. Siegel modular forms. In this section we prove Theorem 1.3. We start by
giving some background on Siegel modular forms for Sp(4,Z). Let the symplectic
group of similitudes of genus 2 be de�ned by

GSp(4) := {g ∈ GL(4) : tgJg = λ(g)J, λ(g) ∈ GL(1)}

where J =

[
I2

−I2

]
.

Let Sp(4) be the subgroup with λ(g) = 1. The group GSp+(4,R) := {g ∈
GSp(4,R) : λ(g) > 0} acts on the Siegel upper half space H2 := {Z ∈ M2(C) :
tZ = Z, Im(Z) > 0} by
(3.2)

g〈Z〉 := (AZ +B)(CZ +D)−1 where g =

[
A B
C D

]
∈ GSp+(4,R), Z ∈ H2.

Let us de�ne the slash operator |k for a positive integer k acting on holomorphic
functions F on H2 by

(3.3) (F |kg)(Z) := λ(g)k det(CZ +D)−kF (g〈Z〉),

g =

[
A B
C D

]
∈ GSp+(4,R), Z ∈ H2.



MULTIPLICITY ONE FOR L-FUNCTIONS AND APPLICATIONS 17

The slash operator is de�ned in such a way that the center of GSp+(4,R) acts

trivially. Let S
(2)
k be the space of holomorphic Siegel cusp forms of weight k, genus

2 with respect to Γ(2) := Sp(4,Z). Then F ∈ S(2)
k satis�es F |kγ = F for all γ ∈ Γ(2).

Let us now describe the Hecke operators acting on S
(2)
k . For a matrix M ∈

GSp+(4,R) ∩M4(Z), we have a �nite disjoint decomposition

(3.4) Γ(2)MΓ(2) =
⊔
i

Γ(2)Mi.

For F ∈ S(2)
k , de�ne

(3.5) Tk(Γ(2)MΓ(2))F := det(M)
k−3
2

∑
i

F |kMi.

Note that this operator agrees with the one de�ned in [1]. Let F ∈ S
(2)
k be a

simultaneous eigenfunction for all the Tk(Γ(2)MΓ(2)),M ∈ GSp+(4,R) ∩M4(Z),
with corresponding eigenvalue µF (Γ(2)MΓ(2)). For any prime number p, it is known
that there are three complex numbers αF0 (p), αF1 (p), αF2 (p) such that, for any M
with λ(M) = pr, we have

(3.6) µF (Γ(2)MΓ(2)) = αF0 (p)r
∑
i

2∏
j=1

(αFi (p)p−j)dij ,

where Γ(2)MΓ(2) =
⊔
i Γ(2)Mi, with

(3.7) Mi =

[
Ai Bi
0 Di

]
and Di =

[
pdi1 ∗

0 pdi2

]
.

Henceforth, if there is no confusion, we will omit the F and p in describing the αFi (p)
to simplify the notations. The α0, α1, α2 are the classical Satake p-parameters of
the eigenform F . It is known that they satisfy

(3.8) α2
0α1α2 = p2k−3.

For any n > 0, de�ne the Hecke operators Tk(n) by

Tk(n) =
∑

λ(M)=n

Tk(Γ(2)MΓ(2)).

Let the eigenvalues of F corresponding to Tk(n) be denoted by µF (n). Set αp =

p−(k−3/2)α0 and βp = p−(k−3/2)α0α1. Then formulas for the Hecke eigenvalues
µF (p) and µF (p2) in terms of αp and βp are

µF (p) = pk−3/2
(
αp + α−1

p + βp + β−1
p

)
,(3.9)

µF (p2) = p2k−3
(
α2
p + α−2

p + (αp + α−1
p )(βp + β−1

p ) + β2
p + β−2

p + 2− 1

p

)
.(3.10)

The Ramanujan bound in this context is

(3.11) |αp| = |βp| = 1.

This is closely related to our use of that term for L-functions, as can be seen from
the spin L-function of F :

L(s, F, spin) =
∏
p

Fp(p
−s, spin)−1,
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where Fp(X, spin) = (1 − αpX)(1 − α−1
p X)(1 − βpX)(1 − β−1

p X). It satis�es the
functional equation

Λ(s, F, spin) := ΓC(s+ 1
2 )ΓC(s+ k − 3

2 )L(s, F, spin)

= εΛ(s, F , spin),(3.12)

where ε = (−1)k.
Let a(p) be the pth Dirichlet coe�cient of L(s, F, spin). We will use the fact that

each F falls into one of two classes.

i) a(p) = p1/2 + p−1/2 + βp + β−1
p , where βp is the Satake p-parameter of

a holomorphic cusp form on GL(2) of weight 2k − 2. In this case F is a
Saito-Kurokawa lifting ; for more details on Saito-Kurokawa liftings we refer
to [9]. Note that |βp| = 1, so that a(p) = p1/2 +O(1) in the Saito-Kurokawa
case.

ii) a(p) = O(1). This is the Ramanujan conjecture for non-Saito-Kurokawa
liftings, which has been proven in [27].

Theorem 1.3 is now a consequence of the following stronger result.

Theorem 3.2. Suppose Fj, for j = 1, 2, are Siegel Hecke eigenforms of weight kj
for Sp(4,Z), with Hecke eigenvalues µj(n). If

(3.13)
∑
p≤X

p log(p)
∣∣∣p3/2−k1µ1(p)− p3/2−k2µ2(p)

∣∣∣2 � X

as X → ∞, then k1 = k2 and F1 and F2 have the same eigenvalues for the Hecke
operator T (n) for all n.

Proof. For i = 1, 2 let ai(p) be the pth Dirichlet coe�cient of L(s, Fi, spin). Then
ai(p) = αi,p + α−1

i,p + βi,p + β−1
i,p , where αi,p, βi,p are the Satake p-parameters of Fi,

as explained after (3.8). By (3.9),

µi(p) = pki−3/2
(
αi,p + α−1

i,p + βi,p + β−1
i,p

)
.

Hence, condition (3.13) translates into

(3.14)
∑
p≤X

p log(p) |a1(p)− a2(p)|2 � X.

From the remarks made before the theorem, we see that either F1, F2 are both
Saito-Kurokawa lifts, or none of them is a Saito-Kurokawa lift.

Assume �rst that F1, F2 are both Saito-Kurokawa lifts. Then, for i = 1, 2, there
exist modular forms fi of weight 2ki− 2 and with Satake parameters βi,p such that

ai(p) = p1/2 + p−1/2 + βi,p + β−1
i,p . From (3.14) we obtain

(3.15)
∑
p≤X

p log(p) |b1(p)− b2(p)|2 � X,

where bi,p = βi,p + β−1
i,p . Note that bi,p is the pth Dirichlet coe�cient of (the

analytically normalized L-function) L(s, fi). Since the Ramanujan conjecture is
known for elliptic modular forms, Theorem 2.2 applies. We conclude 2k1 − 2 =
2k2 − 2 and L(s, f1) = L(s, f2). Hence k1 = k2 and L(s, F1, spin) = L(s, F2, spin).
The equality of spin L-functions implies µ1(p) = µ2(p) and µ1(p2) = µ2(p2) for all
p. Since T (p) and T (p2) generate the p-component of the Hecke algebra, it follows
that µ1(n) = µ2(n) for all n.
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Now assume that F1 and F2 are both not Saito-Kurokawa lifts. Then, using the
fact that the Ramanujan conjecture is known for F1 and F2, Theorem 2.2 applies
to L1(s) = L(s, F1, spin) and L2(s) = L(s, F2, spin). We conclude that k1 = k2 and
that the two spin L-functions are identical. As above, this implies µ1(n) = µ2(n)
for all n. �

3.3. Hyperelliptic curves. Let X/Q be an elliptic or hyperelliptic curve,

X : y2 = f(x),

where f ∈ Z[x], and let NX(p) be the number of points on X mod p. In Serre's
recent book [24], the title of Section 6.3 is �About NX(p) − NY (p),� in which he
gives a description of what can happen if NX(p)−NY (p) is bounded. For Serre, X
and Y are much more general than hyperelliptic cuves, but we use the hyperelliptic
curve case to illustrate an application of multiplicity one results for L-functions.

Recall that the Hasse-Weil L-function of X,

L(X, s) =

∞∑
n=1

aX(n)

ns
,

has coe�cients aX(pn) = pn+1−NX(pn) if p is prime, which gives the general case
by multiplicativity. The L-function (conjecturally if gX ≥ 2) satis�es the functional
equation

(3.16) Λ(X, s) = N
s/2
X ΓC(s)gXL(X, s) = ±Λ(X, 2− s),

where NX is the conductor and gX = b(deg(f)− 1)/2c is the genus of X.

Proposition 3.3. Suppose X and Y are hyperelliptic curves and NX(p)−NY (p)
is bounded. If the Hasse-Weil L-functions of X and Y satisfy their conjectured
functional equation (3.16), then X and Y have the same conductor and genus, and
NX(pe) = NY (pe) for all p, e.

Note that this result can be found in Serre's book without the hypothesis of
functional equation. But Serre's proof involves more machinery than we use here.

Proof. To apply Theorem 2.2, we �rst form the analytically normalized L-function

(3.17) L(s,X) = L(X, s+ 1
2 ) =

∑ aX(n)/
√
n

ns
=
∑ bX(n)

ns
,

say. Note that we have the functional equation

(3.18) Λ(s,X) = N
s/2
X ΓC(s+ 1

2 )gXL(s,X) = ±Λ(1− s,X).

The Hasse bound for aX(n) implies the Ramanujan bound for L(s,X). The condi-
tion |NX(p)−NY (p)| � 1 is equivalent to

(3.19) |bX(p)− bY (p)| � 1√
p
,

which implies

(3.20)
∑
p≤T

p|bX(p)− bY (p)|2 log(p)�
∑
p≤T

log(p) ∼ T,

by the prime number theorem. Thus, Theorem 2.2 applies and we conclude that
L(X, s) = L(Y, s). �
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If one knew that L(s,X) and L(s, Y ) were �automorphic�, then Theorem A.1
would apply, and a much weaker bound on |NX(p) − NY (p)| would allow one to
conclude that NX(pe) = NY (pe) for all p, e. For example, if E,E′ are elliptic

curves over Q, then |NE(p) −NE′(p)| ≤ 1.4
√
p for all but �nitely many p implies

NE(p) = NE′(p) for all p.

Appendix A. Selberg orthogonality and strong multiplicity one for

GL(n)

The proof of Theorem 2.2 used only standard techniques from analytic number
theory. Utilizing recent results concerning the Selberg orthonormality conjecture,
and restrictng to the case of L-functions of cuspidal automorphic representations
of GL(n), one obtains the following theorem, which is stronger than Theorem 3.1.

Theorem A.1. Suppose that π, π′ are (unitary) cuspidal automorphic representa-
tions of GL(n,AF ), and suppose

(A.1)
∑
p≤X

1

p

∣∣trA(πp)− trA(π′p)
∣∣2 ≤ (2− ε) log log(X)

for some ε > 0 as X → ∞. If n ≤ 4, or if Hypothesis H holds for both Lfin(s, π)
and Lfin(s, π′) (in particular if the partial Ramanujan conjecture θ < 1

4 is true for
π and π′), then π = π′.

Using the fact that 1.42 < 2 and the consequence of the prime number theorem

(A.2)
∑
p≤X

1

p
∼ log log(X),

we see that condition (A.1) holds if
∣∣trA(πp)− trA(π′p)

∣∣ < 1.4 for all but �nitely
many p. Thus, the strong multiplicity one theorem only requires considering the
traces of πp, and futhermore those traces can di�er at every prime, and by an
amount which is bounded below.

For GL(2,AQ), the Ramanujan bound along with (A.2) implies a version of a
result of Ramakrishnan [17]: if trA(πp) = trA(π′p) for 7

8 + ε of all primes p, then
π = π′. This result was extended by Rajan [18].

The proof of Theorem A.1 is a straightforward application of recent results to-
ward the Selberg orthonormality conjecture [13, 3], which make use of progress on
Rudnick and Sarnak's �Hypothesis H� [20, 11]. Suppose

(A.3) L1(s) =
∑ a(n)

ns
, L2(s) =

∑ b(n)

ns

are L-functions, meaning that they have a functional equation and Euler product
as described in Section 2.1.

The point of the strong multiplicity one theorem is that two L-function must
either be equal, or else they must be far apart. The essential idea was elegantly
described by Selberg; see [23]. Recall that an L-function is primitive if it cannot
be written nontrivially as a product of L-functions.

Conjecture A.2 (Selberg Orthonormality Conjecture). Suppose that L1 and L2

are primitive L-functions with Dirichlet coe�cients a(p) and b(p). Then

(A.4)
∑
p≤X

a(p)b(p)

p
= δ(L1, L2) log log(X) +O(1),
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where δ(L1, L2) = 1 if L1 = L2, and 0 otherwise.

Proof of Theorem A.1. Rudnick and Sarnak's Hypothesis H is the assertion∑
p

a(pk)2 log2(p)

pk
<∞

for all k ≥ 2. For a given k, this follows from a partial Ramanujan bound θ < 1
2−

1
2k .

Since k ≥ 2, Hypothesis H follows from the partial Ramanujan bound θ < 1
4 .

For the standard L-functions of cuspidal automorphic representations on GL(n),
Rudnick and Sarnak [20] proved Selberg's orthonormality conjecture under the
assumption of Hypothesis H, and they proved Hypothesis H for n = 2, 3. The case
of n = 4 for Hypothesis H was proven by Kim [11]. Thus, under the conditions in
Theorem A.1, the Selberg orthonormality conjecture is true.

Since π and π′ are cuspidal automorphic representations of GL(n,AF ), the
L-functions L1(s) = Lfin(s, π) and L2(s) = Lfin(s, π′) are primitive L-functions.
Hence, by (A.4)∑

p≤X

1

p
|a(p)− b(p)|2 =

∑
p≤X

1

p

(
|a(p|2 + |b(p)|2 − 2<(a(p)b(p))

)
= 2 log log(X)− 2δL1,L2 log log(X) +O(1)

=

{
O(1) if L1 = L2

2 log log(X) +O(1) if L1 6= L2.
(A.5)

We have
∑
p≤X

1
p |a(p)− b(p)|2 ≤ (2− ε) log log(X) for some ε > 0. This implies

that ε log log(X) is unbounded, and hence (A.5) implies that L1(s) = L2(s). This
gives us π = π′. �

Recently, the transfer of full level Siegel modular forms to GL(4) was obtained
in [16]. Hence, we can apply Theorem A.1 to the transfer to GL(4) of a Siegel
modular form of full level and thus obtain a stronger version of Theorem 3.2.

Theorem A.3. Suppose Fj, for j = 1, 2, are Siegel Hecke eigenforms of weight kj
for Sp(4,Z), with Hecke eigenvalues µj(n). If

(A.6)
∑
p≤X

1

p

∣∣∣p3/2−k1µ1(p)− p3/2−k2µ2(p)
∣∣∣2 ≤ (2− ε) log log(X)

for some ε > 0, as X →∞, then k1 = k2 and F1 and F2 have the same eigenvalues
for the Hecke operator T (n) for all n.
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