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Abstract. In this semi-expository note, we give a new proof of a structure theorem

due to Shimura for nearly holomorphic modular forms on the complex upper half
plane. Roughly speaking, the theorem says that the space of all nearly holomorphic

modular forms is the direct sum of the subspaces obtained by applying appropri-

ate weight-raising operators on the spaces of holomorphic modular forms and on
the one-dimensional space spanned by the weight 2 nearly holomorphic Eisenstein

series.

While Shimura’s proof was classical, ours is representation-theoretic. We deduce
the structure theorem from a decomposition for the space of n-finite automorphic

forms on SL2(R). To prove this decomposition, we use the mechanism of category

O and a careful analysis of the various possible indecomposable submodules. It
is possible to achieve the same end by more direct methods, but we prefer this

approach as it generalizes to other groups.
This note may be viewed as the toy case of our paper [6], where we prove an

analogous structure theorem for vector-valued nearly holomorphic Siegel modular

forms of degree two.

1. Nearly holomorphic functions

Let H1 be the complex upper half plane. Let Np(H1) be the space of functions
f : H1 → C of the form

f(τ) =

p∑
j=0

fj(τ)y−j , τ = x+ iy,

where f0, . . . , fp are holomorphic functions on H1. Any element of the space N(H1) =
∪∞p=0N

p(H1) is called a nearly holomorphic function on H1. It is an exercise to show
that

p∑
j=0

fj(τ)y−j = 0 ⇐⇒ fj = 0 for all j = 0, . . . , p. (1)

Hence, the holomorphic coefficients of a nearly holomorphic function are uniquely de-
termined.

If f is a nearly holomorphic function, and if there exists a non-zero real number r such
that f(τ+r) = f(τ) for all τ ∈ H1, then the holomorphic coefficients fj of f exhibit the
same translation invariance; this follows from (1). Each fj therefore admits a Fourier

expansion fj(τ) =
∑
aj(n)e2πinτ/r. It follows that f admits a Fourier expansion whose

coefficients are polynomials in y−1.
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For an integer k, we define the weight k slash operator on functions f : H1 → C in
the usual way:

(f |kg)(τ) = (cτ + d)−kf
(aτ + b

cτ + d

)
, g =

[
a b
c d

]
∈ SL2(R).

Let Γ be a congruence subgroup of SL2(Q). Let Np
k (Γ) denote the space of functions

F : H1 → C such that

(1) F ∈ Np(H1);
(2) F |kγ = F for all γ ∈ Γ;
(3) F satisfies the cusp condition. (This notion is defined in terms of Fourier

expansions just as in the case of holomorphic modular forms; see, e.g., §2.1 of
[5].)

We denote by Np
k (Γ)◦ the subspace of functions that vanish at every cusp. The space

Nk(Γ) = ∪∞p=0N
p
k (Γ) is the space of nearly holomorphic modular forms with respect to Γ,

and Nk(Γ)◦ = ∪∞p=0N
p
k (Γ)◦ is the space of nearly holomorphic cusp forms. Evidently,

Mk(Γ) := N0
k (Γ) is the usual space of holomorphic modular forms of weight k with

respect to Γ, and Sk(Γ) := N0
k (Γ)◦ is the subspace of cusp forms. Nearly holomorphic

modular forms occur naturally as special values of Eisenstein series and thus their
arithmetic properties imply arithmetic properties for various L-functions via the theory
of Rankin-Selberg type integrals. We refer the reader to the introduction of [6] for
further remarks in this direction.

For an integer k, we define the classical Maass weight raising and lowering operators
Rk, Lk on the space of smooth functions on H1 by

Rk =
k

y
+ 2i

∂

∂τ
, Lk = −2iy2 ∂

∂τ̄
, (2)

where ∂
∂τ = 1

2 ( ∂
∂x − i

∂
∂y ) and ∂

∂τ̄ = 1
2 ( ∂
∂x + i ∂∂y ) are the usual Wirtinger derivatives.

Also define an operator Ωk by

Ωk =
1

4
k2 +

1

2
Rk−2Lk +

1

2
Lk+2Rk. (3)

A calculation shows that

Ωk = y2
( ∂2

∂x2
+

∂2

∂y2

)
− 2iky

∂

∂τ̄
+
k

2

(k
2
− 1
)
. (4)

The following lemma is readily verified.

Lemma 1.1. Let k be an integer, and p be a non-negative integer. Let Γ be a congruence
subgroup of SL2(Q).

(1) Rk induces maps Np
k (Γ)→ Np+1

k+2 (Γ) and Np
k (Γ)◦ → Np+1

k+2 (Γ)◦.

(2) Lk induces maps Np
k (Γ)→ Np−1

k−2 (Γ) and Np
k (Γ)◦ → Np−1

k−2 (Γ)◦.

(3) Ωk induces endomorphisms of Np
k (Γ) and of Np

k (Γ)◦.

Here, we understand Np
k (Γ) = Np

k (Γ)◦ = 0 for p < 0.

Henceforth, we drop the subscripts and let R, L, and Ω denote the operators on⊕
kNk(Γ) whose restrictions to Nk(Γ) are given by Rk, Lk, and Ωk, respectively.

Lemma 1.2. For any integer k and non-negative integer p, the space Np
k (Γ) is finite-

dimensional.

Proof. This is well known for p = 0, since N0
k (Γ) = Mk(Γ) is simply the space of

holomorphic modular forms of weight k. For p > 0 there is an exact sequence

0 −→Mk(Γ) −→ Np
k (Γ)

L−→ Np−1
k−2 (Γ).
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Hence the assertion follows by induction on p. �

The following well-known fact will be important for our arguments further below.
(For a proof, see Theorem 2.5.2 of [5].)

Lemma 1.3. Sk(Γ) = 0 if k ≤ 0, and Mk(Γ) = 0 if k < 0. The space M0(Γ) consists
of the constant functions.

2. Representations of SL2(R) and differential operators

To reinterpret elements of Np
k (Γ) as functions on SL2(R), we recall the basic repre-

sentation theory of this group. Let g = sl2(R) be the Lie algebra of SL2(R), consisting
of all 2× 2 real matrices with trace zero. Let gC = sl2(C) be its complexification. The
elements

H = −i
[

0 1
−1 0

]
, R =

1

2

[
1 i
i −1

]
, L =

1

2

[
1 −i
−i −1

]
(5)

of gC satisfy the relations [H,R] = 2R, [H,L] = −2L and [R,L] = H. The Casimir
element is the element in the universal enveloping algebra U(gC) given by

Ω =
1

4
H2 +

1

2
RL+

1

2
LR. (6)

Then Ω lies in the center Z of U(gC), and it is known that Z = C[Ω].
Let K = SO(2) be the standard maximal compact subgroup of SL2(R), consisting

of all elements r(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
with θ ∈ R. By “representation of SL2(R)” we

mean a (g,K)-module. In such a module (π, V ), we say a non-zero v ∈ V has weight k
if

π(r(θ))v = eikθv for θ ∈ R,

or equivalently, π(H)v = kv. In an irreducible representation, all weights have the same
parity, and every weight occurs at most once. The operator π(R) raises the weight by
2, and the operator π(L) lowers the weight by 2. The weight structure of an irreducible
representation is the list of weights, written in order. The following is the complete list
of irreducible, admissible (g,K)-modules.

(1) Finite-dimensional representations. For a positive integer p, let Fp be the
irreducible finite-dimensional representation of SL2(R) with weight structure
[−p+ 1,−p+ 3, . . . , p− 3, p− 1]. Hence dimFp = p.

(2) Discrete series representations. For a positive integer p we denote by Dp,+ the
discrete series representation of SL2(R) with weight structure [p+ 1, p+ 3, . . .].
Similarly, let Dp,− be the discrete series representation of SL2(R) with weight
structure [. . . , −p − 3, −p − 1]. Hence, p is not the minimal weight of Dp,+,
but the Harish-Chandra parameter.

(3) Limits of discrete series. Let D0,+ be the irreducible representation of SL2(R)
with weight structure [1, 3, 5, . . .], and let D0,− be the irreducible representation
of SL2(R) with weight structure [. . . ,−5, −3, −1]. Formally these representa-
tions look like members of the discrete series, but they are not square-integrable.

(4) Principal series representations. Their weight structure is either 2Z or 2Z + 1.
For our purposes, all we need to know about principal series representations is
that the operators R and L act injectively on such a (g,K)-module.
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Functions on SL2(R) and functions on H1. Let W (k) be the space of smooth
functions Φ : SL2(R) → C with the property Φ(gr(θ)) = eikθΦ(g) for all θ ∈ R and
g ∈ SL2(R). These are the vectors of weight k under the right translation action on the
space of smooth functions. The operator R induces a map W (k) → W (k + 2), and L
induces a map W (k)→W (k− 2). Let W be the space of smooth functions on H1. For

Φ ∈W (k) we define an element Φ̃ ∈W by

Φ̃(x+ iy) = y−k/2 Φ(

[
1 x

1

][
y1/2

y−1/2

]
). (7)

It is straightforward to verify that

(Φ̃
∣∣
k
g)(i) = Φ(g) for all g ∈ SL2(R). (8)

The map Φ 7→ Φ̃ establishes an isomorphism W (k) ∼= W .

Lemma 2.1. Let R,L,Ω be the operators on W defined in (2) and (4). Then the
diagrams

W (k)
∼−−−−→ W W (k)

∼−−−−→ W W (k)
∼−−−−→ W

L

y yL R

y yR Ω

y yΩ

W (k − 2)
∼−−−−→ W W (k + 2)

∼−−−−→ W W (k)
∼−−−−→ W

are commutative.

Proof. The assertions for R and L follow from straightforward calculations. The asser-
tion for Ω then follows from (3) and (6). �

The previous lemma is about smooth functions only and does not involve any trans-
formation properties. If Φ ∈ W (k) satisfies Φ(γg) = Φ(g) for all g ∈ SL2(R) and all

elements γ of a congruence subgroup Γ, then it follows from (8) that Φ̃|kγ = Φ̃ for
all γ ∈ Γ. Conversely, given a smooth function f on H1 satisfying f |kγ = f for all

γ ∈ Γ, we may consider the function Φ ∈W (k) such that Φ̃ = f . This function is then
left Γ-invariant. We will see in the next subsection that if f ∈ Np

k (Γ), then Φ is an
automorphic form.

3. The structure theorem for cusp forms

Let Γ ⊂ SL2(Q) be a congruence subgroup. Let A(Γ) be the space of automorphic
forms on SL2(R), and let A(Γ)◦ be the subspace of cusp forms. Recall that automor-
phic forms are required to be smooth, left Γ-invariant, K-finite, Z-finite, and slowly
increasing; we refer to [1] for the precise definitions. The spaces A(Γ) and A(Γ)◦ are
(g,K)-modules with respect to right translation. Let Ak(Γ) (resp. Ak(Γ)◦) be the
space of automorphic forms (resp. cusp forms) Φ satisfying H.Φ = kΦ, or equivalently,
Φ(gr(θ)) = eikθΦ(g) for all θ ∈ R and g ∈ SL2(R).

If f ∈ A(Γ) and g ∈ A(Γ)◦, then the function |fg| is integrable over Γ\SL2(R). In
particular, A(Γ)◦ ⊂ L2(Γ\SL2(R)). With respect to the L2 inner product, the space
A(Γ)◦ decomposes into an orthogonal direct sum of irreducible representations, each
occurring with finite multiplicity.

Let Φ ∈ A(Γ). We will say that Φ is n-finite if LvΦ = 0 for large enough v. Let
A(Γ)n-fin be the space of n-finite automorphic forms, and let A(Γ)◦n-fin be the subspace
of n-finite cusp forms. The following properties are easy to verify:

• A(Γ)n-fin is a (g,K)-submodule of A(Γ).
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• A(Γ)n-fin is the direct sum of its weight spaces, i.e.: If Φ ∈ A(Γ)n-fin and
Φ = Φ1 + . . .+Φm with Φi ∈ Aki(Γ) for different weights ki, then Φi ∈ A(Γ)n-fin

for each i.

Analogous statements hold for cusp forms.

Lemma 3.1. Let k be an integer, and p a non-negative integer. Let Γ be a congruence
subgroup of SL2(Q). Let f ∈ Np

k (Γ) be non-zero. Define a function Φ on SL2(R) by
Φ(g) = (f |kg)(i). Then Φ ∈ Ak(Γ)n-fin. If f is a cusp form, then Φ ∈ Ak(Γ)◦n-fin.

Proof. Evidently, Φ is smooth, left Γ-invariant and has weight k. Since Np
k (Γ) is finite-

dimensional (Lemma 1.2) and Ω acts on Np
k (Γ) (Lemma 1.1), the function f is C[Ω]-

finite. Hence, by Lemma 2.1, the function Φ is Z-finite. The holomorphy of f at
the cusps implies that Φ is slowly increasing. This proves Φ ∈ Ak(Γ). Cuspidality
of f translates into cuspidality of Φ. To prove n-finiteness, observe that Lvf = 0 for
large enough v by Lemma 1.1. Hence LvΦ = 0 for large enough v by Lemma 2.1 and
Lemma 1.3. �

The following result is sometimes called the “duality theorem”; see Theorem 2.10 of
[2].

Proposition 3.2. As (g,K)-modules, we have

A(Γ)◦n-fin =

∞⊕
`=1

n`D`−1,+, n` = dimS`(Γ).

The lowest weight vectors in the isotypical component n`D`−1,+ correspond to elements

of S`(Γ) via the map Φ 7→ Φ̃, where (Φ̃|kg)(i) = Φ(g) for g ∈ SL2(R).

Proof. Since A(Γ)◦n-fin is a (g,K)-submodule of A(Γ)◦, it decomposes into an orthogonal
direct sum of irreducible (g,K)-modules. None of the irreducible constituents can be
of the form Dp,− or a principal series representation, since any non-zero vector in
such a constituent would not be n-finite. Neither can A(Γ)◦n-fin contain any finite-
dimensional representations; the lowest weight vector in such a constituent would give
rise to a holomorphic cusp form of non-positive weight, which is not possible by Lemma
1.3. It follows that A(Γ)◦n-fin can only contain constituents of the form D`−1,+ for
` ≥ 1. The fact that D`−1,+ occurs with multiplicity dimS`(Γ) follows because a lowest
weight vector in a constituent of the form D`−1,+ gives rise to an element of S`(Γ), and
conversely. �

Remark 3.3. It follows from Proposition 3.2 that A(Γ)◦n-fin is an admissible (g,K)-
module.

Knowing Proposition 3.2, it is now easy to derive the following Structure Theorem
for cuspidal nearly holomorphic modular forms.

Theorem 3.4 (Structure theorem for cusp forms). Fix non-negative integers k, p and
a congruence subgroup Γ of SL2(Q). There is an orthogonal direct sum decomposition

Np
k (Γ)◦ =

⊕
`≥1

`≡k mod 2
k−2p≤`≤k

R(k−`)/2 (S`(Γ)) . (9)

In particular, Np
0 (Γ)◦ = 0 and Np

1 (Γ)◦ = S1(Γ).
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Proof. Let f ∈ Np
k (Γ). Define a function Φ on SL2(R) by Φ(g) = (f |kg)(i). Then

Φ ∈ Ak(Γ)◦n-fin by Lemma 3.1. If f has weight 0, then f = 0, since the weight 0 does
not occur in Ak(Γ)◦n-fin by Proposition 3.2. Assume in the following that k ≥ 1 and
that f is non-zero.

Write Φ =
∑

Φi, where each Φi ∈ Ak(Γ)◦n-fin generates an irreducible (g,K)-module

Vi ∼= D`i−1,+ with `i ≥ 1; this is possible by Proposition 3.2. Evidently, f =
∑

Φ̃i,

where Φ̃i is the function on H1 corresponding to Φi via (7).
Since f ∈ Np

k (Γ)◦, it follows from (2) of Lemma 1.1 that Lp+1f = 0, thus Lp+1Φ = 0
by Lemma 2.1, and then also Lp+1Φi = 0 for all i. The weight of Lp+1Φi being k−2p−2,
it follows that Vi only contains weights greater or equal to k − 2p. Hence `i ≥ k − 2p
for all i.

Let Φi,0 ∈ Vi be a lowest weight vector; thus Φi,0 has weight `i ≤ k, and `i ≡ k mod

2. The corresponding function Φ̃i,0 on H1 is an element of S`i(Γ). Since every weight

occurs only once in Vi, we have R(k−`i)/2Φi,0 = ciΦi for some non-zero constant ci. By
Lemma 2.1, it follows that

R(k−`i)/2Φ̃i,0 = ciΦ̃i,

and hence

f =
∑

Φ̃i =
∑

c−1
i R(k−`i)/2Φ̃i,0 ∈

∑
`≥1

`≡k mod 2
k−2p≤`≤k

R(k−`)/2 (S`(Γ)) .

This proves that the left hand side of (9) is contained in the right hand side. The
orthogonality of the right hand side follows from the above construction and the fact
that the isotypical components in Proposition 3.2 are orthogonal; observe that the map
Φ 7→ Φ̃ is isometric with respect to the L2-scalar product on the left hand side and the
Petersson inner product on the right hand side. �

Remark 3.5. It is well known, or follows from an easy calculation, that Ω acts on D`−1,+

by the scalar 1
2`(

1
2`−1). Hence, by Lemma 2.1, Ω acts on the subspace R(k−`)/2 (S`(Γ))

of Np
k (Γ)◦ by 1

2`(
1
2` − 1)). In particular, Ω acts diagonalizably on Np

k (Γ)◦, and the
pieces in the decomposition (9) can be intrinsically characterized as the eigenspaces
with respect to Ω.

Petersson inner products. For f, g ∈ Nk(Γ) with at least one of them in Nk(Γ)◦,
we define the Petersson inner product 〈f, g〉 by the equation

〈f, g〉 = vol(Γ\H1)−1

∫
Γ\H1

f(τ)g(τ)
dxdy

y2
.

It can be easily checked that

〈f, g〉 = 〈Φf ,Φg〉, (10)

where Φf (h) = (f |kh)(i) (and Φg is defined similarly) and the inner product of Φf and
Φg is defined by

〈Φf ,Φg〉 =
1

vol(SL2(Z)\SL2(R))

∫
SL2(Z)\SL2(R)

Φf (h)Φg(h) dh.

We define the subspace Ek(Γ) to be the orthogonal complement of Nk(Γ)◦ in Nk(Γ).
Let E

p
k(Γ) = Ek(Γ) ∩ Np

k (Γ). We write Ek(Γ) to mean E0
k(Γ). In Corollary 4.4 below

we will prove that Np
k (Γ) is the orthogonal direct sum of Np

k (Γ)◦ and E
p
k(Γ).
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Lemma 3.6. Let k be a non-negative integer. Let f ∈ Ek(Γ), and let Φf ∈ A(Γ)n-fin

be the corresponding function on SL2(R). Then Φf is orthogonal to A(Γ)◦n-fin.

Proof. Let Ψ ∈ A(Γ)◦n-fin; we have to show that 〈Φf ,Ψ〉 = 0. We may assume that Ψ
generates an irreducible module D`−1,+ for some ` ≥ 1. Since Φf has weight k, we may
assume that Ψ does as well. But then Ψ corresponds to an element g of Nk(Γ)◦. By
hypothesis 〈f, g〉 = 0. Hence 〈Φf ,Ψ〉 = 0 by (10). �

Lemma 3.7. Let k ≥ 1 and v ≥ 0 be integers. Then Rv takes Sk(Γ) to Nv
k+2v(Γ)◦ and

Ek(Γ) to Evk+2v(Γ).

Proof. The fact that Rv takes Sk(Γ) to Nv
k+2v(Γ)◦ is an immediate consequence of

the fact that the differential operator R commutes with the |k operator and does not
increase the support of the Fourier coefficients.

Let us show that Rv takes Ek(Γ) to Evk+2v(Γ). Let f ∈ Ek(Γ). In view of (10), it
suffices to show that Rv(Φf ) and Φg are orthogonal for all g ∈ Nv

k+2v(Γ)◦. But note that
U(gC)Φf and U(gC)Φg are orthogonal submodules of A(Γ) (as U(gC)Φg is completely
contained in A(Γ)◦ and U(gC)Φf is contained in the orthogonal complement of A(Γ)◦

by Lemma 3.6). Hence Rv(Φf ) and Φg are orthogonal. �

Lemma 3.8. Let f ∈ Sk(Γ). Then for all v ≥ 0, there exists a constant ck,v (depending
only on k, v) such that

〈Rv(f), Rv(f)〉 = ck,v〈f, f〉.

Proof. Consider the (g,K) module Dk−1,+ and let v0 be a lowest-weight vector in it.
Note that v0 is unique up to multiples. It is well-known that Dk−1,+ is unitarizable;
let 〈, 〉 denote the (unique up to multiples) g-invariant inner product on it. Put ck,v =
〈Rv(v0), Rv(v0)〉/〈v0, v0〉. Note that ck,v does not depend on the choice of model for
Dk−1,+, the choice of v0 or the normalization of inner products.

Now all we need to observe is that the automorphic form Φf ∈ A(Γ)◦n-fin correspond-
ing to f generates a module isomorphic to Dk−1,+, that Φf is a lowest weight vector in
this module, and (10). �

Proposition 3.9. Let f ∈Mk(Γ), g ∈ Sk(Γ). Then

〈Rv(f), Rv(g)〉 = ck,v〈f, g〉,

where the constant ck,v is as in the previous lemma.

Proof. Because of Lemma 3.7, we may assume that f and g both belong to Sk(Γ). Now
the Proposition follows by applying the previous lemma to f + g. �

4. The non-cuspidal case

The obstruction in the non-cuspidal case. The Structure Theorem 3.4 cannot
hold without modifications for non-cuspidal nearly holomorphic modular forms. The
reason is the existence of the weight 2 Eisenstein series

E2(τ) = − 3

πy
+ 1− 24

∞∑
n=1

σ1(n)e2πinτ , σ1(n) =
∑
d|n

d. (11)

As is well known, E2 is modular with respect to SL2(Z); thus, E2 ∈ N1
2 (Γ) for any

congruence subgroup Γ of SL2(Z). But evidently E2 cannot be obtained via raising
operators from holomorphic forms of lower weight, since the only modular forms of
weight 0 are the constant functions.
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Let Φ2 ∈ A2(Γ)n-fin be the automorphic form corresponding to E2 via Lemma 3.1.
Let VΦ2 be the (g,K)-module generated by Φ2. Since L2Φ2 = 3

π , we have LΦ2 ∈ C
by Lemma 2.1. The weight structure of VΦ2 is therefore [0, 2, 4, . . .], and the constant
functions are a submodule of VΦ2

. More precisely, there is an exact sequence

0 −→ C −→ VΦ2
−→ D1,+ −→ 0; (12)

recall that D1,+ is the lowest weight module with weight structure [2, 4, 6, . . .]. Clearly,
this sequence does not split. Consequently, unlike in the cuspidal case, the space
A(Γ)n-fin is not the direct of irreducible submodules. However, the following result
states that VΦ2 represents the only obstruction:

Proposition 4.1. As (g,K)-modules, we have

A(Γ)n-fin = VΦ2
⊕

∞⊕
`=1

n`D`−1,+, n` = dimM`(Γ).

The lowest weight vectors in the isotypical component n`D`−1,+ correspond to elements

of M`(Γ) via the map Φ 7→ Φ̃, where (Φ̃|kg)(i) = Φ(g) for g ∈ SL2(R). The module VΦ2

sits in the exact sequence (12) and is generated by the function Φ2 such that Φ̃2 = E2.

To prove this result, we will set up a certain algebraic apparatus. It turns out that
the mechanism of category O is well suited toward our problem. In the SL2 case this
mechanism could be replaced by more direct arguments, but we prefer to use category
O because this method generalizes to the Sp4 case; see [6]. Our reference for category
O will be [3].

Roots and weights. Let H, R, L be the elements of gC defined in (5). Then h = 〈H〉
is a Cartan subalgebra of gC. Let Φ ⊂ h∗ be the root system of gC corresponding to
h. Then R and L span the corresponding root spaces. We identify an element λ of
h∗ with the element λ(H) of C. Then Φ = {±2}. Let E be the R-span of Φ. We
endow E with the inner product (·, ·) given by the usual multiplication of real numbers.
Perhaps counterintuitively, we will declare −2 to be a positive (and simple) root, with
corresponding root vector L, and +2 a negative root, with corresponding root vector
R. The weight lattice Λ is defined as

Λ =
{
λ ∈ E

∣∣∣ 2
(λ, α)

(α, α)
∈ Z for all α ∈ Φ

}
. (13)

Evidently, Λ = Z ⊂ E. There is an ordering on Λ defined as follows:

µ 4 λ ⇐⇒ λ ∈ µ+ Γ, (14)

where Γ is the set of all Z≥0-multiples of the positive root. Hence,

µ 4 λ ⇐⇒ λ ≤ µ and λ ≡ µ mod 2.

The fundamental weight is −1, and the dominant integral weights are the Z≥0-multiples
of the fundamental weight. We write Λ+ for the set of dominant integral weights.
Hence, Λ+ = {−1,−2, . . .}. We write % = −1 for half the sum of the positive roots.
As before, let Z denote the center of the universal enveloping algebra U(gC). Via the
Harish-Chandra isomorphism, all possible characters of Z are indexed by elements of h∗

modulo Weyl group action; see equation (8.32) in [4]. We denote by χλ the character of
Z corresponding to λ ∈ h∗. Note that χwλ = χλ for all w ∈ W , where the Weyl group
acts by negation on h∗ ∼= C.
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Verma modules. We recall the definition of the standard Verma modules. Let λ be an
integer, considered as an element of the weight lattice Λ. Let Cλ be the one-dimensional
space on which h = 〈H〉 acts via λ. Let

b = h + 〈L〉
be the Borel algebra defined by our positive system. We consider Cλ a b-module with
the action of L being trivial. Then the Verma module corresponding to λ is defined as

N(λ) = U(gC)⊗U(b) Cλ. (15)

Clearly, N(λ) contains the weight λ with multiplicity one. Any non-zero vector v in
N(λ) of weight λ is called a highest weight vector. It is well known that N(λ) has the
following properties:

(1) N(λ) is a free module of rank 1 over U(R) = C[R].
(2) The set of weights of N(λ) is λ− Γ = {λ, λ+ 2, . . .}. Each weight occurs with

multiplicity one.
(3) The moduleN(λ) is a universal highest weight module for the weight λ, meaning

it satisfies this universal property: Let M be a gC-module which contains a
vector v with the following properties:
• M = U(gC)v;
• v has weight λ;
• Lv = 0.

Then there exists a surjection N(λ) → M mapping a highest weight vector in
N(λ) to v.

(4) N(λ) admits a unique irreducible submodule, and a unique irreducible quotient
L(λ). In particular, N(λ) is indecomposable. See Theorem 1.2 of [3].

(5) N(λ) has finite length. Each factor in a composition series is of the form L(µ)
for some µ ≤ λ.

(6) N(λ) admits the central character χλ+%, i.e., Z acts on N(λ) via χλ+%. See
Sects. 1.7–1.10 of [3]. Note that Humphrey’s χλ is our χλ+%.

(7) L(λ) is finite-dimensional if and only if λ ∈ Λ+ = {0,−1,−2, . . .}. See Theorem
1.6 of [3].

(8) N(λ) is simple if and only if λ > 0. See Theorem 4.4 of [3].

Evidently, L(0) is the trivial gC-module. It has central character χ%.

Category O. We recall from Sect. 1.1 of [3] the definition of category O. This category
is defined with respect to a choice of Cartan subalgebra h and a choice of simple roots,
and we make the choices specified above. Let n be the space spanned by the positive
root vectors, hence, in our case, n = 〈L〉. A gC-module M is said to be in category O

if it satisfies the following conditions:

(O1) M is a finitely generated U(gC)-module.
(O2) M is the direct sum of its weight spaces, and all weights are integral.
(O3) M is locally n-finite. This means: For each v ∈ M the subspace U(n)v is

finite-dimensional.

Note that we are slightly varying the definition of category O by requiring that all
weights are integral; the relevant results in [3] still hold with this modification.

O is an abelian category. Evidently, O contains all Verma modules N(λ) and their
irreducible quotients L(λ). The modulesM in O have many nice properties, as explained
in the first sections of [3]. For example:

• M has finite length, and admits a filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂M, (16)
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with Vi/Vi−1
∼= L(λ) for some λ ∈ h∗.

• M can be written as a finite direct sum of indecomposable modules.
• If M is an indecomposable module, then there exists a character χ of Z such

that M = N(χ). Here,

N(χ) = {v ∈M | (z − χ(z))nv = 0 for some n depending on z}. (17)

For each M in category O we may write

M =
⊕
χ

N(χ), (18)

where χ runs over characters of Z, and N(χ) is defined as in (17); see Sect. 1.12 of [3].
The modules N(χ) may or may not be indecomposable.

Another feature of O is the existence of a duality functor M 7→M∨, as explained in
Sect. 3.2 of [3]. In general, M∨ is not the contragredient of M , as O is not closed under
taking contragredients. The duality functor in O has the following properties:

• M 7→M∨ is exact and contravariant.
• M∨∨ ∼= M .
• (Mχ)∨ ∼= (M∨)χ for a character χ of Z.
• L(λ)∨ ∼= L(λ).
• ExtO(M,N) ∼= ExtO(N∨,M∨). See Sect. 3.1 of [3] for the definition of the

ExtO groups.

Evidently, L(0) is the trivial gC-module. It is easy to see that there is an exact sequence

0 −→ L(2) −→ N(0) −→ L(0) −→ 0. (19)

Since N(0) is indecomposable, this sequence does not split. Applying the duality func-
tor, we get another non-split exact sequence

0 −→ L(0) −→ N(0)∨ −→ L(2) −→ 0. (20)

It is an exercise to show that the sequence (19) is the only non-trivial extension of L(0)
by L(2); similarly for (20). The fact that ExtO(L(0), L(2)) = 1 can also be seen by
applying the functor HomO( , L(2)) to (19) and considering the resulting long exact
sequence.

Proof of Proposition 4.1. Before starting the proof of Proposition 4.1, let us com-
ment on the relationship between (g,K)-modules and gC-modules. Clearly, every (g,K)-
module is also a gC-module. Conversely, let (π, V ) be a gC-module all of whose weights
are integral, and such that V is the direct sum of its weight spaces. If v ∈ V has weight
k, i.e., if π(H)v = kv, then we define a K-action on Cv by π(r(θ))v = eikθv. Since V is
the direct sum of its weight spaces, this defines a K-action on all of V . One can verify
that, with this K-action, V becomes a (g,K)-module. In particular, every module in
category O is naturally a (g,K)-module. The upshot is that in the following arguments
we do not have to worry about the distinction between (g,K)-modules and gC-modules.

With these comments in mind, it is clear that we have the following isomorphisms
of (g,K)-modules:

• Fp ∼= L(−p+ 1) for p ≥ 1;
• Dp,+

∼= L(p+ 1) for p ≥ 0;
• VΦ2

∼= N(0)∨.

The third isomorphism follows by comparing the exact sequences (12) and (20), observ-
ing the uniqueness comment made after (20).
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We are now ready to prove Proposition 4.1. As we saw, the modular form E2 gives
rise to the submodule VΦ2 of A(Γ)n-fin. Every non-zero f ∈ M`(Γ) gives rise to a copy
of D`−1,+ inside A(Γ)n-fin. It is therefore clear that

A(Γ)n-fin ⊃ VΦ2 ⊕
∞⊕
`=1

n`D`−1,+, n` = dimM`(Γ). (21)

To prove the converse, observe first that

• A(Γ)n-fin contains no negative weights;
• A(Γ)n-fin contains the weight 0 exactly once, the corresponding weight space

consisting of the constant functions.

Both statements follow from Lemma 1.3. We define

A≤k(Γ)n-fin =

k∑
`=0

A`(Γ)n-fin,

and let A〈≤k〉(Γ)n-fin be the (g,K)-module generated by elements of A≤k(Γ)n-fin. Evi-
dently,

A〈≤k〉(Γ)n-fin ⊃ VΦ2 ⊕
k⊕
`=1

n`D`−1,+, n` = dimM`(Γ). (22)

To prove equality in (21), it is enough to prove equality in (22).
It follows from the finite-dimensionality of the spaces M`(Γ) that A≤k(Γ)n-fin is finite-

dimensional. Hence A〈≤k〉(Γ)n-fin is finitely generated. This proves that A〈≤k〉(Γ)n-fin

is in category O. By properties of this category, we may write

A〈≤k〉(Γ)n-fin = V1 ⊕ . . .⊕ Vn
with indecomposable submodules. Let

0 = Vi,0 ⊂ Vi,1 ⊂ . . . ⊂ Vi,ni
= Vi (23)

be a filtration for Vi such that Vi,j/Vi,j−1
∼= L(λi,j) for some λi,j ∈ Z. Since there are

no negative weights, we have λi,j ≥ 0 for all i and j.
Let χi be the character of Z such that Vi = Vi(χi); see (17). We think of χi as

a non-negative integer. Assume that χi > 1 or χi = 0. Then λi,j = χi + 1 for all
j, since, among the L(λ) with λ ≥ 0, only L(χi + 1) has central character χi. Now
ExtO(L(λ), L(λ)) = 0 for all λ by Proposition 3.1 d) of [3]. It follows that Vi is a direct
sum of copies of L(λi), where λi := χi + 1. Since Vi is indecomposable, we must have
Vi = L(λi).

Now consider a Vi with χi = 1 (i.e., χi = χ%). The only L(λ) with λ ≥ 0 and
this central character are L(0) and L(2). If L(0) does not occur in Vi, then the same
argument as above applies, and we see that Vi = L(2). Assume that L(0) does occur
in Vi. Since the weight 0 occurs exactly once in the entire space, there is exactly one
Vi with this property, and this Vi contains L(0) exactly once. Since the weight 0 space
consists of the constant functions, it appears as a subrepresentation in Vi. Hence, we
may assume it occurs at the bottom of the filtration, i.e., Vi,1 = L(0). If Vi would not
contain any L(2) subquotients, then A〈≤k〉(Γ)n-fin would be completely reducible, which
we know is not the case. Hence there is at least one L(2) subquotient sitting on top of
the L(0). By (20) and the remark following it, Vi,2 ∼= N(0)∨. Now

ExtO(L(2), N(0)∨) ∼= ExtO(N(0), L(2)) = 0

by Proposition 1.3 b) of [3]. This means that there can be no further L(2)’s on top of
the N(0)∨, and it follows that Vi = N(0)∨.
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To summarize, we proved that, abstractly,

A〈≤k〉(Γ)n-fin = N(0)∨ ⊕
∞⊕
λ=1

mλL(λ)

with non-negative integers mλ almost all of which are zero. A moment’s consideration
shows that mλ = 0 for λ > k. Since L(λ) ∼= Dλ−1,+ and N(0)∨ ∼= VΦ2 , and since we
know Dλ−1,+ cannot occur more than dimMλ(Γ) times, comparison with (22) shows
that we must have equality in (22). This concludes the proof of Proposition 4.1. �

The Structure Theorem for all modular forms. We can now provide an alterna-
tive proof of Theorem 5.2 of [7].

Theorem 4.2 (Structure theorem for all modular forms). Fix non-negative integers
k, p and a congruence subgroup Γ of SL2(Z). Then:

(1) Np
0 (Γ) = C.

(2) If k is even and 2 ≤ k < 2 + 2p, then

Np
k (Γ) = R(k−2)/2(CE2) ⊕

⊕
`≥1

`≡k mod 2
k−2p≤`≤k

R(k−`)/2 (M`(Γ)) . (24)

(3) If k is odd, or if k is even and k ≥ 2 + 2p, then

Np
k (Γ) =

⊕
`≥1

`≡k mod 2
k−2p≤`≤k

R(k−`)/2 (M`(Γ)) . (25)

Proof. The proof is analogous to that of Theorem 3.4. Instead of Proposition 3.2, we

use Proposition 4.1. Observe that R(k−2)/2E2 is in N
k/2
k (Γ), but not in N

k/2−1
k (Γ), so

in order for E2 to contribute to Np
k (Γ) (for k even) we must have k

2 ≤ p, or equivalently,
k < 2 + 2p. �

A simplified version of the Structure Theorem for all modular forms would be this:
If p < k−2

2 , then

Np
k (Γ) =

⊕
`≥1

`≡k mod 2
k−2p≤`≤k

R(k−`)/2 (M`(Γ)) . (26)

The hypothesis p < k−2
2 implies that, in the arguments in the proof of the theorem, we

never “reach down” to weight 2. Hence, the component VΦ2
appearing in Proposition

4.1 can be ignored.

Corollary 4.3 (Structure theorem for non-cusp forms). Fix non-negative integers k, p
and a congruence subgroup Γ of SL2(Z). Then:

(1) E
p
0(Γ) = C.

(2) If k is even and 2 ≤ k < 2 + 2p, then

E
p
k(Γ) = R(k−2)/2(CE2) ⊕

⊕
`≥1

`≡k mod 2
k−2p≤`≤k

R(k−`)/2 (E`(Γ)) . (27)

(3) If k is odd, or if k is even and k ≥ 2 + 2p, then

E
p
k(Γ) =

⊕
`≥1

`≡k mod 2
k−2p≤`≤k

R(k−`)/2 (E`(Γ)) . (28)
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Proof. That the right side of each equation is contained in the left side is immediate
from Lemma 3.7 and the fact that Φ2 (the automorphic form corresponding to E2) lies
in the orthogonal complement of the cusp forms. That the left side is contained in the
right side follows from Theorem 4.2, the fact that M`(Γ) is the orthogonal sum of S`(Γ)
and E`(Γ), and the fact that the Rv maps preserve inner products up to a constant. �

Corollary 4.4. Let k and p be non-negative integers. The space Np
k (Γ) is the orthogonal

direct sum of Np
k (Γ)◦ and E

p
k(Γ).

Proof. By the structure theorems, it is enough to prove the assertion for p = 0. In this
case the claim is that Mk(Γ) is the orthogonal direct sum of Sk(Γ) and Ek(Γ). Clearly,

Mk(Γ) = Sk(Γ)⊕ Sk(Γ)⊥ and Ek(Γ) ⊂ Sk(Γ)⊥.

Hence, our task is to show that a non-zero element f of Sk(Γ)⊥ is orthogonal to all
of Nk(Γ)◦. Let Φf be the function on SL2(R) corresponding to f . We will in fact
show that Φf is orthogonal to any cusp form Ψ. We may assume that Ψ generates an
irreducible representation D`−1,+. Assume first that Ψ has weight `, i.e., Ψ is the lowest
weight vector in D`−1,+. If ` 6= k, then 〈Φ,Ψ〉 = 0 since the weights do not match. If
` = k, then 〈Φ,Ψ〉 = 0 since Ψ corresponds to an element of Sk(Γ). Now assume that
Ψ has weight greater than `. Then Ψ = RΨ′ for some Ψ′ ∈ D`−1,+, and the general
formula

〈Φ, RΨ′〉+ 〈LΦ,Ψ′〉 = 0

shows that 〈Φ, RΨ′〉 = 0, because Φ is a lowest weight vector. This concludes the
proof. �

Remark 4.5. It is well-known that Ek(Γ) = Sk(Γ)⊥ is spanned by the various weight k
holomorphic Eisenstein series on Γ.
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