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0. Introduction

The theory of modular forms is an important topic of research in number theory. The
modular forms are the centerpiece of several recent accomplishments such as the proof
of the Shimura-Taniyama-Weil conjecture due to Andrew Wiles and others, which led
to the resolution of the Fermat’s Last Theorem. Siegel modular forms are the higher
dimensional analogues of modular forms and are the subject of these lecture notes. Siegel
modular forms have seen tremendous success recently in both analytic and arithmetic
aspects, with results towards Langlands functoriality and Deligne’s conjectures.

These lecture notes are based on my workshop on Siegel modular forms at IISER,
Pune, India from August 8 to 18, 2017. The target audience for the workshop, and for
these notes, are graduate students and young researchers. These notes could also be
used by senior researchers as reference material.

The main objective of the workshop was to introduce classical and representation
theoretic techniques in modular forms and to explicate the interconnections via current
research and open problems. I believe that the classical and representation theoretic
methods are a two way street and it is absolutely essential for researchers to gain expertise
in going from one side to the other and back.

For this purpose, I decided to focus the workshop, and these lecture notes, on Siegel
modular forms. These are higher dimensional analogues of elliptic modular forms and
there is a long history of active research on this topic. The main advantage is that one
can approach Siegel modular forms from a purely classical point of view as holomorphic
functions on the Siegel upper half space. In addition, these can be studied in the context
of local and global representation theory of the symplectic group.

The subject of Siegel modular forms is vast and it is impossible to cover all of it in a
two week workshop. This is my disclaimer that these notes are not comprehensive. I have
tried to give a detailed description of the basics of the classical theory and representation
theory of Siegel modular forms. But beyond the basics, my emphasis is more on how to
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use the concepts to solve several interesting problems and to give an indication about
the current open questions in the subject. I have tried to provide references for anything
that is not proved in the lecture notes so that the reader can access details. I hope
that this will open certain locked doors for the readers, and get them excited enough to
pursue learning or researching on these and related topics.

Some of the topics that have been omitted are the Galois representations associated
to Siegel modular forms, the paramodular conjecture and vector-valued Siegel modular
forms. The first two omissions are by choice since I do not work on problems related to
them, while the last one is just to simplify things by restricting to scalar valued Siegel
modular forms. Each of these aspects of Siegel modular forms could be one or more
chapters by themselves. Instead, I am just going to provide some references to get the
interested readers started on them. For Galois representations look at [57] and [105], for
the paramodular conjecture see [16] and for vector-valued Siegel modular forms refer to
[71].

There are several good texts which explain details of the classical theory of Siegel
modular forms (see [4], [28], [46], [59]) and some research articles that provide details
of the representation theory of the symplectic group ([6], [81]). There is a gap in the
literature when it comes to a good text or reference article giving the necessary in depth
information on the two approaches to Siegel modular forms as well as the interconnections
between the two. I hope that these notes will fill that gap.

An important feature of the notes is that I have tried to provide several exercises.
These play a dual role. They allow me to introduce certain results without having to
go through their proofs. But more importantly, anyone wanting to really understand
the material can only do so if they get their hands dirty doing these exercises. For the
convenience of the reader, I have provided solutions (or hints) for all the exercises in an
appendix.

In an ideal situation, the reader will already be familiar with the GL(2) theory. This
will help in realizing how the theory and methods for Siegel modular forms are often a
generalization of the elliptic modular forms theory. Nevertheless, I have included three
appendices recalling the classical concepts and representation theory for GL(2) and basics
of p-adic numbers and the ring of adeles.

The notes are organized as follows. Lectures 1 - 3 introduce basic information on the
classical theory of Siegel modular forms. Lectures 4 and 5 introduce advanced topics,
open conjectures and recent results that use the techniques introduced in the preceding
lectures. Lecture 6 is the transition from the classical to the representation theoretic.
Lecture 7 provides much of the basic local representation theory. Lectures 8 - 10 present
current research and introduce the various techniques and concepts required to under-
stand them.

Acknowledgements: I would like to thank everyone at IISER, Pune, and especially
Baskar Balasubramanyam, for their hospitality and seamless organization. I am also
grateful to the participants of the workshop who spent close to 30 hours with me over
the period of 10 days, and countless many hours working on the exercises by themselves.
Their feedback was crucial in correcting mistakes and typos in earlier versions of the
notes. I would also like to mention that the workshop was part of the Global Initiative
of Academic Networks (GIAN) proposal of government of India.
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I am thankful for all the help and guidance provided by Ralf Schmidt in making sure
that the lecture notes are accurate. I am also grateful to the referees whose comments
and suggestions were invaluable.

Finally, I want to thank my family – Swapna, Aayush and Samay – for the support
and encouragement that makes all of it possible. These lecture notes are dedicated to
them.
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1. Lecture 1: Introduction to Siegel modular forms

In this lecture, we will begin with a problem of representation of integers or matrices
by quadratic forms. This acts as a starting point to the introduction of Siegel modular
forms. We will then discuss the symplectic group and its action on the Siegel upper
half space. Finally, the definition and basic properties of Siegel modular forms will be
introduced. Good references for this material are books by Andrianov [4], Freitag [28],
Klingen [46] and Maass [59].

1.1. Motivation. Let m be a positive integer. Let A ∈Mm(Z) be such that
• A is even, i.e., all the diagonal entries of A are even,
• A is symmetric, i.e., A = tA, the transpose of A, and,
• A > 0, i.e., positive definite.

Define,

Q(x) :=
1

2
txAx =

∑
1≤i<j≤m

aijxixj +
m∑
i=1

1

2
aiix

2
i , x ∈ Rm,

an integral, positive definite quadratic form in variables x1, x2, · · · , xm. For n ∈ N, set

rQ(n) := #{x ∈ Zm : Q(x) = n}

the number of representations of n by Q.

Exercise 1.1. Using that A is positive definite, show that rQ(n) <∞.

Problem: Find an exact formula for rQ(n), or at least asymptotics for rQ(n) as
n→∞.

Jacobi’s idea: Consider the theta series

ΘQ(z) := 1 +
∑
n≥1

rQ(n)e2πinz =
∑
x∈Zm

e2πiQ(x)z, z ∈ H1 = {x+ iy ∈ C : y > 0}.

Let N be a positive integer such that NA−1 is also an even, integral matrix. Suppose
that m is even. By Corollary 4.9.5 iii) of [62], it is known that ΘQ ∈Mm/2(N) = space
of modular forms of weight m/2 and level N . Essentially,

ΘQ(
az + b

cz + d
) = ±(cz + d)m/2ΘQ(z),

[
a b
c d

]
∈ SL2(Z), N |c.

Now, use the fact that Mm/2(N) is a finite dimensional C-vector space to get results for
rQ(n). This is illustrated in the following exercise.

Exercise 1.2. Let m = 4, Q(x) = x2
1 + x2

2 + x2
3 + x2

4. Then, we know that ΘQ ∈M2(4).
The dimension of M2(4) is 2, and has basis E1(z) = P (z) − 4P (4z), and E2(z) =
P (z)− 2P (2z), where

P (z) = 1− 24
∑
n≥1

σ1(n)e2πinz, with σ1(n) =
∑
d|n

d.

Use this information to find a formula for rQ(n) and, as a corollary, obtain Lagrange’s
theorem that rQ(n) ≥ 1, whenever n ≥ 1.
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More general problem: Study the number of representations of a n × n matrix T by
Q, i.e.

rQ(T ) := #{G ∈Mm,n(Z) :
1

2
tGAG = T}. (1)

Observe that, for rQ(T ) > 0, we need T = tT , T ≥ 0 and T is half-integral, i.e., 2T is
even. Put

Θ
(n)
Q (Z) :=

∑
T=tT≥0

T half integral

rQ(T )e2πiTr(TZ), Z ∈ Hn.

Hn is the Siegel upper half space defined in (4). For m even, Satz A2.8 of [28] says that
Θ

(n)
Q is a Siegel modular form of weight m/2, level N and degree n. Here, N is again

defined as in the previous modular forms case. We will next describe the symplectic
group and define Siegel modular forms.

1.2. The symplectic group. Let n ∈ N and R be a commutative ring with 1. The
symplectic group of similitudes is defined by

GSp2n(R) := {g ∈ GL2n(R) : tgJg = µ(g)J, µ(g) ∈ R×, J =

[
0n 1n
−1n 0n

]
}.

The function µ : GSp2n(R) → R× is called the multiplier (homomorphism). We have
the subgroup

Sp2n(R) := {g ∈ GSp2n(R) : µ(g) = 1}.

Exercise 1.3. Let g =

[
A B
C D

]
∈ GL2n(R), with A,B,C,D ∈Mn(R). Then the follow-

ing are equivalent.
i) g ∈ GSp2n(R) with multiplier µ(g) = µ.
ii) tg ∈ GSp2n(R) with multiplier µ(tg) = µ.

iii) µg−1 =

[ tD − tB
− tC tA

]
.

iv) The blocks A,B,C,D satisfy the conditions
tAC = tCA, tBD = tDB and tAD − tCB = µ1n. (2)

v) The blocks A,B,C,D satisfy the conditions

A tB = B tA,C tD = D tC and A tD −B tC = µ1n. (3)

Note that this immediately implies that GSp2(R) = GL2(R).

Examples of symplectic matrices: We have the following matrices in Sp2n(R).

i)
[

1n X
1n

]
, where X = tX ∈Mn(R).

ii)
[
g

tg−1

]
, where g ∈ GLn(R).

iii)
[

1n
−1n

]
.

iv) Kn := {
[
X Y
−Y X

]
: X,Y ∈Mn(R), X tY = Y tX,X tX + Y tY = 1n}.



7

Exercise 1.4. The Iwasawa decomposition states that we can write any g ∈ Sp2n(R) as

g =

[
1n X

1n

][
g

tg−1

]
k, X = tX ∈Mn(R), g ∈ GLn(R), k ∈ Kn.

Use this to show that Sp2n(R) ⊂ SL2n(R).

Over an arbitrary ring R, one can use induction to show that Sp2n(R) is generated by
matrices of the form i), ii) and iii) above. This immediately gives Sp2n(R) ⊂ SL2n(R).
The induction is quite tedious to carry out and we omit it here.

1.3. Siegel upper half space. The Siegel upper half space of genus n is defined by

Hn := {Z ∈Mn(C) : Z = tZ, Im(Z) > 0}. (4)

Let g =

[
A B
C D

]
∈ GSp2n(R)+ := {g ∈ GSp2n(R) : µ(g) > 0}. For Z ∈ Hn, we want to

define the action
g〈Z〉 := (AZ +B)(CZ +D)−1. (5)

Theorem 1.5. Let g =

[
A B
C D

]
∈ GSp2n(R)+ and let Z ∈ Hn.

i) Define J(g, Z) := CZ +D. Then J(g, Z) is invertible and, for g1, g2 ∈ GSp2n(R)+,
we have

J(g1g2, Z) = J(g1, g2〈Z〉)J(g2, Z). (6)
ii) The matrix g〈Z〉 is symmetric and we have

Img〈Z〉 = µ(g) t(CZ̄ +D)−1
(
ImZ

)
(CZ +D)−1. (7)

iii) The map Z 7→ g〈Z〉 is an action of GSp2n(R)+ on Hn.
iv) If Z = X + iY ∈ Hn and dZ = dXdY is the Euclidean measure, then

dg〈Z〉 = µ(g)n(n+1)|det(CZ +D)|−2n−2dZ. (8)

v) The element of volume on Hn given by

d∗Z := det(Y )−(n+1)dZ,

where dZ = dXdY is the Euclidean element of volume, is invariant under all trans-
formations of the group GSp2n(R)+:

d∗g〈Z〉 = d∗Z, for all g ∈ GSp2n(R)+.

Proof. If we know that J(g, Z) is invertible, then (6) follows by definition (5) of g〈Z〉.
Let us show non-singularity first for Z = i1n and arbitrary g. If J(g, Z) is singular, then
considering J(g, Z)tJ(g, Z), we get that C tC +D tD is also singular. But this matrix is
symmetric and positive semi-definite. Hence, there is a non-zero column vector T such
that tT (C tC+D tD)T = 0. This implies that tT (C tC)T = 0 and tT (D tD)T = 0, which
gives us tTC = tTD = 0. But this means that the rank of the matrix (C,D) is less than
n, which is impossible since g is non-singular. To get non-singularity for a general Z,
first realize Z = g〈i1n〉 for a suitable g and then use (6) for Z = i1n. This completes
proof of part i).

To get symmetry of g〈Z〉, use (2) and (3) together with the relation
t(CZ +D)g〈Z〉(CZ +D) = Z tCAZ + tDAZ + Z tCB + tDB.
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A similar computation gives (7) as well, proving part ii) of the theorem. Combining
parts i) and ii), we get part iii).

To get part iv), we compute the Jacobian of the change of variable Z → g〈Z〉. Using
(7) and (8), we get part v) of the theorem. �

Exercise 1.6. Fill in the details of the proof of Theorem 1.5.

Exercise 1.7. Show that, for any Z ∈ Hn, we have det(Z) 6= 0.

1.4. Siegel modular forms. Let Γn := Sp2n(Z).

Definition 1.8. A function F : Hn → C is called a Siegel modular form of weight k ∈ N
and degree n, with respect to Γn, if
i) F is holomorphic,
ii) F satisfies

F ((AZ +B)(CZ +D)−1) = det(CZ +D)kF (Z), for all
[
A B
C D

]
∈ Γn,

iii) If n = 1, then F is bounded in Y ≥ Y0, for any Y0 > 0.

We denote by Mk(Γn) the C-vector space of Siegel modular forms of weight k and
degree n.

Exercise 1.9. Let Mk(Γn) be as above.
i) If kn is odd, then show that Mk(Γn) = 0.
ii) Suppose F ∈Mk(Γn). Show that, for all Z ∈ Hn, F satisfies

(a) F (Z +X) = F (Z) for all X = tX ∈Mn(Z).
(b) F (gZ tg) = det(g)kF (Z) for all g ∈ GLn(Z).
(c) F (−Z−1) = det(Z)kF (Z).

Any F ∈Mk(Γn) has a Fourier expansion

F (Z) =
∑

T=tT≥0
T half-integral

A(T )e2πiTr(TZ). (9)

The translation invariance from part ii) a) of Exercise 1.9 and the holomorphy of F give
the Fourier expansion, excepting the fact that T ≥ 0. For n = 1, we get T ≥ 0 from part
iii) of Definition 1.8. For n > 1, it follows from the Koecher principle, which is worked
out in the next exercise.

Exercise 1.10 (Koecher principle). Let F ∈Mk(Γn) be such that

F (Z) =
∑

T=tT half-integral

A(T )e2πiTr(TZ).

i) Let us denote by S := {T = tT half-integral}. Define an equivalence relation ∼ on
S as follows. For T1, T2 ∈ S, let T1 ∼ T2 if there exists a g ∈ SLn(Z) such that
T1 = tgT2g. Denote by {T} the equivalence class of T under ∼. Show that

F (Z) =
∑
S/∼

A(T )
∑

T ′∈{T}

e2πiTr(T ′Z).
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(Hint: Use part ii)b) of Exercise 1.9). Conclude that, if A(T ) 6= 0 then the series∑
T ′∈{T}

e−2πTr(T ′) converges absolutely.

ii) Suppose T is not positive semi-definite. Show that there is a matrix g ∈ SLn(Z) such
that the (1, 1) entry of the matrix tgTg is negative. In particular, we can assume
without loss of generality, that the matrix entry T11 < 0.

iii) Let T be as in part ii) above. For any positive integer m, consider the matrix

gm =

1 m
1

1n−2

 ∈ SLn(Z).

Use the subsequence {tgmTgm : m ∈ N} in {T} to show that
∑

T ′∈{T}
e−2πTr(T ′) di-

verges. Hence, conclude that A(T ) = 0.

Definition 1.11. Define an operator Φ on F ∈Mk(Γn) by

(ΦF )(Z ′) = lim
t→∞

F (

[
Z ′ 0
0 it

]
), with Z ′ ∈ Hn−1, t ∈ R.

Theorem 1.12. The operator Φ gives a well-defined linear map from Mk(Γn) to the
space Mk(Γn−1) (with the convention that Mk(Γ0) = C). If F has the Fourier expansion
(9), then

(ΦF )(Z ′) =
∑

T1=tT 1≥0
T1∈Mn−1(Z) half-integral

A(

[
T1

0

]
)e2πiTr(T1Z′), where Z ′ ∈ Hn−1.

Proof. The Fourier expansion (9) implies that F converges uniformly on sets in Hn with
Y ≥ Y0 for any Y0 > 0. Hence, we can interchange the limit and the summation of the

Fourier expansion, showing that the limit exists. Let T =

[
T1 ∗
∗ tnn

]
. Note

lim
t→∞

e
2πiTr(T

[
Z′

it

]
)

= lim
t→∞

e−2πttnne2πiTr(T1Z′) =

{
0 if tnn > 0;

e2πiTr(T1Z′) if tnn = 0.

The shape of the Fourier expansion of ΦF follows from this, together with the observation
that, if tnn = 0 then the last row and column of T are zero.

To get the automorphy of ΦF with respect to Γn−1 consider the following. Let g1 =[
A1 B1

C1 D1

]
∈ Γn−1 and Z1 ∈ Hn−1. Then, for Z =

[
Z1 0
0 it

]
,

g =


A1 0 B1 0
0 1 0 0
C1 0 D1 0
0 0 0 1

 ∈ Γn, g〈Z〉 =

[
g1〈Z1〉 0

0 it

]
, det(J(g, Z)) = det(J(g1, Z1)).

�

Definition 1.13. A Siegel modular form F ∈ Mk(Γn) is called a Siegel cusp form if F
lies in the kernel of the Φ operator. Denote the space of cusp forms by Sk(Γn).
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Corollary 1.14. Let F ∈ Mk(Γn). Then F ∈ Sk(Γn) if and only if A(T ) = 0 unless
T > 0.

This is proved in Section 5, Proposition 2 of [46]. For F ∈ Sk(Γn) and G ∈ Mk(Γn),
define the Petersson inner product by

〈F,G〉 :=

∫
Γn\Hn

F (Z)G(Z) det(Y )k
dX dY

det(Y )n+1
. (10)
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2. Lecture 2: Examples

In this lecture, we will present several examples of Siegel modular forms. In addition
to theta series and Eisenstein series, we also introduce the Saito-Kurokawa lifts. These
are concrete examples of cuspidal Siegel modular forms constructed from elliptic cusp
forms. Finally, we consider Siegel modular forms with level N > 1 in the genus n = 2
case, corresponding to the standard congruence subgroups.

2.1. Examples.

2.1.1. Theta series. Recall notations from Section 1.1: let m,n ∈ N, A ∈ Mm(Z), A
even, A = tA,A > 0. For G ∈ Mm,n(Z), define the quadratic form Q(G) = 1

2
tGAG.

The theta series is defined by

ΘQ(Z) :=
∑

G∈Mm,n(Z)

e2πiTr(Q(G)Z) =
∑

T=tT≥0
T half-integral

rQ(T )e2πiTr(TZ), Z ∈ Hn.

Here, rQ(t) is defined as in (1). One can show that if detA = 1, then ΘQ ∈ Mm/2(Γn).
This is quite complicated and uses the Poisson summation formula. By the way, one
can show that there exists A ∈ Mm(Z), A > 0, A = tA,detA = 1, A even ⇔ 8|m. See
Theorem III 3.6 of [28] or Page 100 of [46] for details.

2.1.2. Eisenstein series. Let k be a positive integer. Define

E
(n)
k (Z) :=

∑
[
A B
C D

]
∈Γ0,n\Γn

det(CZ +D)−k,

where Γ0,n := {
[
A B
0 D

]
∈ Γn}. The convergence of this series is shown in Theorem 1

of Section 5 in [46]. The next exercise shows that, if k is even and k > n + 1, then
0 6= E

(n)
k ∈Mk(Γn).

Exercise 2.1. Show that E(n)
k ∈Mk(Γn).

Let 0 ≤ r ≤ n and let f ∈ Sk(Γr), with k even. Any Z ∈ Hn can be written as

Z =

[
Z1 Z

′
tZ ′ Z2

]
, with Z1 ∈ Hr and Z2 ∈ Hn−r. Set Z∗ = Z1 ∈ Hr. Define the series

En,r,k(f)(Z) :=
∑

g=
[
A B
C D

]
∈Pr\Γn

f(g〈Z〉∗) det(CZ +D)−k.

Here,

Pr := {


A′ 0 B′ ∗
∗ U ∗ ∗
C ′ 0 D′ ∗
0 0 0 tU−1

 ∈ Γn :

[
A′ B′

C ′ D′

]
∈ Γr, U ∈ GLn−r(Z)}.

Note that, if r = 0, then P0 = Γn,0 and En,r,k(f) = E
(n)
k .

Exercise 2.2. Show that En,r,k(f) is well-defined, i.e., f(g〈Z〉∗) det(CZ + D)−k is in-
variant under Pr.
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Theorem 2.3. Let n ≥ 1 and 0 ≤ r ≤ n and k > n+ r+ 1 be integers with k even. For
every cusp form f ∈ Sk(Γr) the series En,r,k(f) converges to a classical Siegel modular
form of weight k in Mk(Γn) and Φn−rEn,r,k(f) = f .

See page 199-200 of [59] for a proof of the above theorem. This is also proved in
Theorem 1 and Proposition 5 of Section 5 in [46]. The En,r,k(f) are called the Klingen
Eisenstein series. We can use this to show that Φ : Mk(Γn) → Mk(Γn−1) is surjective
for even k > 2n (see corollary to Proposition 5 of Section 5 in [46]). There are no good
Eisenstein series when k is odd. For example, if k ≡ n ≡ 1 (mod 2), thenMk(Γn) = {0}.
On the other hand, for sufficiently large k, the space Mk(Γn−1) is non-trivial.

Let Ek(Γn) be the subspace of Mk(Γn) generated by the Klingen Eisenstein series
{En,r,k(f) : 0 ≤ r ≤ n, f ∈ Sk(Γr)} . If n, k are even and k > 2n, then Proposition 7 of
Section 5 of [46] tells us that

Mk(Γn) = Ek(Γn)⊕ Sk(Γn).

Here, the orthogonal direct sum is with respect to the Petersson inner product defined
in (10).

One can show that there is a µn > 0 (depending only on n) such that, whenever the
Fourier coefficients of F ∈ Sk(Γn) satisfy A(T ) = 0 for all T > 0 with Tr(T ) < k/µn,
then we have F ≡ 0. See Pg 205 of [77] for this statement and its variants. Also see the
theorem on Pg 642 of [99]. This gives us

dim(Sk(Γn)) ≤ #{ half integral T = tT > 0 : Tr(T ) < k/µn} = O(kN ), N =
n(n+ 1)

2
.

Exercise 2.4. Suppose n, k are even and k > 2n, show that dim(Mk(Γn)) ≤ O(kN ) with
N = n(n+1)

2 .

Exercise 2.5 (Cusp forms of genus 2 and weight 10). Normalize the Eisenstein series
E

(n)
k so that the constant term (coefficient corresponding to T = 0n) is 1, and denote the

normalized Eisenstein series by Ẽ(n)
k . For n = 1, we know the structure of the graded

ring M∗(Γ1) = ⊕kMk(Γ1). It is a polynomial ring generated by the Eisenstein series
e4 = Ẽ

(1)
4 and e6 = Ẽ

(1)
6 .

i) Using dimM10(Γ1) = 1 conclude that e10 − e4e6 = 0.
ii) Use the Siegel Φ operator to show that χ10 = Ẽ

(2)
10 − Ẽ

(2)
4 Ẽ

(2)
6 is a cusp form in

M10(Γ2).

On page 199 of [103], it is shown that χ10 is non-zero. The main idea is to write

Z =

[
τ1 z
z τ2

]
and consider the Taylor series of χ10 about z = 0. One gets χ10(Z) =

ce2πiτ1e2πiτ2z2 + O(z3) for c 6= 0. Hence χ10 6= 0. One can similarly construct non-zero
cusp forms χ12 = Ẽ

(2)
12 − Ẽ

(2)
6 Ẽ

(2)
6 and χ35 of weights 12 and 35, respectively.

Theorem 2.6 (Igusa [42, Pg 849]). We have

M∗(Γ2) := ⊕kMk(Γ2) = C[E
(2)
4 , E

(2)
6 , χ10, χ12, χ35]/(χ2

35 = R),

where R is a polynomial in E(2)
4 , E

(2)
6 , χ10, χ12.
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2.1.3. Saito-Kurokawa lifts. Let f ∈ S2k−2(Γ1) be a cusp form of genus one and weight
2k− 2, with k even. Kohnen [48, Theorem 1] gave a one-to-one correspondence between
the space S2k−2(Γ1) and the space S+

k−1/2(Γ0(4)). The latter space is the space of cusp

forms of weight k − 1/2 with respect to Γ0(4) = {
[
a b
c d

]
∈ SL2(Z) : 4|c}, whose nth

Fourier coefficient vanishes whenever (−1)k−1n ≡ 2, 3 (mod 4). Let g ∈ S+
k−1/2(Γ0(4))

correspond to f , and let g have Fourier coefficients {c(n)}. For a positive definite,
symmetric, half integral 2× 2 matrix T , define

A(T ) :=
∑

d|gcd(T )

c
(det(2T )

d2

)
dk−1. (11)

Theorem 2.7. Define Ff : H2 → C by the Fourier expansion
∑
T

A(T )e2πiTr(TZ), with

A(T ) given above. Then Ff ∈ Sk(Γ2) and Ff 6= 0 if f 6= 0.

See [60], [61] or page 74 of [25] for the proof using Fourier Jacobi expansions. In [24],
Duke and Imamoglu gave another proof using a converse theorem of Imai [43].

Exercise 2.8. Write A(T ) = A(n, r,m) for T =

[
n r/2
r/2 m

]
. Show that, if Ff is the

Saito-Kurokawa lift of f , then the Fourier coefficients satisfy the recurrence relations

A(n, r,m) =
∑

d|gcd(n,r,m)

dk−1A(
nm

d2
,
r

d
, 1). (12)

These are called the Maass relations. It was shown in [60], [61] that these recurrence
relations between Fourier coefficients determine Saito-Kurokawa lifts.

2.2. Congruence subgroups. Let N be a positive integer. The principal congruence
subgroup of level N and genus n is defined by

Γn(N) := {g ∈ Γn : g ≡ 1n (mod N)}. (13)

A subgroup of the symplectic group Sp2n(Q) is called a congruence subgroup if it contains
some principal congruence subgroup with finite index.

2.2.1. Congruence subgroups in genus 2. We have the following 4 congruence subgroups
of Sp4(Q).
i) Borel congruence subgroup

B(N) := Sp4(Z) ∩


Z NZ Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ NZ Z

 .
ii) Siegel congruence subgroup

Γ
(2)
0 (N) := Sp4(Z) ∩


Z Z Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ Z Z

 .
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iii) Klingen congruence subgroup

Q(N) := Sp4(Z) ∩


Z NZ Z Z
Z Z Z Z
Z NZ Z Z
NZ NZ NZ Z

 .
iv) Paramodular subgroup

K(N) := Sp4(Q) ∩


Z NZ Z Z
Z Z Z N−1Z
Z NZ Z Z
NZ NZ NZ Z

 .
Exercise 2.9. Find a matrix A = diag(1, 1, t1, t2), with t1, t2 ∈ Z and t1|t2, such that
K(N) = Sp4(Q) ∩AM4(Z)A−1.

2.2.2. Siegel modular forms with level. Let k be a positive integer and Γ one of the
congruence subgroups above. The space of Siegel modular forms of weight k with respect

to Γ is denoted by Mk(Γ). Let f ∈ Sk(Γ0(N)) be a newform, where Γ0(N) = {
[
a b
c d

]
∈

SL2(Z) : N |c}. For Z ∈ H2, define

E1(Z) :=
∑

g∈(Q(Q)∩Γ
(2)
0 (N))\Γ(2)

0 (N)

f(g〈Z〉∗) det(J(g, Z))−k,

and
E2(Z) :=

∑
g∈D(N)\K(N2)

f((LNg)〈Z〉∗) det(J(LNg, Z))−k,

where

LN =


1 N

1
1
−N 1

 , and DN = L−1
N Q(Q)LN ∩K(N2).

Theorem 2.10 (Schmidt-Shukla [94]). With E1, E2 defined above, E1 ∈ Mk(Γ
(2)
0 (N))

and E2 ∈Mk(K(N2)).

Brown and Agarwal [1] constructed Saito-Kurokawa liftings starting from elliptic cusp
forms f ∈ S2k−2(Γ0(N)), where k is even, and N is odd, square-free, to obtain Ff ∈
Sk(Γ

(2)
0 (N)). If f ∈ S2(Γ0(N1)) and g ∈ S2k(Γ0(N2)) satisfying certain hypothesis, then

one can construct a cusp form F ∈ Sk+1(Γ
(2)
0 (N)), where N = lcm(N1, N2). This is

called the Yoshida lift of f and g, and we will discuss this in more details in Section 4.3
below. One thing to note is that Yoshida lifts do not exist for full level.
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3. Lecture 3: Hecke Theory and L-functions

In this lecture, we introduce the symplectic Hecke algebra and discuss its action on
the Siegel modular forms. This allows us to consider a basis of Mk(Γn) consisting of
simultaneous eigenforms of the Hecke algebra. We explicate the relation between the
Hecke eigenvalues and the Fourier coefficients of the modular forms. For genus greater
than 1, this relation is very complicated. Finally, we introduce the two L-functions
associated with Hecke eigenforms – the spin L-function and the standard L-function.

3.1. The Hecke algebra. Let Gn := GSp2n(Q)+ ∩M2n(Z). Denote by L(Γn, Gn) the
free Z-module consisting of all formal finite linear combinations, with coefficients in Z,
of the right cosets Γng, g ∈ Γn\Gn. Gn acts on L(Γn, Gn) by multiplication on the right,
and let Hn = L(Γn, Gn)Γn be the space of Γn-invariants. Hence, Hn is the submodule
of L(Γn, Gn) consisting of elements satisfying∑

i

aiΓngig =
∑
i

aiΓngi, for all g ∈ Γn.

Exercise 3.1. For any g ∈ Gn, we have the following finite coset decomposition

ΓngΓn =
⊔
i

Γngi.

Denote
∑

i Γngi ∈ L(Γn, Gn) also by ΓngΓn. Show that ΓngΓn ∈ Hn.

We can define a product on Hn as follows. If

T1 =
∑

g∈Γn\Gn

agΓng, T2 =
∑

g′∈Γn\Gn

ag′Γng
′ ∈ Hn

then set
T1 · T2 :=

∑
g,g′∈Γn\Gn

agag′Γngg
′.

Exercise 3.2. Show that the above product is well-defined.

The space Hn, together with the above multiplication, is called the Hecke algebra.
We enumerate certain facts about the structure of Hn. (See Chapter 3 of [4] for details).
i) Hn is generated by the double cosets ΓngΓn, g ∈ Gn.
ii) Suppose ΓngΓn =

⊔
i Γngi and Γng

′Γn =
⊔
i Γng

′
i, for some g, g′ ∈ Gn. Then

ΓngΓn · Γng′Γn =
∑

ΓnhΓn⊂ΓngΓng′Γn

c(g, g′;h)ΓnhΓn,

where c(g, g′;h) = #{(i, j) : gig
′
j ∈ Γnh}.

iii) (symplectic divisors) Given g ∈ Gn, there is a unique representative in ΓngΓn of the
form

sd(g) = diag(d1, · · · , dn, e1, · · · en),

where

di, ei ∈ N, diei = µ(g) for i = 1, · · · , n and d1|d2| · · · |dn−1|dn|en|en−1| · · · |e1.
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See Theorem 3.28 of [4] for the above result. It is shown in Theorem 3.31 of [4] that,
if gcd(e1/d1, e

′
1/d
′
1) = 1, then(

Γndiag(d1, · · · , dn, e1, · · · en)Γn
)(

Γndiag(d′1, · · · , d′n, e′1, · · · e′n)Γn
)

=
(
Γndiag(d1d

′
1, · · · , dnd′n, e1e

′
1, · · · ene′n)Γn

)
.

iv) For a prime number p, let Gn,p := {g ∈ Gn : µ(g) is a power of p}. Define Hn,p

in the same way as Hn with Gn,p instead of Gn. Then, using iii) above (also see
Theorem 3.37 of [4]), we can see that

Hn = ⊗′pHn,p.

Any element in the restricted tensor product above has the identity of Hn,p as a
component for all but finitely many primes p. The algebra Hn,p is called the local
Hecke algebra at the prime p.

v) The local Hecke algebra at the prime p is generated by the n+ 1 elements

T (p) := Γn

[
1n
p1n

]
Γn, Ti(p

2) := Γn


1i

p1n−i
p21i

p1n−i

Γn, 0 ≤ i ≤ n− 1.

The elements T (p) and Ti(p2)’s are algebraically independent. Please refer to The-
orem 3.40 of [4].

vi) Hn is a commutative algebra with identity (Theorem 3.30 of [4]).
vii) For every positive integer m, define

T (m) :=
∑

µ(g)=m

ΓngΓn.

Then, for a prime p, T (p) is the same as the one above. On the other hand, T (p2)
is sum of all the Ti(p2), 0 ≤ i ≤ n− 1 together with Tn(p2). (This is defined by the
same formula as that of Ti(p2) above allowing i = n).

Exercise 3.3. Consider the formal Dirichlet series

D(s) :=

∞∑
m=1

T (m)m−s.

Show that D(s) has a (formal) expansion as an Euler product of the form

D(s) =
∏

p prime

Dp(s), where Dp(s) =

∞∑
r=0

T (pr)p−rs.

3.2. Action of the Hecke algebra on Siegel modular forms. For g ∈ Gn, let
T (g) := ΓngΓn = tiΓngi ∈ Hn. The Hecke algebra Hn acts on Mk(Γn) (or on Sk(Γn))
as follows. Let F ∈Mk(Γn). Then

T (g)F :=
∑
i

F |kgi, (14)
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where the slash |k action is given by(
F |kg

)
(Z) := µ(g)nk−

n(n+1)
2 det(CZ +D)−kF (g〈Z〉), for g =

[
A B
C D

]
∈ GSp2n(R)+.

(15)

Exercise 3.4. Let the Hecke algebra action be given as in (14).
i) Show that this action maps Mk(Γn) to Mk(Γn). (In fact, it also maps Sk(Γn) to
Sk(Γn)).

ii) For F,G ∈Mk(Γn), at least one of which is a cusp form, show that

〈T (g)F,G〉 = 〈F, T (g)G〉, for all g.

Theorem 3.5 (Andrianov [4, Theorem 4.7]). The space Mk(Γn) has a basis of simulta-
neous eigenfunctions of the Hecke algebra Hn. Furthermore, Sk(Γn) has such a basis of
eigenforms which is orthogonal with respect to the Petersson inner product.

Let F ∈ Mk(Γn) be a Hecke eigenform, and let T (g)F = λ(g)F , where λ(g) are the
Hecke eigenvalues. For any prime number p, it is known that there are n + 1 complex
numbers α0,p, α1,p, · · · , αn,p, depending on F , with the following property. If g satisfies
µ(g) = pr, then

λ(g) = αr0,p
∑
i

n∏
j=1

(αj,pp
−j)dij , (16)

where ΓngΓn =
⊔
i Γngi, with

gi =

[
Ai Bi
0 Di

]
and Di =

p
di1 ∗

. . .
0 pdin

 .
The α0,p, α1,p, · · · , αn,p are called the classical Satake p-parameters of the eigenform F .
Formula (16) follows from the Satake map for the p-adic Hecke algebra introduced in
Section 6.3. For a more classical approach to (16), we refer to Formula (1.3.13) of [2].

Let T (m)F = λ(m)F . From Exercise 3.3, it follows that

DF (s) :=

∞∑
m=1

λ(m)m−s =
∏

p prime

Dp,F (s), where Dp,F (s) =
∞∑
r=0

λ(pr)p−rs.

Theorem 3.6 (Andrianov [2, Theorem 1.3.2]). For any prime p, we have Dp,F (s) =
P (p−s)Q(p−s)−1, where

Q(X) = (1− α0,pX)
n∏
δ=1

∏
1≤i1<···<iδ≤n

(1− α0,pαi1,p · · ·αiδ,pX)

is a polynomial of degree 2n and

P (X) =

2n−2∑
i=0

φi(α1,p, · · · , αn,p)αi0,pXi

is a polynomial of degree 2n−2 and φi are some symmetric polynomials in α1,p, · · · , αn,p,
with φ1 ≡ 1 and φ2n−2(α1,p, · · · , αn,p) = p−

(n−1)n
2 (α1,p, · · · , αn,p)2n−1−1.
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Exercise 3.7 (Action of the Hecke operators on Fourier coefficients). Let n = 2 and
consider the Hecke operator T (p). We have the following coset decomposition

T (p) = Γ2

[
12

p12

]
Γ2 =Γ2

[
p12

12

]
t

⊔
a∈Z/pZ

Γ2


1 a

p
p

1



t
⊔

α,d∈Z/pZ

Γ2


p
−α 1 d

1 α
p

 t ⊔
a,b,d∈Z/pZ

Γ2


1 a b

1 b d
p

p


Suppose F ∈ Sk(Γ2) with Fourier coefficients {A(T )}. Applying the definition (14) of
the action of T (p) on F , show that the T th Fourier coefficient of T (p)F is given by

A(pT ) + p2k−3A(
1

p
T ) + pk−2

( ∑
α∈Z/pZ

A(
1

p

[
1 α
p

]
T

[
1
α p

]
) +A(

1

p

[
p

1

]
T

[
p

1

]
)
)
.

Here, we assume that A(S) = 0, if S is not half-integral.

3.3. Relation between Fourier coefficients and Hecke eigenvalues for genus
2. Let F ∈ Mk(Γ2) be a Hecke eigenform. Let us now state a relation between the
Fourier coefficients {A(T )} of F , and the Hecke eigenvalues, for Siegel modular forms
of genus 2. Suppose T is such that −det(2T ) = −D is a fundamental discriminant.
Recall that d is a fundamental discriminant if either d ≡ 1 (mod 4) and square-free, or
d = 4m,m ≡ 2, 3 (mod 4) and m is square-free. Suppose Q(

√
−D) has class number

h(D), and let {T1, T2, · · · , Th(D)} be a set of SL2(Z)-representatives of primitive, positive
definite, integral, binary quadratic forms of discriminant D. For any character χ of the
ideal class group of Q(

√
−D), Theorem 2.4.1 of [2] shows that

L(s− k + 2, χ)

h(D)∑
i=1

(∑
n≥1

A(nTi)

ns

)
=
( h(D)∑
i=1

χ(Ti)A(Ti)
)
ζ(2s− 2k + 4)

∑
m≥1

λ(m)

ms
.

For the L-function L(s−k+2, χ), refer to Pg 84 of [2]. In the special case when Q(
√
−D)

has class number one, the above formula reduces to∑
n≥1

A(nT )

ns
= A(T )

∑
m≥1

λ(m)

ms
.

From the above two formulas, it is not clear if two Hecke eigenforms with the same
Hecke eigenvalues are equal or even related to each other. Using the work of Arthur [5],
Ralf Schmidt was recently able to classify Siegel modular forms of genus 2 in 6 different
categories. Specializing to the full level case, he is able to prove the following remarkable
result.

Theorem 3.8 (Schmidt [93, Theorem 2.6])). Let k1, k2 be two positive integers and let
Fi ∈ Ski(Γ2) be Hecke eigenforms with Hecke eigenvalues {λi(m) : m ≥ 1} for i = 1, 2.
Suppose, for almost all prime numbers p, we have p(3/2−k1)rλ1(pr) = p(3/2−k2)rλ2(pr) for
all r ≥ 1. Then k1 = k2, and F1 is a scalar multiple of F2.
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Exercise 3.9. For n = 2, one knows that

Q(X) = 1− λ(p)X + (λ(p)2 − λ(p2)− p2k−4)X2 − λ(p)p2k−3X3 + p4k−6X4.

Use this to show that the Satake p-parameters of F satisfy

α2
0,pα1,pα2,p = p2k−3.

For a general n, we have the formula

α2
0,pα1,p · · ·αn,p = pkn−

n(n+1)
2 . (17)

3.4. L-functions. Let F ∈ Sk(Γn) be a Hecke eigenfunction. Let α0,p, α1,p, · · · , αn,p be
the Satake p-parameters of F for any prime p. The degree 2n spin L-function of F is
defined by

L(s, F, spin) :=
∏

p prime

Lp(s, F, spin),

where

Lp(s, F, spin)−1 := (1− α0,pp
−s)

n∏
δ=1

∏
1≤i1<···<iδ≤n

(1− α0,pαi1,p · · ·αiδ,pp
−s).

The spin L-function converges in some right half plane. We can also technically define
the L-function for F ∈Mk(Γn). In [104], Zarkovskaya has shown that the Siegel operator
Φ is Hecke equivariant (maps Hecke eigenforms to Hecke eigenforms), and we have the
relation L(s, F, spin) = L(s,ΦF, spin)L(s−k+n,ΦF, spin). This tells us that it is enough
to consider the spin L-functions for cusp forms.

Exercise 3.10. Let F ∈ Sk(Γ2) be a Hecke eigenform with Hecke eigenvalues {λ(m) :
m ≥ 1}. Show that ∑

m≥1

λ(m)

ms
= ζ(2s− 2k + 4)−1L(s, F, spin).

Theorem 3.11 (Andrianov [4, Page 167]). Let n = 2, and let F ∈ Sk(Γ2) be a Hecke
eigenform.
i) For every prime p,

Lp(s, F, spin)−1 = 1−λ(p)p−s+(λ(p)2−λ(p2)−p2k−4)p−2s−λ(p)p2k−3p−3s+p4k−6p−4s.

ii) The function Λ(s, F ) := (2π)−2sΓ(s)Γ(s − k + 2)L(s, F, spin) has a meromorphic
continuation to all of C, and satisfies the functional equation

Λ(2k − 2− s, F ) = (−1)kΛ(s, F ).

iii) Λ(s, F ) has at most two simple poles at s = k − 2, k. If k is odd, then Λ(s, F ) is
entire.

Exercise 3.12. Set αp = p3/2−kα0,p and βp = αpα1,p. Show that

λ(p) = pk−3/2(αp + α−1
p + βp + β−1

p ),

λ(p2) = p2k−3
(
(αp + α−1

p )2 + (αp + α−1
p )(βp + β−1

p ) + (βp + β−1
p )2 − 2− 1/p

)
.
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For n = 3, Asgari and Schmidt [6, Theorem 5] proved that the spin L-function has a
meromorphic continuation. In [76], Pollack proved the functional equation and finiteness
of poles. For general n, the meromorphic continuation and functional equation are open
conjectures.

Once again, let F ∈ Sk(Γn) be a Hecke eigenfunction. Let α0,p, α1,p, · · · , αn,p be the
Satake p-parameters of F for any prime p. The degree 2n+ 1 standard L-function of F
is defined by

L(s, F, std) =
∏

p prime

Lp(s, F, std), (18)

where

Lp(s, F, std)−1 := (1− p−s)
n∏
i=1

(1− αi,pp−s)(1− α−1
i,p p
−s).

For all n, it is known that L(s, F, std) has a meromorphic continuation to C with finitely
many poles and has a functional equation under s 7→ 1 − s (see [9]). Once again we
can define the standard L-function for non-cusp forms. We have the following relation
between the standard L-functions of F and ΦF .

L(s, F, std) = L(s,ΦF, std)ζ(s− k + n)ζ(s+ k − n). (19)

3.4.1. L-function for Saito-Kurokawa lifts. Let k be even and let f ∈ S2k−2(Γ1) be a
Hecke eigenform with Fourier coefficients {a(n)} normalized by setting a(1) = 1. Let
Ff ∈ Sk(Γ2) be the Saito-Kurokawa lift introduced in Section 2.1.3. Then Ff is also a
Hecke eigenform. One can explicitly compute the Hecke eigenvalues of Ff in terms of the
Hecke eigenvalues of f using the definition (11), and the action of the Hecke operators
on Fourier coefficients. This computation leads to the following relation.

L(s, Ff , spin) = ζ(s− k + 1)ζ(s− k + 2)L(s, f), where L(s, f) =
∞∑
n=1

a(n)

ns
. (20)

For further details on this, we refer the reader to Theorem 6.3 and Corollary 1 on Pg
77, 80 of [25]. Note that, L(s, Ff , spin) has a pole at s = k. In fact, it was shown by
Evdokimov [26, Theorem 1] and Oda [65, Pg 324] that F ∈ Sk(Γ2) is a Saito-Kurokawa
lift if and only if L(s, Ff , spin) has a pole at s = k.

Exercise 3.13. We know that ξ(s) := π−s/2Γ(s/2)ζ(s) satisfies the functional equation
ξ(s) = ξ(1 − s). Also, if g ∈ Sk′(Γ1), then Λ(s, g) := (2π)−sΓ(s)L(s, g) satisfies the
functional equation Λ(k′ − s, g) = (−1)k

′/2Λ(s, g). Use these functional equations to
derive the functional equation for Λ(s, Ff ), where Ff is the Saito Kurokawa lift of f ∈
S2k−2(Γ1).

Exercise 3.14. Show that

L(s, Ff , std) = ζ(s)L(s+ k − 1, f)L(s+ k − 2, f).
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4. Lecture 4: Non-vanishing of Fourier coefficients and applications

In this lecture, we start by stating the Generalized Ramanujan conjecture (GRC) for
Siegel modular forms. We will discuss progress towards GRC, and its application. Next,
we will consider the question of non-vanishing of Fourier coefficients. In the previous
lectures, we have seen that if the first few Fourier coefficients of a Siegel modular form
F are zero then F is identically zero. For certain applications, it is useful to know
that a nonzero F has nonzero Fourier coefficients corresponding to some special kind
of symmetric half integral matrices. In this lecture, we will explore results regarding
non-vanishing of Fourier coefficients A(T ) for primitive T and fundamental T . We will
end with an amazing application to simultaneous non-vanishing of pairs of L-functions
and Böcherer’s conjecture.

4.1. Generalized Ramanujan conjecture. Let F ∈ Sk(Γn) be a Hecke eigenform
with Satake p-parameters α0,p, α1,p, · · · , αn,p.

Conjecture 4.1 (Generalized Ramanujan Conjecture (GRC)). For all prime numbers
p, the Satake p-parameters satisfy

|αi,p| = 1, for all i = 1, 2, · · · , n.

The article by Sarnak [91] gives a very good account of GRC. Using (17), the GRC
will imply that |α0,p| = pkn/2−n(n+1)/4. For n = 1, the GRC is a theorem for f ∈
Sk(Γ0(N), χ′) due to Deligne [22]. For n = 2, we have counterexamples – namely, the
Saito-Kurokawa lifts. Let k be even and let f ∈ S2k−2(Γ1) be a Hecke eigenform with
Satake p-parameters β0,p, β1,p. We know that |β0,p| = pk−3/2 and |β1,p| = 1. From (20),
we can conclude that the Satake p-parameters of the Saito-Kurokawa lift Ff ∈ Sk(Γ2)
satisfy

{α0,p, α0,pα1,p, α0,pα2,p, α0,pα1,pα2,p} = {pk−1, pk−2, β0,p, β0,pβ1,p}.
Hence, α1,p, α2,p have absolute values p1/2, p−1/2, violating the GRC.

Theorem 4.2 (Weissauer [106]). Let F ∈ Sk(Γ2) be a Hecke eigenform, which is not a
Saito-Kurokawa lift. Then F satisfies the generalized Ramanujan conjecture.

For a general n, it was shown in [67] that a Hecke eigenform F ∈ Sk(Γn) satisfies GRC
if and only if for every ε > 0, there is a constant Cε > 0, depending only on ε, n, p, such
that

|λ(pr)| ≤ Cεpr(
nk
2
−n(n+1)

4
), for all r ≥ 0.

For n = 2, the validity of GRC has the following application.

Theorem 4.3 (Farmer, Pitale, Ryan, Schmidt [27, Theorem 1.3]). Let kj be positive
integers for j = 1, 2. Suppose Fj ∈ Skj (Γ2) are Siegel Hecke eigenforms with Hecke
eigenvalues λj(n), n ≥ 1. If p3/2−k1λ1(p) = p3/2−k2λ2(p) for all but finitely many p, then
k1 = k2 and F1, F2 have the same eigenvalues for the Hecke operator T (n) for all n.

The above theorem follows from a strong multiplicity one theorem for Dirichlet series.
Using analytic number theoretic techniques, one can show that if two Dirichlet series
L1(s) =

∑
a1(n)n−s and L2(s) =

∑
a2(n)n−s, satisfying certain suitable hypotheses,

have the property that a1(p) = a2(p) for almost all p, then L1(s) = L2(s).
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The remarkable fact here is that the Hecke operator T (p) alone does not generate
the local Hecke algebra at p. This Hecke algebra is generated by T (p) and T (p2). The
fact that the coincidence of the eigenvalues for T (p) is enough is of course a global
phenomenon using GRC.

Exercise 4.4. Suppose Fj ∈ Skj (Γ2) are Siegel Hecke eigenforms that satisfy, for all but
finitely many p, p3/2−k1λ1(p) = p3/2−k2λ2(p). Show that k1 = k2 and F1 ∈ CF2.

4.2. Non-vanishing of Fourier coefficients. Let us denote by Sn the set of all n× n
symmetric, half integral, positive definite matrices.

Problem: What subsets of Sn have the property that, if the Fourier coefficient of a
Siegel modular form vanishes for all elements in the subset, then the Siegel modular form
has to be zero?

For T ∈ Sn, the content of T is defined by

c(T ) := max{a ∈ N : a−1T is half integral }.
We say that T is primitive if c(T ) = 1.

Theorem 4.5 (Zagier [109, Pg 387]). Let F ∈ Mk(Γ2) have Fourier coefficients A(T ).
If A(T ) = 0 for all primitive matrices T , then F = 0.

The main steps of the proof of the above theorem are listed in the following exercise.

Exercise 4.6. Let n = 2. Write Z ∈ H2 as Z =

[
τ z
z τ ′

]
, with τ, τ ′ ∈ H1, z ∈ C, and

T > 0 as T =

[
n r/2
r/2 m

]
with n,m, r ∈ Z. Write F ∈ Sk(Γ2) as

F (τ, z, τ ′) =
∑

n,m,r∈Z
n>0,4mn−r2>0

A(n, r,m)e2πinτe2πimτ ′e2πirz.

i) Let
[
a b
c d

]
∈ Γ1 and s ∈ Z. Using


a b

1
c d

1

 and


1
s 1

1 −s
1

, and the

automorphy of F , show that

F (
aτ + b

cτ + d
,

z

cτ + d
, τ ′ − cz2

cτ + d
) = (cτ + d)kF (τ, z, τ ′),

F (τ, z + sτ, τ ′ + 2sz + s2τ) = F (τ, z, τ ′).

ii) For m > 0, define the functions φm(τ, z) on H1 × C by

F (τ, z, τ ′) =

∞∑
m=1

φm(τ, z)e2πimτ ′ . (21)

Show that the φm satisfy the following relations.

φm(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke

2πimcz2

cτ+d φm(τ, z),

[
a b
c d

]
∈ Γ1,
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φm(τ, z + sτ) = e−2πim(2sz+s2τ)φm(τ, z), s ∈ Z.
Holomorphic functions on H1×C satisfying the above two properties are called Jacobi
forms of weight k and index m and (21) is called the Fourier-Jacobi expansion of F .

iii) Take any φm as above and consider its Taylor expansion about z = 0 given by

φm(τ, z) =
∞∑
ν=0

λν(τ, z), λν(τ, z) =
1

ν!

( ∂ν
∂zν

φm(τ, z)
)
|z=0z

ν .

Find a formula for λν(τ, z) in terms of the Fourier coefficients A(n, r,m).
iv) Let ν0 be the smallest ν such that λν(τ, z) is not identically zero. Using ii), show

that, for any z, we have λν0(τ, z) ∈Mk+ν0(Γ1).
v) Let ` be a positive integer and let f ∈Mk′(Γ1) with Fourier coefficients {a(t) : t ≥ 0}.

It is known that if a(t) = 0 for all t coprime to `, then f is the zero function. Use
this fact, and the above steps to complete the proof of Zagier’s theorem.

Zagier’s result was extended by Yamana to higher genus and included higher level.
For a positive integer N , the Siegel congruence subgroup of level N is given by

Γn0 (N) := {g =

[
A B
C D

]
∈ Γn : C ≡ 0 (mod N)}.

Theorem 4.7 (Yamana [107, Theorem 2]). Let F ∈Mk(Γ
n
0 (N)) with Fourier coefficients

A(T ). Suppose that A(T ) = 0 for all T such that c(T ) divides N . Then F = 0.

If we want to remove the condition on the content, then we have to consider the
subspace of new forms. Let SOk (Γn0 (N)) be the linear subspace of Sk(Γn0 (N)) spanned by
the set

{F (dZ) : F ∈ Sk(Γn0 (M)), dM |N,M 6= N}.

Theorem 4.8 (Ibukiyama, Katsurada [39]). Let F ∈ Sk(Γ
n
0 (N)) with Fourier coeffi-

cients A(T ). Assume that F belongs to the orthogonal complement of SOk (Γn0 (N)). If
A(T ) = 0 for all primitive matrices T , then F = 0.

In genus 2, from the point of view of representation theory, a smaller subset of fun-
damental matrices T plays an important role. The discriminant of T ∈ S2 is defined by
disc(T ) = −det(2T ). The matrix T in S2 is called fundamental, if D = disc(T ) is a fun-
damental discriminant i.e. either D ≡ 1 (mod 4) and square-free, or D = 4m,m ≡ 2, 3
(mod 4) and m is square-free. Observe that if T is fundamental, then it is automatically
primitive. Observe also that if D is odd, then T is fundamental if and only if D is
squarefree.

Theorem 4.9 (Saha [87, Theorem 3.4]). Let k > 2 and N be a square-free positive inte-
ger. If N > 1, then assume that k is even. Let 0 6= F ∈ Sk(Γ2

0(N)) lie in the orthogonal
complement of SOk (Γ2

0(N)). Then there are infinitely many fundamental matrices T such
that the Fourier coefficients A(T ) 6= 0.

Sketch of proof: By Theorem 4.8, there is a primitive matrix T ′ such that A(T ′) 6= 0.

Let T ′ =

[
a b/2
b/2 c

]
. It is a classical result that the primitive quadratic form ax2 +

bxy+ cy2 represents infinitely many primes. So, let x0, y0 be such that ax2
0 + bx0y0 + cy2

0

is an odd prime p not dividing N. Since gcd(x0, y0) = 1, we can find integers x1, y1
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such that A =

[
y1 y0

x1 x0

]
∈ SL2(Z). Then T = tAT ′A has the property that A(T ) 6= 0,

and T is of the form
[
a0 b0/2
b0/2 p

]
. For all integers n, r with 4np > r2, denote by

c(n, r) := A(

[
n r/2
r/2 p

]
). Now let

h(τ) =
∞∑
m=1

c(m)e2πimτ , τ ∈ H1, c(m) :=
∑

0≤µ≤2p−1
µ2≡−m (mod 4p)

c((m+ µ2)/(4p), µ).

It turns out that h ∈ Sk−1/2(4pN). The modular form h is non-zero. To see that, let

d0 = 4a0p − b20. Then c(d0) is equal to A(

[
a0 b0/2
b0/2 p

]
) + A(

[
a0 + p− b0 p− b0/2
p− b0/2 p

]
) =

2A(

[
a0 b0/2
b0/2 p

]
) 6= 0. (Conjugate the second matrix by

[
1 −1

1

]
). Now, using techniques

from analytic number theory, Saha has proved that such half integral weight modular
forms h have infinitely many Fourier coefficients c(d) 6= 0, where d is a fundamental

discriminant. For any such d, there exists a µ such that c(d+µ2

4p , µ) = A(

[
d+µ2

4p µ/2

µ/2 p

]
) 6=

0. �

Exercise 4.10. There is an open conjecture that any F ∈ Sk(Γ2) has a non-zero Fourier

coefficient A(T ) with T of the form
[
a b/2
b/2 1

]
. Show that this is true if F is a Saito-

Kurokawa lift.

4.3. Application of the non-vanishing result. One of the main applications of The-
orem 4.9 is towards the existence of non-trivial global Bessel models for the automorphic
representations corresponding to Siegel cusp forms of genus 2. We will discuss that in
detail in a future lecture (see Theorem 8.6). Let us now present an application towards
simultaneous non-vanishing of GL(2) × GL(2) L-functions. Let us fix two elliptic cusp
forms f and g. Let K be an imaginary quadratic field of discriminant −d < 0, let OK
be its ring of integers, and let Λ be a character of the ideal class group ClK of K. Define
the function

θΛ(z) :=
∑
a

Λ(a)e2πiN(a)z, z ∈ H1.

Here, a runs through integral ideals in OK . Then θΛ ∈ M1(Γ0(d),
(−d
∗
)
), and it is cusp

form if and only if Λ2 6= 1 (see Pg 215 of [30]).

Problem: Fix elliptic cusp forms f and g. Find K,Λ so that

L(
1

2
, f × θΛ)L(

1

2
, g × θΛ) 6= 0.

For general f and g this is a very hard and open problem. Let us now consider a
special case. Let N1, N2 be square-free positive integers that are not coprime, and
let N = lcm(N1, N2). Let f ∈ S2(Γ0(N1)) and g ∈ S2k(Γ0(N2)) be newforms. For
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every prime p dividing gcd(N1, N2), assume that f and g have the same Atkin-Lehner
eigenvalues at p. Then, there exists a non-zero F ∈ Sk+1(Γ2

0(N)) with the following
properties.
i) F is orthogonal to SOk+1(Γ2

0(N)).
ii) F is an eigenfunction for the local Hecke algebra at all primes.
iii) We have

L(s, F × θΛ) = L(s, f × θΛ)L(s, g × θΛ).

This was first studied by Yoshida and hence, is called the Yoshida lift of f and g. See
[13], [8], [108] for details on the Yoshida lift. The L-functions on the right-hand side
above are Rankin-Selberg L-functions of two elliptic modular forms (see Section 1.6 of
[17]). The L-function on the left-hand side is the degree 8 Rankin-Selberg L-function of
F and θΛ (see [30]).

Note that F satisfies all the hypotheses of Theorem 4.9, and so we can conclude that
there are infinitely many fundamental T such that A(T ) 6= 0. In fact, Saha and Schmidt
[89] can prove that there are infinitely many pairs (K,Λ), where K is an imaginary
quadratic field and Λ is an ideal class character, such that

R(F,K,Λ) :=
∑
c∈ClK

Λ−1(c)A(c) 6= 0. (22)

It is well-known that the SL(2,Z)-equivalence classes of binary quadratic forms of dis-
criminant −d are in natural bijective correspondence with the elements of ClK . Since
A(tgTg) = A(T ) for all g ∈ SL(2,Z), it follows that the notation A(c) makes sense for
c ∈ ClK . Prasad and Takloo-Bighash [78] proved that, for a Yoshida lift F

R(F,K,Λ) 6= 0⇒ L(1/2, F × θΛ) 6= 0.

For a general F , the above implication is still a conjecture, although Furusawa and Mo-
rimoto have solved the problem for a large class in [32]. Now, part (iii) of the properties
of Yoshida lifts immediately tells us that there are infinitely many pairs (K,Λ) such that

L(
1

2
, f × θΛ)L(

1

2
, g × θΛ) 6= 0.

4.4. Böcherer’s conjecture. Let F ∈ Sk(Γ2) with Fourier coefficients {A(T ) : T > 0}.
We define

R(F,K) :=
∑
c∈ClK

A(c). (23)

For odd k, it is easy to see that R(F,K) equals 0. If k is even, Böcherer [10] made a
remarkable conjecture that relates the quantity R(F,K) to the central value of a certain
L-function.

Conjecture 4.11 (Böcherer [10]). Let k be even and F ∈ Sk(Γ2) be a non-zero Hecke
eigenform. Then there exists a constant cF , depending only on F , such that for any
imaginary quadratic field K = Q(

√
d), with d < 0 a fundamental discriminant, we have

|R(F,K)|2 = cF · w(K)2 · |d|k−1 · L(1/2, F ⊗ χd).
Above, χd =

(
d
·
)
is the Kronecker symbol (i.e., the quadratic Hecke character asso-

ciated via class field theory to the field Q(
√
d)), w(K) denotes the number of distinct
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roots of unity inside K, and L(s, F ⊗ χd) denotes the spin L-function of F twisted by
the character χd.

In [23], we computed a conjectural value of the constant cF as

cF =
24k−4 · π2k+1

(2k − 2)!
· L(1/2, F )

L(1, F,Ad)
· 〈F, F 〉. (24)

Here, L(s, F,Ad) is the adjoint L-function of F . Recently, in a remarkable paper [33],
Furusawa and Morimoto have proved a version of Conjecture 4.11 under some hypotheses.
In particular, their work implies that Conjecture 4.11 is now a theorem for k > 2, with
the precise value of cF given by (24).
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5. Lecture 5: Applications of properties of L-functions

In this lecture, we present two applications of properties of L-functions of Siegel mod-
ular forms. The first one is to determine whether a given modular form is a cusp form
based on the size of its Fourier coefficients. The main tool is the domain of convergence
of the standard L-function associated to the modular form. The second application is
the infinitely many sign changes of Hecke eigenvalues of Siegel Hecke eigenforms using
the properties of the spin L-function.

5.1. Determining cusp forms by size of Fourier coefficients. Let F ∈ Mk(Γn)
have Fourier coefficients A(T ). Then it is known that

|A(T )| �F det(T )k.

(See Pg 143 of [46])
The implied constant depends only on F . In addition, if F is a cusp form in Sk(Γn),

then we have the "Hecke bound" (see Pg 170 of [11])

|A(T )| �F det(T )k/2. (25)

Problem: Suppose that F ∈ Mk(Γn) is such that all its Fourier coefficients A(T ),
for T > 0, satisfy (25). Is F automatically a cusp form?

This was first addressed by Kohnen for elliptic modular forms of weight 2 and level
N (see [50]). Degree 2, level 1 case was also addressed by Kohnen and Martin [51]. Both
of these use explicit information on the Fourier coefficients of Eisenstein series that are
only available for low genus. In the higher genus case, Böcherer and Das came up with
a completely different method to solve the problem.

Theorem 5.1 (Böcherer, Das [11, Theorem 4.1]). Let k > 2n and let F ∈ Mk(Γn) be
such that all its Fourier coefficients A(T ), for T > 0, satisfy (25). Then F ∈ Sk(Γn).

They prove this theorem in much more generality to include level N , and allow less
restrictions on k. We are looking at the simplest case here. Their proof involves the
standard L-function and for that we need a Hecke eigenform. That is achieved in the
following exercise.

Exercise 5.2. Let F ∈Mk(Γn) be such that all its Fourier coefficients A(T ), for T > 0,
satisfy (25). Then there is a Hecke eigenform G ∈ Mk(Γn) such that all its Fourier
coefficients A(T ), for T > 0, satisfy (25). In addition, if F is non-cuspidal, then we can
choose G to be non-cuspidal.

Let us now assume that F is a Hecke eigenform. We have already defined in (18)
the standard L-function L(s, F, std) =

∏
p Lp(s, F, std) for F . Andrianov has a Dirichlet

series formula relating the Fourier coefficients to the standard L-function. Let T0 > 0 be
such that A(T0) 6= 0 (this is guaranteed by the condition k > 2n) and putM = det(2T0).
On page 147 of [3], it is shown that∑

X

A(tXT0X) det(X)−s−k+1 = A(T0)ΛM (s)LM (s, F, std), (26)
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where

ΛM (s) =


LM (s+m,χT0)−1

m−1∏
i=0

ζM (2s− 2i)−1 if n = 2m;

m∏
i=0

ζM (2s+ 2i)−1 if n = 2m+ 1.

Here X runs over all nonsingular integral matrices of size n with (detX,M) = 1, modulo
the action of GLn(Z) from the right. L(s, χT0) is the Dirichlet L-series attached to the
quadratic character

( (−1)m det(2T0)
∗

)
. The superscript M on the L-functions means that

we are taking the product over all primes p -M .
Condition (25) implies that the left hand side of (26) converges absolutely in the region

Re(s) > n + 1. Hence, the standard L-function is a non-zero holomorphic function on
Re(s) > n+ 1. We will get a contradiction to this holomorphy if F is not cuspidal.

So, let us assume that F is not cuspidal. Hence ΦF 6= 0, where Φ is the Siegel operator
from Definition 1.11. Recall the relation (19) between the standard L-functions of F and
ΦF .

L(s, F, std) = L(s,ΦF, std)ζ(s− k + n)ζ(s+ k − n).

Exercise 5.3. Show that we cannot have ΦnF 6= 0.

Thus, we can assume that there is a r satisfying 1 ≤ r ≤ n− 1 such that Φn−rF is a
non-zero cusp form. This satisfies

L(s, F, std) = L(s,Φn−rF, std)
n−r−1∏
i=0

ζ(s− k + n− i)ζ(s+ k − n+ i).

Since Φn−rF is a cusp form, a result of Shimura [96, Theorem A] says that the L-
function L(s,Φn−rF, std) is a non-zero holomorphic function for Re(s) > r/2 + 1. The
rightmost pole of the product of zeta functions is at s = k − r. This is not cancelled
by L(s,Φn−rF, std) since it is non-zero at this point. Hence, s = k − r is a pole for
L(s, F, std), which again contradicts the holomorphy of the L-function for Re(s) > n+
1. �

5.2. Sign changes of Hecke eigenvalues. Let us now discuss the sign changes of
Hecke eigenvalues of Siegel Hecke eigenforms. For that, we first need to know that the
Hecke eigenvalues are real.

Exercise 5.4. Show that the Hecke eigenvalues of a Hecke eigenform F ∈ Sk(Γn) are
real.

Let F ∈ Sk(Γn) be a Hecke eigenform with eigenvalues λ(m) for m ≥ 1. We want to
explore the question of sign changes in the sequence {λ(m)}.
Theorem 5.5 (Bruelmann [14]). Let F ∈ Sk(Γ2) be a Hecke eigenform with eigenvalues
λ(m) for m ≥ 1. Then F is a Saito-Kurokawa lift if and only if λ(m) > 0 for all m.

It was shown by Evdokimov [26] and Oda [65] that F is a Saito-Kurokawa lift if and
only if L(s, F, spin) has a pole at s = k. Suppose all the Fourier coefficients are positive,
then, using this criteria, and Landau’s theorem [55, Pg 536], and the relation between
L(s, F, spin) and

∑
λ(m)m−s, one can conclude that F has to be a Saito-kurokawa lift.

On the other hand, if F is a Saito-Kurokawa lift, then we use the relation (20), partial
fractions and geometric series to show that λ(m) > 0 for all m.
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Exercise 5.6. Show that if F ∈ Sk(Γ2) is a Saito-Kurokawa lift, then λ(m) > 0 for all
m.

Theorem 5.7 (Kohnen [49]). Let F ∈ Sk(Γ2) be in the orthogonal complement of the
space of Saito-Kurokawa lifts. Suppose F is a Hecke eigenform with eigenvalues λ(m)
for m ≥ 1. Then there are infinitely many sign changes in the sequence {λ(m) : m ∈ N}.

Proof. By Exercise 3.10, we have∑
m≥1

λ(m)

ms
= ζ(2s− 2k + 4)−1L(s, F, spin), (27)

in the region where these converge. Suppose λ(m) is positive for all m ≥ m0 for some
m0 ∈ N. Landau’s theorem [55, Pg 536] states that either

∑
λ(m)m−s converges for all

s ∈ C, or has a pole at the real point of its line of convergence.
We will first show that the former is true. Recall that we know from Theorem 3.11,

for a non-Saito-Kurokawa lift F , the completed spin L-function

Λ(s, F ) = (2π)−2sΓ(s)Γ(s− k + 2)L(s, F, spin)

is entire. The gamma function Γ(s) has no zeros and has poles only at non-positive
integers. Hence, we can conclude that L(s, F, spin) is entire and has zeros at s = k −
2, k − 3, · · · . Since ζ(s) has no zeros on the real line except at negative even integers
(and these zeros are simple), the right hand side of (27) has no poles on the real line.
By Landau, this implies that

∑
λ(m)m−s converges for all s ∈ C.

Now choose s0 ∈ C such that Re(2s0 − 2k+ 4) = 1/2 and ζ(2s0 − 2k+ 4) = 0. Hence
L(s, F, spin) has a zero at s = s0. This implies Λ(s0, F ) = 0 as well. Once again, since
F is not a Saito-Kurokawa lift, we know that F satisfies the generalized Ramanujan
conjecture. Hence the Satake p-parameters satisfy |α1,p| = |α2,p| = 1. Together with
α2

0,pα1,pα2,p = p2k−3, we can conclude that the Euler product defining L(s, F, spin)

converges absolutely for Re(s) > k − 1/2. This means that L(s, F, spin) is non-zero in
the region Re(s) > k − 1/2. Hence, Λ(s, F ) is non-zero in the region Re(s) > k − 1/2.
The functional equation (Theorem 3.11) implies Λ(2k − 2 − s0) = (−1)kΛ(s0, F ) = 0.
But Re(2k − 2− s0) = k − 1/4, which leads to a contradiction. �

Let us state some refinements of Kohnen’s result.
i) In 2007, Kohnen and Sengupta [52] showed that there exists n ∈ N satisfying

n� k2 log20 k

such that λ(n) < 0. In 2010, Jim Brown [15] obtained a similar result for Siegel
cusp forms with level N > 1.

ii) In 2008, Pitale and Schmidt [73] showed that there are infinitely many prime num-
bers p such that the sequence of Hecke eigenvalues {λ(pr) : r ≥ 0} has infinitely
many sign changes. This used representation theoretic techniques, and a weaker
result than GRC.

iii) Recently, in 2016, Royer, Sengupta and Wu [84] showed that half of the non-zero
coefficients in the Dirichlet series for the spin L-function of F are positive and half
are negative.
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For higher genus n > 3, we do not know about the meromorphic continuation and
location of poles of the spin L-function. Also, GRC is still open for n > 2. Hence, we do
not have any results on sign changes of Hecke eigenvalues in higher genus.

5.3. Sign changes of Fourier coefficients. Let F ∈ Sk(Γn) with Fourier coefficients
{A(T ) : T > 0}. The Koecher-Maass series of F is given by

D(s) :=
∑ A(T )

ε(T ) det(T )s
,

where the sum is over all half-integral, symmetric, positive definite T modulo the action
of GLn(Z). Here ε(T ) = #{U ∈ GLn(Z) : tUTU = T}. The above series converges for
Re(s) > (k + n+ 1)/2.

Theorem 5.8 (Maass [59, Pg 217]). Let k > 2n and k be even. Let F ∈ Sk(Γn) with
Fourier coefficients {A(T ) : T > 0}. Let

ξF (s) := 2(2π)−ns
n∏
i=1

π
i−1
2 Γ(s− i− 1

2
)D(s).

Then ξF (s) has a meromorphic continuation to all of C and satisfies the functional
equation ξF (k − s) = (−1)nk/2ξF (s).

The key step in the proof of the above theorem is to realize ξF (s) as a Mellin transform
of F . Let us consider the n = 2 case. Let P2 denote the space of all positive definite,
symmetric 2 × 2 real matrices. Let R2 be the Minkowski’s reduced domain defined as

the elements Y =

[
y11 y12

y21 y22

]
∈ P2 such that the following conditions are satisfied.

(1) tgY g ≥ y22 for all integral column matrices g,

(2) tgY g ≥ y11 for all integral column matrices g =

[
g1

g2

]
with (g1, g2) = 1,

(3) y12 ≥ 0.
See Pg 12 of [46] for further details. We have the following relation between R2 and P2:

P2 = t tgR2g

where the union is over all g ∈ GL2(Z).

Exercise 5.9. Let R2 and P2 be as above.
(1) Substitute the Fourier expansion of F , and use the relation between P2 and R2,

to show that∫
R2

F (iY ) detY s−3/2dY =
∑
{T}>0

A(T )

ε(T )

∫
P2

detY s−3/2e−2πTr(TY )dY.

(2) We can assume that T is a diagonal matrix given by
[
t1
t2

]
. Write

Y =

[
1
y3 1

][
y1

y2

][
1 y3

1

]
.
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Show that∫
P2

detY s−3/2e−2πTr(TY )dY

=

∫
y1>0,y2>0,y3

y
s−1/2
1 e−2πy1t1y

s−3/2
2 e−2πy2t2e−2πy23y1t2dy1dy2dy3.

(3) Use
∞∫

0

ys−1e−ydy = Γ(s),

∞∫
−∞

e−y
2
dy =

2√
π

to conclude that

ξF (s) =

∫
R2

F (iY ) detY s−3/2dY.

The Koecher-Maass series was used by Jesgarz [44] to show the following: Suppose
F ∈ Sk(Γn) have real Fourier coefficients. Then there are infinitely many T > 0 (modulo
the action of GLn(Z)) with A(T ) > 0, and similarly such that A(T ) < 0.

Theorem 5.10 (Choie, Gun, Kohnen [18]). Let k be even and let F ∈ Sk(Γn), F 6= 0.
Suppose that the Fourier coefficients {A(T ) : T > 0} are real. Then, there exist T1 >
0, T2 > 0 with

Tr(T1),Tr(T2)� (k · cn)5 log2 6(k · cn),

such that A(T1) > 0 and A(T2) < 0. Here

cn := n2n−1(4/3)n(n−1)/2.

The main idea is to look at the Fourier-Jacobi expansion of F where the coefficients
are Jacobi forms. Using Taylor expansions of these coefficients the authors reduce the
question to the case of elliptic modular forms, and then apply the results of Choie and
Kohnen in [19].
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6. Lecture 6: Cuspidal automorphic representations corresponding to
Siegel modular forms

In this lecture, we start with a cuspidal Hecke eigenform F ∈ Sk(Γn) and construct an
irreducible cuspidal automorphic representation of GSp2n(A) corresponding to it. There
are several steps for achieving this – construct a function ΦF on GSp2n(A) corresponding
to F , understand the properties it inherits from F , and study the local components of
the representation generated by ΦF . The main reference for this chapter is the article [6]
by Asgari and Schmidt. We suggest the reader to go over Appendix B and C to refresh
the details about adeles and local representation theory of GL2.

6.1. Classical to adelic. For convenience, let us now denote by G the group GSp2n.
Let F ∈ Sk(Γn). We will define a function ΦF on G(A), where A is the ring of adeles of
Q. We will use the decomposition of G(A) given in the following exercise.

Exercise 6.1. Use strong approximation of Sp2n (see [47]) to get

G(A) = G(Q)G(R)+
∏
p<∞

G(Zp).

Let us denote G∞ = G(R). Write an element g ∈ G(A) as

g = gQg∞k0, where gQ ∈ G(Q), g∞ ∈ G+
∞, k0 ∈ K0,

where K0 =
∏
p<∞Kp, with Kp = G(Zp). Then define

ΦF (g) := (F ||kg∞)(I), (28)

where I = i1n. The action ||k is defined by

(F ||kg)(Z) := µ(g)nk/2 det J(g, Z)−kF (g〈Z〉), g ∈ G(R)+, Z ∈ Hn. (29)

Note that this slash action is different from the one we defined in (15) for the classical
setting. The relation between the two slash actions is given by

F |kg = µ(g)nk/2−n(n+1)/2F ||kg. (30)

The reason for the two slash actions is that, the classical |k works very well to give a nice
formula for the Dirichlet series, while ||k defined above ensures that ΦF is trivial under
the center of G (see below).

Exercise 6.2. In this exercise, we will show that ΦF is well-defined.
i) Consider an element g = g∞ ⊗p<∞ 1 ∈ G(A), with g∞ ∈ G+

∞. Suppose g = g′ :=
g′Qg

′
∞k
′
0 is another expression for g. Show that g∞ = g′Qg

′
∞ and g′Q ∈ Γn.

ii) Use the automorphy of F to show that ΦF is well-defined.

The map F 7→ ΦF gives an injection from Sk(Γn) to a space of functions Φ : G(A)→ C
satisfying the following properties.
i) Φ(γg) = Φ(g) for γ ∈ G(Q),
ii) Φ(gk0) = Φ(g) for k0 ∈ K0,
iii) Φ(gk∞) = detJ(k∞, I)−kΦ(g) for k∞ ∈ K∞,
iv) Φ(gz) = Φ(g) for z ∈ Z(A).
Here Z ∼= GL1 is the center of G, and K∞ ' Un is the standard maximal compact
subgroup of Sp2n(R). We can see that K∞ is the stabilizer of I.
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Lemma 6.3. Let F ∈ Sk(Γn). Then ΦF is cuspidal, i.e., for every unipotent radical N
of every proper parabolic subgroup of G, we have∫

N(Q)\N(A)

ΦF (ng)dn = 0, for all g ∈ G(A).

Note that we are using n for the genus, as well as elements of the unipotent subgroup
N . Hopefully, the context makes the choice clear, and there is no confusion.

Remark 6.4. For n = 2, there are 3 standard proper parabolic subgroups of G.

(1) The Borel parabolic subgroup B = {


∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

 ∈ G} with unipotent radical

{


1 ∗ ∗
∗ 1 ∗ ∗

1 ∗
1

 ∈ B}.
(2) The Siegel parabolic subgroup P = {

[
A B
C D

]
∈ G : C = 0} with unipotent radical

{
[

1 X
1

]
: X ∈M2,

tX = X}.

(3) The Klingen parabolic subgroup Q = {


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

 ∈ G} with unipotent radical

{


1 ∗
∗ 1 ∗ ∗

1 ∗
1

 ∈ Q}.
Sketch of proof of Lemma 6.3: It is enough to verify the cusp condition for the standard

maximal parabolics. Let P = MN be one of those. By the Iwasawa decomposition
G = PK, with K = K0K∞, we can reduce to g ∈ P (A). Since M normalizes N , we
can reduce to g ∈M(A). Using strong approximation for M(A), we can further assume
that g ∈ M+

∞ := M(R) ∩ G+
∞. It will be enough if we can show that the integral over

V (Q)\V (A) is zero, where V is the intersection of all the unipotent radicals of all the
maximal parabolic subgroups. (This is because, we can first integrate over the smaller
space, and if the inner integral is zero, then the whole integral is zero.) Now, observe

that V consists of matrices of the form
[

1n X
1n

]
with X in V ′, the set of symmetric

n × n matrices with non-zero entries only in the last row and column. (Check this for
the n = 2 case). With Z = g〈I〉, we now get∫
V (Q)\V (A)

ΦF (ng)dn =

∫
V (Z)\V (R)

ΦF (ng)dn = µ(g)nk/2
∫

V (Z)\V (R)

F (ng〈I〉)J(ng, I)−kdn
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= µ(g)nk/2
∫

V ′(Z)\V ′(R)

F (Z +X)J(g, I)−kdX.

We have the Fourier expansion of F given by

F (Z) =
∑
T>0

A(T )e2πiTr(TZ).

We are only summing over T > 0 because F is a cusp form. Using this we get∫
V (Q)\V (A)

ΦF (ng)dn = µ(g)nk/2
∑
T>0

A(T )e2πiTr(TZ)J(g, I)−k
∫

V ′(Z)\V ′(R)

e2πiTr(TX)dX.

Since T is non-degenerate, the map

X 7→ e2πiTr(TX)

is a non-trivial character on V ′(Z)\V ′(R). Hence, the integral is zero. �
The next exercise shows how one can take Fourier coefficients of the adelic function

ΦF , and its relation to the Fourier coefficients of F .

Exercise 6.5. Let n = 2. Let U be the unipotent radical of the Siegel parabolic subgroup
of G. Let ψ : Q\A→ C× be the character such that ψ(x) = e2πix if x ∈ R, and ψ(x) = 1
for x ∈ Zp. Given S ∈ Sym2(Q), one obtains a character θS of U(Q)\U(A) by

θS(

[
1 X

1

]
) = ψ(Tr(SX)).

Note that every character of U(Q)\U(A) is obtained in this way. For S ∈ Sym2(Q) we
define the following adelic Fourier coefficient of ΦF ,

ΦS
F (g) :=

∫
U(Q)\U(A)

ΦF (ng)θ−1
S (n) dn for g ∈ G(A).

Show that, if S ∈ Sym2(Q) is positive definite and half-integral, then

ΦS
F (1) = A(S)e−2πTr(S).

We have Γn\Hn ' Z(A)G(Q)\G(A)/K. The Haar measure on G(A) induces a mea-
sure on the right hand side, and the corresponding measure on the left is a scalar mul-
tiple of the invariant volume element d∗Z on Hn. In other words, if a Γn-invariant
function f on Hn and a G(Q)-invariant function Φ on Z(A)\G(A)/K are related by
f(g∞〈I〉) = Φ(g∞), for all g∞ ∈ G+

∞, then∫
Γn\Hn

f(Z)d∗Z =

∫
Z(A)G(Q)\G(A)/K

Φ(g)dg =

∫
Z(A)G(Q)\G(A)

Φ(g)dg.

Exercise 6.6. Show that, if F1, F2 ∈ Sk(Γn), then

〈F1, F2〉 = 〈ΦF1 ,ΦF2〉.
Here, on the left hand side we have the Petersson inner product (10) of classical Siegel
modular forms, and on the right hand side we have the ordinary L2-scalar product given
by
∫
Z(A)G(Q)\G(A) ΦF1(g)ΦF2(g)dg.
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6.2. Hecke equivariance. Let Gp = G(Qp) and Kp = G(Zp). Let H(Gp,Kp) be the
Hecke algebra of Gp consisting of compactly supported functions f : Gp → C, which are
left and right Kp-invariant. The product in H(Gp,Kp) is given by convolution

(f ∗ g)(x) =

∫
Gp

f(xy)g(y−1)dy.

Exercise 6.7. H(Gp,Kp) is spanned by the characteristic functions of the sets KpgKp

for g ∈ Gp.

Recall that Hn,p is the p-component of the classical Hecke algebra defined in Section
3.1. We know thatHn,p is generated by double cosets ΓnMΓn forM ∈ G(Z[p−1])+. Here,
Z[p−1] is the ring of rational numbers with only powers of p in the denominator. There
is a bijection Γn\G(Z[p−1])+/Γn ' G(Z)\G(Z[p−1])+/G(Z) ' Kp\Gp/Kp induced by
the inclusions of the groups. This gives us an isomorphism

Hn,p ' H(Gp,Kp).

We will henceforth identify these two Hecke algebras. The definition (14) gives us the
action of Hn,p on Sk(Γn). We can also define an action of H(Gp,Kp) on adelic functions
as follows.

(TΦ)(g) =

∫
Gp

T (h)Φ(gh)dh, T ∈ H(Gp,Kp), g ∈ G(A).

If T is the characteristic function of KpMKp = tiMiKp and Φ is right Kp invariant then

(TΦ)(g) =
∑
i

Φ(gMi).

Here, we are assuming that the Haar measure on Gp is normalized so that the volume
of Kp is 1. If T = ΓnMΓn = tiΓnM ′i , then we can define

F ||kT =
∑
i

F ||kM ′i .

From (30), it is clear that F ||kT = µ(M)n(n+1−k)/2TF , where TF is the action of the
Hecke operator on F using the |k action.

Lemma 6.8. Identify the Hecke algebras Hn,p and H(Gp,Kp). Let F ∈ Sk(Γn) and ΦF

be the corresponding function on G(A). For every T ∈ H(Gp,Kp), we have

TΦF = ΦF ||kT .

This is Lemma 9 of [6]. We can now summarize the results of this section in the
following theorem.

Theorem 6.9. The mapping F 7→ ΦF given in (28) maps the space Sk(Γn) of classical
Siegel cusp forms of weight k and degree n isometrically and in a Hecke-equivariant way
into a subspace of L2

0(Z(A)G(Q)\G(A)) consisting of continuous functions Φ on G(A)
with the following properties:
i) Φ(γg) = Φ(g) for γ ∈ G(Q)
ii) Φ(gk0) = Φ(g) for k0 ∈ K0

iii) Φ(gk∞) = J(k∞, I)−kΦ(g) for k∞ ∈ K∞ ' Un
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iv) Φ(gz) = Φ(g) for z ∈ Z(A)
v) Φ is a smooth function on G(R)+ (fixed finite components), and is annihilated by

p−C ,
vi) Φ is cuspidal.

We have added part v) in the above theorem, which provides information on the
archimedean component. See Lemma 7 of [6] for details.

6.3. Satake isomorphism. Let us briefly discuss the Satake isomorphism for Hecke
algebras. The standard maximal torus of G is given by

T := {diag(u1, u2, · · · , un, u−1
1 u0, u

−1
2 u0, · · · , u−1

n u0) : ui ∈ GL1 for i = 0, 1, · · · , n}.

Let T ◦ := T (Zp) ⊂ T (Qp). Consider the Hecke algebra H(T, T ◦) of compactly supported
functions on T that are right and left T ◦-invariant. Consider the n + 1 elements of
H(T, T ◦) given by

X0 := char(diag(Z×p , · · · ,Z×p , pZ×p , · · · , pZ×p )),

X1 := char(diag(pZ×p ,Z×p , · · · ,Z×p , p−1Z×p ,Z×p , · · · ,Z×p )),

· · ·Xn := char(diag(Z×p , · · · ,Z×p , pZ×p ,Z×p , · · · ,Z×p , p−1Z×p )).

Exercise 6.10. Show that

H(T, T ◦) = C[X±1
0 , X±1

1 , · · · , X±1
n ].

For an element f ∈ H(Gp,Kp), define the Satake transform by

(Sf)(t) := |δB(t)|
1
2

∫
N

f(tn)dn = |δB(t)|−
1
2

∫
N

f(nt)dn,

where

δB(t) = u
−n(n+1)/2
0 u2

1u
4
2 · · ·u2n

n , for t = diag(u1, u2, · · · , un, u−1
1 u0, u

−1
2 u0, · · · , u−1

n u0).

Here, N is the unipotent radical of the Borel subgroup B. It consists of matrices of

the form
[
A

tA−1

][
1 X

1

]
, where A ∈ GLn(Qp) is lower triangular with 1’s on the

diagonal, and X is a symmetric matrix in Mn(Qp). The Weyl group W of G acts on
the torus T by permuting u1, · · · , un and replacing ui’s by u0u

−1
i . It can be shown that

Sf ∈ H(T, T ◦)W , the space of W -invariant elements. In fact, the Satake map gives an
isomorphism (see Section 3.1 of [6])

H(Gp,Kp) ' H(T, T ◦)W .

Let us see the image of this map on the characteristic function of a double coset KpMKp.
Suppose KpMKp = tiMiKp, where

Mi =

[
Ai Bi

pdi0 tA−1
i

]
, with Ai =

p
di1 0

. . .
∗ pdin

 .
Here di0 does not depend on i, it equals the valuation of µ(M).
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Let t = diag(pk1 , · · · , pkn , pk0−k1 , · · · , pk0−kn). We have∫
N

1MiKp(tn)dn =

{
1 if kj = dij for all j = 0, 1, · · · , n,
0 otherwise.

Here 1X is the characteristic function of the set X. We can conclude that(
t 7→

∫
N

1MiKp(tn)dn
)

= Xdi0
0 Xdi1

1 · · ·Xdin
n .

This leads to the following formula for the Satake transform.

Lemma 6.11. Let f = char(ΓnMΓn), with M as above. Let δ be the valuation of µ(M).
Then

Sf = pδn(n+1)/4Xδ
0

∑
i

n∏
j=1

(p−jXj)
dij .

This is Lemma 1 of [6]. We will compare this with the classical formula (16) in Exercise
6.13.

6.4. Spherical representations. An irreducible, admissible representation of Gp is
called spherical if it contains a non-zero vector fixed by Kp. All the spherical represen-
tations of Gp are obtained as follows. Let χ0, χ1, · · · , χn be unramified characters of Q×p
(i.e. homomorphisms from Q×p → C× that are trivial on Z×p ). They define an unramified
character, call it χ, of the Borel subgroup B = TN which is trivial on N and, on T , is
given by

t = diag(u1, u2, · · · , un, u−1
1 u0, u

−1
2 u0, · · · , u−1

n u0) 7→ χ0(u0)χ1(u1) · · ·χn(un).

The representation Ind
Gp
B (χ) of Gp obtained by normalized induction from χ consists of

locally constant functions on Gp satisfying

f(tng) = |δB(t)|1/2χ(t)f(g), for all t ∈ T, n ∈ N and g ∈ Gp.

Exercise 6.12. Show that the central character of the above induced representation is
χ2

0χ1 · · ·χn.

The representation Ind
Gp
B (χ) has a unique sub-representation or a sub-quotient which

is a spherical representation. It is called the spherical constituent and let us denote it
by

π = π(χ0, χ1, · · · , χn).

The isomorphism class of this representation depends only on the unramified charac-
ters modulo the action of the Weyl group. It is further known that every spherical
representation of Gp is obtained in this way. Thus, there is a bijection between un-
ramified characters of T modulo the action of the Weyl group, and isomorphism classes
of spherical representations of Gp. Each unramified character of Q×p is determined by
its value on p. This value may be any non-zero complex number. Hence, any vector
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(b0, b1, · · · , bn) ∈ (C×)n+1/W gives a character χ, up to action by the Weyl group. We
have the following diagram.

{ spherical representations } // Homalg(H(Gp,Kp),C)

��
{ unramified characters }/W

OO

(C×)n+1/Woo

All the maps above are bijections. The left arrow is induction and then taking the
spherical constituent, the top arrow is the action ofH(Gp,Kp) on the spherical vector, the
map on the right comes from the identification H(Gp,Kp) ' C[X±1

0 , X±1
1 , · · · , X±1

n ]W ,
and the bottom arrow assigns to the vector (b0, b1, · · · , bn) the characters χi(p) = bi.

Finally, we have the following local standard and spin L-functions of the representation
π:

L(s, π, std)−1 := (1− p−s)
n∏
i=1

(1− bip−s)(1− b−1
i p−s)

L(s, π, spin)−1 :=

n∏
k=0

∏
1≤i1<···<ik≤n

(1− b0bi1 · · · bikp
−s)

See Section 3.2 of [6] for further details on spherical representations of Gp.

6.5. The representation associated to a Siegel cusp form. Let F ∈ Sk(Γn) be a
Hecke eigenform and let ΦF be the corresponding cusp form on G(A). For any g ∈ G(A),
the translate of ΦF by g is the function G(A) 3 h 7→ ΦF (hg). Let VF be the subspace
of L2

0(Z(A)G(Q)\G(A)) spanned by the translates of ΦF . The group G(A) acts on
VF by right translation giving us a represenattion πF of G(A). A result of Narita,
Pitale, Schmidt [64, Theorem 3.1] guarantees that πF is irreducible. πF is a cuspidal
automorphic representation of G(A), which is trivial on Z(A). We may thus consider πF
as an automorphic representation of PGSp2n(A).

Let πF ∼= ⊗pπp, be the restricted tensor product. Here, πp is an irreducible ad-
missible representation of Gp. For a finite prime p, Theorem 6.9 tells us that ΦF is
right Kp-invariant. Hence, for every finite prime p, the representation πp is a spherical
representation of Gp. Hence, πp is of the form π(χ0, χ1, · · · , χn) for some unramified
characters χi of Q×p .

Exercise 6.13. Set bi = χi(p) as before. Recall α0,p, α1,p, · · · , αn,p, the classical Satake
p-parameters of F defined in (16).
i) Show that

b0 = pn(n+1)/4−nk/2α0,p and bi = αi,p for i = 1, · · · , n.
ii) Show that πp has trivial central character.
iii) Let L(s, πF , spin) =

∏
p L(s, πp, spin). Find the relation between L(s, F, spin) and

L(s, πF , spin). Further, for n = 2, find out what kind of functional equation does
the completion of L(s, πF , spin) satisfy.

At the archimedean place, π∞ is a representation of G(R) containing a vector v∞ such
that p−Cv∞ = 0 and, π∞(k∞)v∞ = J(k∞, I)−kv∞ for every k∞ ∈ K∞. A representation
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of G(R) has such a vector if and only if it is a lowest weight representation πk of G(R).
It is in the holomorphic discrete series if k > n, and is in the limit of a holomorphic
discrete series if k = n.

Theorem 6.14. Let F ∈ Sk(Γn) be a Hecke eigenform and let πF be the cuspidal auto-
morphic representation of PGSp2n(A) associated by F . Let πF ∼= ⊗pπp.
i) For a finite prime p, the local representation πp is a spherical representation of

PGSp2n(Qp) with unramified characters χ0, χ1, · · · , χn given by χi(p) = αi,p for
all i = 1, · · · , n and χ0(p) = pn(n+1)/4−nk/2α0,p, where the α0,p, · · · , αn,p are the
classical Satake p-parameters of F .

ii) At the archimedean place, π∞ is the lowest weight representation πk of G(R).
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7. Lecture 7: Local representation theory of GSp4(Qp)

In this lecture, we will discuss the representation theory of GSp4(Qp). The genus 2 case
provides a very good introduction to the study of local representations of the symplectic
groups. The genus 2 case also has the advantage of detailed tables of data compiled by
Roberts and Schmidt. We will present some of these tables and data corresponding to
the classification of the local representations, the Iwahori fixed vectors in the Iwahori
spherical representations and the paramodular theory.

7.1. Local non-archimedean representations for GSp4. In the previous lecture, we
have seen that the local non-archimedean component πp of the automorphic representa-
tion πF associated to a Hecke eigenform F ∈ Sk(Γn) is a spherical representation. This
is obtained from a representation of GSp2n(Qp) induced from an unramified character
of the Borel subgroup. We will try to understand how a general irreducible admissible
representation of GSp2n(Qp) looks like. We will restrict ourselves to genus 2. As before,
let us denote G = GSp4. Let π ∼= ⊗pπp be an irreducible cuspidal automorphic represen-
tation of G(A). For a finite prime p, each πp is an irreducible admissible representation of
Gp = G(Qp). There are two possibilities for πp – it is either supercuspidal or not. In the
latter case, we know that it is obtained as a constituent of an induced representation.
In the previous section, we have already seen representations induced from the Borel
subgroup. As we saw in Remark 6.4, GSp4 has two more proper parabolic subgroups.
Let us set up notation for the representations induced from these parabolic subgroups
now.
i) Borel subgroup B: Let χ1, χ2, σ be characters of Q×p . As before, we get a character

of the Borel subgroup B(Qp) given by
a ∗ ∗
∗ b ∗ ∗

ca−1 ∗
cb−1

 7→ χ1(b)χ2(a)σ(c).

The representation of Gp obtained by normalized parabolic induction of this charac-
ter of B(Qp) is denoted by χ1 × χ2 o σ. The standard model of this representation
consists of all locally constant functions f : Gp → C that satisfy

f(


a ∗ ∗
∗ b ∗ ∗

ca−1 ∗
cb−1

 g) = |ab2||c|−3/2χ1(b)χ2(a)σ(c)f(g).

The group acts on this space by right translation and the central character of χ1 ×
χ2 o σ is σ2χ1χ2.

ii) Siegel parabolic subgroup P : Let (π, V ) be an irreducible admissible representation of
GL2(Qp) and let σ be a character of Q×p . Then we denote by πoσ the representation
of Gp obtained by normalized parabolic induction from the representation of the
Siegel parabolic subgroup P (Qp) on V given by[

A ∗
c tA−1

]
7→ σ(c)π(A).



41

The standard model of this representation consists of all locally constant functions
f : Gp → V that satisfy

f(

[
A ∗
c tA−1

]
g) = | det(A)c−1|3/2σ(c)π(A)f(g).

If ωπ is the central character of π, then the central character of π o σ is ωπσ2.
iii) Klingen parabolic subgroup Q: Let χ be a character of Q×p and let (π, V ) be an

irreducible admissible representation of GL2(Qp). Then we denote by χ o π the
representation of Gp obtained by normalized parabolic induction from the represen-
tation of the Klingen parabolic Q(Qp) on V given by

a b ∗
∗ t ∗ ∗
c d ∗

∆t−1

 7→ χ(t)π(

[
a b
c d

]
), ∆ = ad− bc.

The standard model of this representation consists of all locally constant functions
f : Gp → V that satisfy

f(


a b ∗
∗ t ∗ ∗
c d ∗

∆t−1

 g) = |t2(ad− bc)−1|χ(t)π(

[
a b
c d

]
)f(g).

If ωπ is the central character of π, then the central character of χo π is χωπ.

Exercise 7.1. Let π = χ1 × χ2 o σ be the Borel induced representation of Gp. There
are 8 elements in the Weyl group W of Gp. Given an element w ∈ W , we can define
an action on the torus as in Section 6.3, and get a new character from χ1, χ2, σ, which
gives another Borel induced representation πw of Gp. It is known that the constituents
of both π and πw are the same. In particular, if they are irreducible, then π ' πw. List
all the possible πw for w ∈W .

Using the results of Sally and Tadic [90], we describe a useful listing of the non-
supercuspidal, irreducible, admissible representations of Gp. The basis for this list is the
fact that every non-supercuspidal, irreducible, admissible representation of Gp is a con-
stituent (irreducible subquotient) of a parabolically induced representation with proper
supercuspidal inducing data. Given this, one might try to classify the non-supercuspidal,
irreducible, admissible representations of Gp by doing the following: First, write down
all the supercuspidal inducing data for the Borel, Klingen and Siegel parabolic subgroups
of Gp. Second, determine the Langlands classification data of all the constituents of all
the resulting parabolically induced representations. Third, find all the possible ways in
which a fixed non-supercuspidal, irreducible, admissible representation of Gp arises as
a constituent in the second step; the results of this step may show that some of the
supercuspidal inducing data from the first step is redundant from the point of view of
listing all representations.

In fact, the paper of Sally and Tadic [90] has carried out the difficult aspects of this
procedure. It turns out that eleven groups of supercuspidal inducing data are required.
Groups I to VI contain representations supported in B, i.e., these representations are
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Table 1. These are the non-supercuspidal representations of Gp.

constituent of representation tempered L2 g

I χ1 × χ2 o σ (irreducible) χi, σ unit. •

a ν1/2χ× ν−1/2χo σ χStGL(2) o σ χ, σ unit. •
II

b (χ2 6= ν±1, χ 6= ν±3/2) χ1GL(2) o σ

a χ× ν o ν−1/2σ χo σStGSp(2) π, σ unit. •
III

b (χ /∈ {1, ν±2}) χo σ1GSp(2)

a σStGSp(4) σ unit. • •

b L(ν2, ν−1σStGSp(2))IV
c

ν2 × ν o ν−3/2σ
L(ν3/2StGL(2), ν

−3/2σ)

d σ1GSp(4)

a δ([ξ, νξ], ν−1/2σ) σ unit. • •

b νξ × ξ o ν−1/2σ L(ν1/2ξStGL(2), ν
−1/2σ)

V
c (ξ2 = 1, ξ 6= 1) L(ν1/2ξStGL(2), ξν

−1/2σ)

d L(νξ, ξ o ν−1/2σ)

a τ(S, ν−1/2σ) σ unit. •

b τ(T, ν−1/2σ) σ unit.
VI

c
ν × 1F× o ν−1/2σ

L(ν1/2StGL(2), ν
−1/2σ)

d L(ν, 1F× o ν−1/2σ)

VII χo π (irreducible) χ, π unit. •

a τ(S, π) π unit. •
VIII

b
1F× o π

τ(T, π) π unit.

a νξ o ν−1/2π δ(νξ, ν−1/2π) π unit. • •
IX

b (ξ 6= 1, ξπ = π) L(νξ, ν−1/2π)

X π o σ (irreducible) π, σ unit. •

a ν1/2π o ν−1/2σ δ(ν1/2π, ν−1/2σ) π, σ unit. • •
XI

b (ωπ = 1) L(ν1/2π, ν−1/2σ)
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constituents of induced representations of the form χ1×χ2oσ. The induced representa-
tion χ1×χ2 oσ is irreducible if and only if χ1 6= ν±1, χ2 6= ν±1 and χ1 6= ν±1χ±1

2 . Here,
ν is the unramified character of Q×p defined by ν(a) = |a|. Groups VII, VIII and IX
contain representations supported in Q, i.e., they are constituents of induced representa-
tions of the form χo π, where π is a supercuspidal representation of GL2(Qp). Finally,
groups X and XI contain representations supported in P , i.e., they are constituents of
induced representations of the form π o σ, where π is a supercuspidal representation
of GL2(Qp). All of this data (and more) is included in Table 1 above of irreducible,
non-supercuspidal representations of Gp. In Table 2 below, we have the conditions for
unitarity.

Exercise 7.2. Let (π, V ) = η−1 × η be an induced representation of GL2(Qp). Let
τ = | det |−1/2π. Show that τ o ν1/2 ' ν−1/2η × ν−1/2η−1 o ν1/2.

7.2. Generic representations. Fix a non-trivial additive character ψ of Qp. Every
other such character is given by x 7→ ψ(cx) for c ∈ Q×p . Let c1, c2 be two elements of Q×p .
We obtain a character of the unipotent radical N of the Borel subgroup B as follows.

ψc1,c2(


1 y ∗
x 1 ∗ ∗

1 −x
1

) = ψ(c1x+ c2y).

An irreducible admissible representation π of Gp is called generic if there is a non-zero
linear functional ` on Vπ satisfying

`
(
π(


1 y ∗
x 1 ∗ ∗

1 −x
1

)v
)

= ψ(c1x+ c2y)`(v), for all v ∈ Vπ,

i.e. HomN(Qp)(π, ψc1,c2) 6= 0. Such a non-zero functional is called a Whittaker functional.

Exercise 7.3. Let π be generic and let 0 6= ` ∈ HomN(Qp)(π, ψc1,c2). For every v ∈ Vπ,
define a C-valued function Wv on Gp by

Wv(g) := `(π(g)v).

Show that Wv satisfies

Wv(


1 y ∗
x 1 ∗ ∗

1 −x
1

 g) = ψ(c1x+ c2y)Wv(g), for all g ∈ Gp. (31)

The above exercise tells us that a generic representation has a Whittaker model, i.e., it
is isomorphic to a space of C-valued functions on Gp which satisfy (31). We will denote
the Whittaker model by W(π, ψc1,c2).

Exercise 7.4. Suppose π is given by its Whittaker model W(π, ψc1,c2). Give a formula
for a Whittaker functional on π.

It has been shown in [83] that, if π has a Whittaker model then it is unique. The
independence of existence on c1, c2 is shown in the next exercise.
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Table 2. Conditions for unitarity

representation conditions for unitarity

e(χ1) = e(χ2) = e(σ) = 0

χ1 = νβχ, χ2 = νβχ−1, e(σ) = −β,
e(χ) = 0, χ2 6= 1, 0 < β < 1/2

I χ1 × χ2 o σ (irreducible) χ1 = νβ, e(χ2) = 0, e(σ) = −β/2,
χ2 6= 1, 0 < β < 1

χ1 = νβ1χ, χ2 = νβ2χ, e(σ) = (−β1 − β2)/2,

χ2 = 1, 0 ≤ β2 ≤ β1, 0 < β1 < 1, β1 + β2 < 1

e(σ) = e(χ) = 0a χStGL(2) o σ
χ = ξνβ, e(σ) = −β, ξ2 = 1, 0 < β < 1/2II

e(σ) = e(χ) = 0b χ1GL(2) o σ
χ = ξνβ, e(σ) = −β, ξ2 = 1, 0 < β < 1/2

a χo σStGSp(2) e(σ) = e(χ) = 0III
b χo σ1GSp(2) e(σ) = e(χ) = 0

a σStGSp(4) e(σ) = 0

b L(ν2, ν−1σStGSp(2)) never unitaryIV
c L(ν3/2StGSp(2), ν

−3/2σ) never unitary
d σ1GSp(4) e(σ) = 0

a δ([ξ, νξ], ν−1/2σ) e(σ) = 0

b L(ν1/2ξStGL(2), ν
−1/2σ) e(σ) = 0V

c L(ν1/2ξStGL(2), ξν
−1/2σ) e(σ) = 0

d L(νξ, ξ o ν−1/2σ) e(σ) = 0

a τ(S, ν−1/2σ) e(σ) = 0

b τ(T, ν−1/2σ) e(σ) = 0VI
c L(ν1/2StGL(2), ν

−1/2σ) e(σ) = 0

d L(ν, 1F× o ν−1/2σ) e(σ) = 0

e(χ) = e(π) = 0

VII χo π (irreducible) χ = νβξ, π = ν−β/2ρ, 0 < β < 1,

ξ2 = 1, ξ 6= 1, e(ρ) = 0, ξρ = ρ

a τ(S, π) e(π) = 0VIII
b τ(T, π) e(π) = 0

a δ(νξ, ν−1/2π) e(π) = 0IX
b L(νξ, ν−1/2π) e(π) = 0

e(σ) = e(π) = 0X π o σ (irreducible)
π = νβρ, e(σ) = −β, 0 < β < 1/2, ωρ = 1

a δ(ν1/2π, ν−1/2σ) e(σ) = e(π) = 0XI
b L(ν1/2π, ν−1/2σ) e(σ) = e(π) = 0
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Exercise 7.5. Suppose that HomN(Qp)(π, ψ1,1) 6= 0. Then show that, for any c1, c2 ∈
Q×p , we have HomN(Qp)(π, ψc1,c2) 6= 0.

The last column in Table 1 states exactly which non-supercuspidal representation is
generic. Note that each group has exactly one which is generic.

7.3. Iwahori spherical representations. In the previous lecture, we have seen that
if χ1, χ2, σ are unramified, then χ1 × χ2 o σ has a unique spherical constituent. This
means that, out of all the representations of Types II to VI, there is only one in the
group that is spherical. It turns out that all the other representations do have vectors
invariant under some special compact subgroups called the parahoric subgroups. Define
the Iwahori subgroup I of Gp by

I = Kp ∩


Zp pZp Zp Zp
Zp Zp Zp Zp
pZp pZp Zp Zp
pZp pZp pZp Zp

 . (32)

Recall that Kp = GSp4(Zp). The Atkin-Lehner element

η1 =


−1

1
p

−p


normalizes I. There are 4 other parahoric subgroups of Gp. They are given by

Kp, P1 = Kp ∩


Zp Zp Zp Zp
Zp Zp Zp Zp
pZp pZp Zp Zp
pZp pZp Zp Zp

 , P2 = Kp ∩


Zp pZp Zp Zp
Zp Zp Zp Zp
Zp pZp Zp Zp
pZp pZp pZp Zp

 ,

P0,2 = {k ∈ Gp ∩


Zp pZp Zp Zp
Zp Zp Zp p−1Zp
Zp pZp Zp Zp
pZp pZp pZp Zp

 : det(k) ∈ Z×p }.

P1 is the Siegel congruence subgroup, P2 is the Klingen congruence subgroup, and P0,2

is the paramodular group, which is a maximal compact subgroup of Gp which is not
conjugate to Kp.

Exercise 7.6. Let

s0 =


1

−p−1

1
p

 , s1 =


1

1
1

1

 , s2 =


1

1
−1

1

 .
For a subset S of {s0, s1, s2}, define PS := ts∈〈S〉IsI. Show that Ps1,s2 = Kp, Ps0,s2 =
P0,2, Ps1 = P1, Ps2 = P2. Here, 〈S〉 is the group generated by the elements of S.

An irreducible admissible representation π of Gp is called Iwahori spherical if π con-
tains a vector that is invariant under I. It is known that any Iwahori spherical represen-
tation is obtained as a subquotient of χ1 × χ2 o σ for unramified characters χ1, χ2, σ.
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Schmidt [92] has obtained the dimensions of vectors invariant under the various para-
horic subgroups, and these are given in Table 3 below. Since η1 normalizes I, it acts
on the I-invariant vectors in π. This is a finite dimensional vector space, and you can
diagonalize η1 on this space. Note that, since η2

1 = η1, the eigenvalues are ±1.

Table 3. The Iwahori-spherical representations of Gp, and the dimen-
sions of their spaces of fixed vectors under the parahoric subgroups.

π Kp P0,2 P2 P1 I

I χ1 × χ2 o σ (irreducible) 1 2
+−

4 4
++
−−

8
++++
−−−−

II a χStGL(2) o σ 0 1
−

2 1
−

4
+−−−

b χ1GL(2) o σ 1 1
+

2 3
++−

4
+++−

III a χo σStGSp(2) 0 0 1 2
+−

4
++−−

b χo σ1GSp(2) 1 2
+−

3 2
+−

4
++−−

IV a σStGSp(4) 0 0 0 0 1
−

b L(ν2, ν−1σStGSp(2)) 0 0 1 2
+−

3
++−

c L(ν3/2StGL(2), ν
−3/2σ) 0 1

−
2 1

−
3

+−−

d σ1GSp(4) 1 1
+

1 1
+

1
+

V a δ([ξ, νξ], ν−1/2σ) 0 0 1 0 2
+−

b L(ν1/2ξStGL(2), ν
−1/2σ) 0 1

+
1 1

+
2
++

c L(ν1/2ξStGL(2), ξν
−1/2σ) 0 1

−
1 1

−
2
−−

d L(νξ, ξ o ν−1/2σ) 1 0 1 2
+−

2
+−

VI a τ(S, ν−1/2σ) 0 0 1 1
−

3
+−−

b τ(T, ν−1/2σ) 0 0 0 1
+

1
+

c L(ν1/2StGL(2), ν
−1/2σ) 0 1

−
1 0 1

−

d L(ν, 1F× o ν−1/2σ) 1 1
+

2 2
+−

3
++−
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Schmidt used the local theory of Iwahori spherical representations of Gp to formulate
a new-forms theory for Siegel cusp forms with square-free level. Let N > 1 be a square-
free integer. The space of old forms of weight k and level N , denoted by Sk(B(N))old,
is sum of the spaces

Sk(B(N1) ∩ ηN2Q(N2)η−1
N2

) + Sk(B(N1) ∩ P (N2)) + Sk(B(N1) ∩Q(N2)),

where N1, N2 runs through all positive integers such that N1N2 = N,N2 > 1. The
orthogonal complement of Sk(B(N))old in Sk(B(N)) is defined to be the space of new-
forms Sk(B(N))new.

If F ∈ Sk(B(N))new is a Hecke eigenform for all p - N , one can construct ΦF on G(A)
which generates a representation πF . Let πF ∼= ⊗πp. Then it can be shown that, for
primes p|N , πp is a Type IVa representation – the Steinberg representation for Gp.

7.4. Paramodular theory. The local analogue of the paramodular congruence sub-
group is given by

K(n) := {k ∈ Gp ∩


Zp pnZp Zp Zp
Zp Zp Zp p−nZp
Zp pnZp Zp Zp
pnZp pnZp pnZp Zp

 : det(k) ∈ Z×p }, n ≥ 0. (33)

Note that K(0) = Kp. Also, we do not have K(n+ 1) ⊂ K(n).

Exercise 7.7. The Atkin-Lehner element is defined by

ηn :=


−1

1
pn

−pn


Show that K(n) is normalized by ηn. Hence, show that if there is a vector v in a repre-
sentation π of Gp that is invariant under K(n), then so is π(ηn)v.

Given an irreducible admissible representation (π, V ) of Gp, define

V (n) := {v ∈ V : π(k)v = v, for all k ∈ K(n)}.
If there is a n ≥ 0 such that V (n) 6= 0, then we say that π is a paramodular representation.
If π is paramodular, then define the paramodular level of π to be the smallest non-
negative integer Nπ such that V (Nπ) 6= 0. For example, if π is spherical then clearly π
is paramodular and has paramodular level 0.

An important tool to understand the paramodular theory is the paramodular Hecke
algebra H(Gp,K(n)) of compactly supported functions on Gp that are left and right
K(n)-invariant.

Exercise 7.8. Show that, if v ∈ V (n) then Tv ∈ V (n) for all T ∈ H(Gp,K(n)).

In particular, there are two Hecke operators that play a significant role

T0,1 = char(K(n)


p

p
1

1

K(n)), T1,0 = char(K(n)


p

p2

p
1

K(n)).
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For n = 0 we have the following single coset decompositions (see [81, Pg 187-188]).

Kp


p

p
1

1

Kp =
⊔

x,y,z∈Zp/pZp


1 x y

1 y z
1

1



p

p
1

1

Kp

t
⊔

x∈Zp/pZp


1 x

1
1

1



p

1
1

p

Kp t


1

1
p

p

Kp

t
⊔

x,z∈Zp/pZp


1
x 1

1 −x
1




1
1 z

1
1




1
p

p
1

Kp

Kp


p

p2

1
p

Kp =
⊔

z∈Zp/p2Zp
x,y∈Zp/pZp


1
x 1

1 −x
1




1 y
1 y z

1
1



p

p2

p
1

Kp

t
⊔

d∈Zp/p2Zp
c∈Zp/pZp


1 d c

1 c
1

1



p2

p
1

p

Kp t


p

1
p

p2

Kp

t
⊔

x∈Zp/pZp


1
x 1

1 −x
1




1
p

p2

p

Kp

t
⊔

d∈(Zp/pZp)×


1 d/p

1
1

1



p

p
p

p

Kp

t
⊔

u∈(Zp/pZp)×

λ∈Zp/pZp


1 λ2u/p λu/p

1 λu/p u/p
1

1



p

p
p

p

Kp.

Exercise 7.9. Let χ1, χ2, σ be unramified characters with χ1χ2σ
2 = 1 and let π =

χ1 × χ2 o σ be given by its induced model. Let f0 be the essentially unique nonzero
vector in Vπ which is invariant under Kp. Let λ, µ be the Hecke eigenvalues defined by
T0,1f0 = λf0 and T1,0f0 = µf0. Use the coset decomposition above to show that

λ = p3/2σ(p)(1 + χ1(p))(1 + χ2(p)),

µ = p2(χ1(p) + χ−1
1 (p) + χ2(p) + χ−1

2 (p) + 1− p−2).

The following new forms theory has been obtained by Roberts and Schmidt in [81].
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Theorem 7.10 (Roberts, Schmidt [81]). Let (π, V ) be an irreducible admissible repre-
sentation of Gp with trivial central character.
i) If π is paramodular, and Nπ is the paramodular level, then dim(V (Nπ)) = 1.
ii) Assume that π is generic and given by the Whittaker model W(π, ψc1,c2), with c1, c2 ∈

Z×p , and conductor of ψ equal to Zp. Then π is paramodular. For any W ∈
W(π, ψc1,c2), define the zeta integral

Z(s,W ) :=

∫
Q×p

∫
Qp

W (


a

a
x 1

1

)|a|s−
3
2dxd×a.

Then, there is aWπ ∈ V (Nπ) such that Z(s,Wπ) = L(s, π). Here, the local L-factors
L(s, π) are defined in [34] or [102].

iii) Assume that π is generic, and let λπ and µπ be the Hecke eigenvalues of T0,1 and
T1,0 acting on a non-zero element W of V (Nπ).
(a) Let Nπ = 0, so that π is unramified. Then

L(s, π)−1 = 1− p−
3
2λπp

−s + (p−2µπ + 1 + p−2)p−2s − p−
3
2λπp

−3s + p−4s.

(b) Let Nπ = 1 and let π(η1)W = επW , where επ ∈ {1,−1} is the Atkin-Lehner
eigenvalue of W . Then

L(s, π)−1 = 1− p−
3
2 (λπ + µπ)p−s + (p−2µπ + 1)p−2s + επp

− 1
2 p−3s.

(c) If Nπ ≥ 2, then

L(s, π)−1 = 1− p−
3
2λπp

−s + (p−2µπ + 1)p−2s.

Exercise 7.11. Use Table 4 of Hecke eigenvalues for the generic representations, and
evaluate the L-function with the formula given in the theorem for as many representations
as possible. Check that you do indeed get the L-factor given Table 5. See Section A.9 of
[81] for the values of (A), (B), (C) in the last column of Table 4.

Table 4. Hecke eigenvalues (Table A.14 of [81])

inducing data Nπ λπ µπ

q3/2σ(p)
(
1 + χ1(p)

σ, χ1, χ2 unr. 0
+χ2(p) + χ1(p)χ2(p)

) (A)

I σ unr., χ1, χ2 ram. a(χ1) + a(χ2) p3/2(σ(p) + σ(p)−1) 0

σ ram., σχi unr. 2a(σ) p3/2((χ1σ)(p) + (χ2σ)(p)) 0

σ ram., σχi ram. 2a(χ1σ) + 2a(σ) 0 −p2
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inducing data Nπ λπ µπ

p3/2(σ(p) + σ(p)−1) p3/2(χ(p)
σ, χ unr. 1

+(p+ 1)(σχ)(p) +χ(p)−1)

IIa σ, χ ram., χσ unr. 2a(σ) + 1 p(χσ)(p) −p2

σ unr., χσ ram. 2a(χ) p3/2(σ(p) + σ(p)−1) 0

σ ram., χσ ram. 2a(σ) + 2a(χσ) 0 −p2

p3/2(σ(p) + σ(p)−1)
σ, χ unr. 0

+p(p+ 1)(σχ)(p)
(B)

IIb
σ, χ ram., χσ unr. 2a(σ) p(p+ 1)(σχ)(p) 0

χσ ram. — — —

σ unr. 2 p(σ(p) + σ(p)−1) −p(p− 1)
IIIa

σ ram. 4a(σ) 0 −p2

σ unr. 0 p(p+ 1)σ(p)(1 + χ(p)) (C)
IIIb

σ ram. — — —

σ unr. 3 σ(p) −p2

IVa
σ ram. 4a(σ) 0 −p2

σ unr. 2 σ(p)(1 + p2) −p(p− 1)
IVb

σ ram. — — —

σ unr. 1 σ(p)(p3 + p+ 2) p3 + 1
IVc

σ ram. — — —

σ unr. 0 σ(p)(p3 + p2 + p+ 1) p(p3 + p2 + p+ 1)
IVd

σ ram. — — —

ξ, σ unr. 2 0 −p2 − p

σ unr., ξ ram. 2a(ξ) + 1 σ(p)p −p2

Va
σ ram., σξ unr. 2a(σ) + 1 −σ(p)p −p2

σ, σξ ram. 2a(ξσ) + 2a(σ) 0 −p2

ξ, σ unr. 1 σ(p)(p2 − 1) −p2 − p

σ unr., ξ ram. 2a(ξ) σ(p)p(p+ 1) 0
Vb

σ ram., σξ unr. — — —

σ, σξ ram. — — —



51

inducing data Nπ λπ µπ

ξ, σ unr. 1 −σ(p)(p2 − 1) −p2 − p

σ unr., ξ ram. — — —
Vc

σ ram., σξ unr. 2a(σ) −σ(p)p(p+ 1) 0

σ, σξ ram. — — —

ξ, σ unr. 0 0 −(p3 + p2 + p+ 1)
Vd

ξ or σ ram. — — —

σ unr. 2 2pσ(p) −p(p− 1)
VIa

σ ram. 4a(σ) 0 −p2

σ unr. — — —
VIb

σ ram. — — —

σ unr. 1 σ(p)(p+ 1)2 p(p+ 1)
VIc

σ ram. — — —

σ unr. 0 2p(p+ 1)σ(p) (p+ 1)(p2 + 2p− 1)
VId

σ ram. — — —

VII 2a(π) 0 −p2

VIIIa 2a(π) 0 −p2

VIIIb — — —

IXa 2a(π) + 1 0 −p2

IXb — — —

σ unr. a(σπ) p3/2(σ(p) + σ(p)−1) 0
X

σ ram. a(σπ) + 2a(σ) 0 −p2

σ unr. a(σπ) + 1 pσ(p) −p2

XIa
σ ram. a(σπ) + 2a(σ) 0 −p2

σ unr. a(σπ) p(p+ 1)σ(p) 0
XIb

σ ram. — — —

super- generic ≥ 2 0 −p2

cuspidal non-generic — — —
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Table 5. The following table gives the degree 4 L-factors of all the non-
supercuspidal representations of Gp (Table A.8 of [81])

representation L(s, π)

I χ1 × χ2 o σ (irreducible) L(s, χ1χ2σ)L(s, σ)L(s, χ1σ)L(s, χ2σ)

a χStGL(2) o σ L(s, χ2σ)L(s, σ)L(s, ν1/2χσ)
II

b χ1GL(2) o σ L(s, χ2σ)L(s, σ)L(s, ν1/2χσ)L(s, ν−1/2χσ)

a χo σStGSp(2) L(s, ν1/2χσ)L(s, ν1/2σ)
III

b χo σ1GSp(2) L(s, ν1/2χσ)L(s, ν1/2σ)L(s, ν−1/2χσ)L(s, ν−1/2σ)

a σStGSp(4) L(s, ν3/2σ)

b L(ν2, ν−1σStGSp(2)) L(s, ν3/2σ)L(s, ν−1/2σ)
IV

c L(ν3/2StGL(2), ν
−3/2σ) L(s, ν3/2σ)L(s, ν1/2σ)L(s, ν−3/2σ)

d σ1GSp(4) L(s, ν3/2σ)L(s, ν1/2σ)L(s, ν−1/2σ)L(s, ν−3/2σ)

a δ([ξ, νξ], ν−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)

b L(ν1/2ξStGL(2), ν
−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)L(s, ν−1/2σ)

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)L(s, ν−1/2ξσ)

d L(νξ, ξ o ν−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)L(s, ν−1/2σ)L(s, ν−1/2ξσ)

a τ(S, ν−1/2σ) L(s, ν1/2σ)2

b τ(T, ν−1/2σ) L(s, ν1/2σ)2

VI
c L(ν1/2StGL(2), ν

−1/2σ) L(s, ν1/2σ)2L(s, ν−1/2σ)

d L(ν, 1F× o ν−1/2σ) L(s, ν1/2σ)2L(s, ν−1/2σ)2

VII χo π 1

a τ(S, π) 1
VIII

b τ(T, π) 1

a δ(νξ, ν−1/2π) 1
IX

b L(νξ, ν−1/2π) 1

X π o σ L(s, σ)L(s, ωπσ)

a δ(ν1/2π, ν−1/2σ) L(s, ν1/2σ)
XI

b L(ν1/2π, ν−1/2σ) L(s, ν1/2σ)L(s, ν−1/2σ)
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8. Lecture 8: Bessel models and applications

Holomorphic Siegel modular forms F correspond to cuspidal automorphic represen-
tations πF of GSp4(A) that are not globally generic, i.e., they do not have a global
Whittaker model. Hence, a substantial amount of literature and results regarding prop-
erties of, say, cuspidal automorphic representations of GLn(A), are just not applicable
to πF . On the other hand, it is known that every irreducible cuspidal automorphic rep-
resentation of GSp4(A) always has some Bessel model. In this lecture, we will study
the Bessel models for local and global representations of GSp4. We will also consider
an important application of Bessel models towards obtaining an integral representation
of the degree 8 L-function of πF twisted by an irreducible cuspidal representation of
GL2(A).

8.1. The L-function L(s, πF × τ). To motivate Bessel models let us consider the fol-
lowing problem. Let F ∈ Sk(Γ2) be a Hecke eigenform, and let πF be the corresponding
irreducible cuspidal automorphic representation of G(A). Recall that G = GSp4. Let τ
be any irreducible cuspidal automorphic representation of GL2(A). We want to study the
degree 8 L-function L(s, πF × τ). This is defined as an Euler product over all primes. At
a prime p, where τp is unramified, it is straightforward to write down the local L-factor.
Suppose πp = χ1 × χ2 o σ where χ1, χ2 and σ are unramified characters of Q×p . Let
τp = µ1 × µ2 with unramified characters µ1, µ2. We have (see Section 3.7 of [30])

Lp(s, πp × τp) =
∏
i=1,2

L(s, σµi)L(s, σχ1µi)L(s, σχ2µi)L(s, σχ1χ2µi)

There are two aspects of interest of L(s, πF × τ) (in fact, for any L-function) – analytic
properties and arithmetic properties.

i) Analytic properties: The L-function L(s, πF × τ) is defined as an Euler product that
converges in some right half plane. We are interested in knowing
• if the L-function has a meromorphic continuation to C,
• the nature of the poles if they exist, and
• a functional equation relating the values of the L-function at s and 1− s.

Answers to these questions form the key ingredients of the converse theorem ap-
proach to the problem of Langlands transfer of πF to GL4(A). Langlands conjectures
predict such a transfer exists, and, once established, one can use known properties
of GL4 automorphic representations to obtain new results for πF .

Out of the local components πp of πF , it is quite straightforward to find appropri-
ate local representations Πp of GL4(Qp). One can use these to form a representation
Π = ⊗Πp of GL4(A). We want to know if Π is a cuspidal, automorphic repre-
sentation of GL4(A). A converse theorem due to Cogdell and Piatetski-Shapiro [20]
states that indeed Π is a cuspidal automorphic representation if every element in
the family of L-functions {L(s,Π × τ) : τ automorphic representation of GL2(A)}
is nice, i.e., has analytic continuation to all of C, is bounded on vertical strips, and
satisfies a functional equation with respect to s 7→ 1− s.

The way Π is constructed out of πF leads to the conclusion that L(s,Π × τ) =
L(s, πF × τ) for all τ . When τ is not cuspidal, the nice properties of L(s, πF × τ)
are obtained by Krieg and Raum [54]. In the non-cuspidal case, the L-function
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L(s, πF × τ) is essentially the product of two copies of the spin L-function of F
twisted by characters.

Hence, we are reduced to studying the analytic properties of L(s, πF × τ) for
cuspidal representations τ of GL2(A).

ii) Arithmetic properties: Let τ correspond to a holomorphic modular form. Deligne’s
conjecture [21] predicts that L(s, πF ×τ) evaluated at certain critical points (a finite
set of integers or half integers depending on the weights of the modular forms) are
algebraic numbers up to certain prescribed transcendental periods. An example of
such a special value result is the fact that

ζ(2k)

π2k
∈ Q, for all k ∈ N.

Shimura proved the following special values theorem for elliptic modular forms.

Theorem 8.1 (Shimura [95]). Let f be a primitive holomorphic cusp form of weight
k ≥ 2 and level N . Then there exist non-zero complex numbers u(ε, f) for ε ∈ {0, 1}
such that, for any Hecke character χ, and any integer m satisfying 0 < m < k, we
have

Lf (m, f, χ)

(2πi)mτ(χ)u(ε, f)
∈ Q̄,

where ε is given by χ(−1)(−1)m = (−1)ε; τ(χ) is the Gauss sum attached to χ, and
Lf (s, f, χ) is the finite part of the L-function of f twisted by χ.

There has been tremendous progress in recent years towards proving arithmeticity
of special values of L-functions in various settings. At the same time, this is a very
active area of current research with wide open problems yet to be solved. We would
like to discuss this problem in details in the setting of special values of L(s, πF × τ).

One approach to studying L(s, πF × τ) is to obtain an integral representation for it.
This was done by Furusawa in [30]. The essential idea is to construct an Eisenstein
series E(g, s; f) on a bigger group GU(2, 2) ⊃ GSp4 using the representation τ . This is a
function on GU(2, 2)(A) depending on a section f in an induced representation obtained
from τ and s, a complex number. Let φ be any cusp form in πF . Define the integral

Z(s, f, φ) :=

∫
G(Q)ZG(A)\G(A)

E(g, s; f)φ(g)dg. (34)

Theorem 8.2 (Basic Identity). We have

Z(s, f, φ) =

∫
R(A)\G(A)

Wf (ηg, s)Bφ(g)dg,

where

Wf (g, s) =

∫
Q\A

f(


1

1 x
1

1

 g)ψ(cx)dx

and
Bφ(g) =

∫
ZG(A)R(Q)\R(A)

φ(rg)(Λ⊗ θ)(r)−1dr.
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This is Theorem 2.4 of [30]. Bφ is the element in the global Bessel model for πF
corresponding to φ. We will discuss Bessel models next. As mentioned above, Siegel
modular forms F of degree 2 correspond to cuspidal automorphic representations πF
of GSp4(A) that are not globally generic. This means that πF does not have a global
Whittaker model. Recall that a Whittaker model provides a model for a representation
in terms of C-valued functions which transform according to a character when translated
by the unipotent radical of the Borel subgroup. An alternate model is the Bessel model.
In principal, it is quite similar to the Whittaker model – Bessel model provides a model
for the representation in terms of C-valued functions which transforms according to a
character of the Bessel subgroup. Let us describe this now.

8.2. Definition of global Bessel model. Let S =

[
a b/2
b/2 c

]
∈ M2(Q) and let the

discriminant of S be defined by d = d(S) = −det(2S) = b2 − 4ac. Assume that S is
anisotropic, hence d is not a square in Q.

Exercise 8.3. Let S be as above.

i) Define ξ = ξS =

[
b/2 c
−a −b/2

]
. Show that F (ξ) := {x+ yξ : x, y ∈ Q} is a quadratic

extension of Q in M2(Q).
ii) Let L = Q(

√
d) be the quadratic subfield of C. Show that

F (ξ) 3 x+ yξ 7→ x+ y

√
d

2
∈ L, x, y ∈ Q

is an isomorphism.
iii) Let T = TS be the subgroup of GL2 defined by

T (Q) := {g ∈ GL2(Q) : tgSg = det(g)S}. (35)

Show that
T (Q) ' F (ξ)×,

hence, T (Q) ' L×.

We can embed T in GSp4 as follows.

T 3 g 7→
[
g

det(g) tg−1

]
∈ GSp4.

Let U denote the unipotent radical of the Siegel parabolic subgroup, i.e.,

U = {u(X) =

[
12 X

12

]
: X = tX}.

Finally, we define the Bessel subgroup of GSp4 by R = TU .
Let ψ be a non-trivial additive character of Q\A. Define a character θ = θS of U(A)

by θ(u(X)) = ψ(Tr(SX)). Let Λ be any character of L×\A×L thought of as a character
of T (Q)\T (A). Then we get a character Λ⊗ θ of R(A) defined by

(Λ⊗ θ)(tu) := Λ(t)θ(u), for t ∈ T (A), u ∈ U(A).

Exercise 8.4. For t ∈ T (A), u ∈ U(A), show that

(Λ⊗ θ)(tu) = (Λ⊗ θ)(ut).
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Let π be an irreducible cuspidal automorphic representation of GSp4(A) and assume
that Λ|A× = ωπ, the central character of π. For any φ ∈ π define the function Bφ on
GSp4(A) by

Bφ(h) =

∫
Z(A)R(Q)\R(A)

(Λ⊗ θ)(r)−1φ(rh)dr. (36)

Exercise 8.5. Show that the Bφ satisfy the transformation property

Bφ(rh) = (Λ⊗ θ)(r)Bφ(h)

for all r ∈ R(A) and h ∈ GSp4(A).

The C-vector space spanned by {Bφ : φ ∈ π} is called a global Bessel model of type
(S,Λ, ψ) for π. It is known by the work of Li [58] that every π either has a Whittaker
model or a Bessel model for some (S,Λ, ψ).

Let F ∈ Sk(Γ2) be a Hecke eigenform with Fourier coefficients {A(T ) : T > 0}. Let
πF be the corresponding cuspidal automorphic representation of GSp4(A). In order to
compute the zeta integral Z(s, f, φ) defined in (34) we are going to need a (S,Λ, ψ)-Bessel
model with S and Λ satisfying certain special properties. We call the triple (S,Λ, ψ) of
fundamental type if S and Λ satisfy the following two properties.

i) S =

[
a b/2
b/2 1

]
with a, b ∈ Z and d = b2 − 4a < 0 is a fundamental discriminant.

ii) The Hecke character Λ is unramified at all the finite places of L = Q(
√
d) and is

trivial at infinity, i.e., it is a character of the ideal class group of L.
Recall from (22)

R(F,L,Λ) =
∑
c∈ClL

A(c)Λ(c)−1.

Saha [88] has proved that πF has a global Bessel model of fundamental type (S,Λ, ψ) if
and only if R(F,L,Λ) 6= 0. Hence, we have the following important result.

Theorem 8.6 (Saha [88, Remark 1.1]). Let F ∈ Sk(Γ2) be a Hecke eigenform, and let
πF be the corresponding cuspidal automorphic representation of GSp4(A). Then πF has
a global Bessel model of fundamental type.

8.3. Local Bessel model. Let p < ∞ be a finite prime. Consider the exact situation
as above excepting that we take all the elements in Qp instead of Q. We have two
possibilities. Either d is not a square in Q×p , in which case Lp = Qp(

√
d). Or, d is a

square in Q×p , and then Lp = Qp ⊕Qp. In the latter case, the map from Qp(ξ) to Lp is
given by x+ yξ 7→ (x+ y

√
d/2, x− y

√
d/2).

We define the Legendre symbol as

(Lp
p

)
=


−1 if Lp/Qp is an unramified field extension,
0 if Lp/Qp is a ramified field extension,
1 if Lp = Qp ⊕Qp.

(37)

These three cases are referred to as the inert case, ramified case, and split case, respec-
tively. If Lp is a field, then let oLp be its ring of integers and pLp be the maximal ideal of
oLp . If Lp = Qp⊕Qp, then let oLp = Zp⊕Zp. Let $Lp be a uniformizer in oLp if Lp is a
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field, and set $Lp = (p, 1) if Lp is not a field. In the field case let vLp be the normalized
valuation on Lp.

Let T (Qp) be the torus of GL2(Qp) defined as in (35) and let U(Qp) be the unipotent
radical of the Siegel parabolic subgroup of GSp4(Qp). Let R(Qp) = T (Qp)U(Qp) be the
Bessel subgroup of GSp4(Qp). Let ψp have conductor Zp, and let θp be the character
of U(Qp) given by θp(u(X)) = ψp(Tr(SX)). Let Λp be a character of T (Qp) ' L×p .
We have a character, denoted by Λp ⊗ θp, on R(Qp) given by tu 7→ Λp(t)θp(u). Let
S(Λp, θp) be the space of all locally constant functions B : GSp4(Qp) → C with the
Bessel transformation property

B(rg) = (Λp ⊗ θp)(r)B(g) for all r ∈ R(Qp) and g ∈ GSp4(Qp). (38)

If an irreducible, admissible representation (πp, V ) of GSp4(Qp) is isomorphic to a sub-
representation of S(Λp, θp), then this realization of πp is called a (Λp, θp)-Bessel model.

Exercise 8.7. Let (πp, V ) be an irreducible admissible representation of GSp4(Qp). A
linear functional ` on V is called a (Λp, θp)-Bessel functional if it satisfies

`(πp(tu)v) = Λp(t)θp(u)`(v), for all t ∈ T (Qp), u ∈ U(Qp), v ∈ V.

i) Given a (Λp, θp)-Bessel functional `, show that the map

V 3 v 7→ Bv, Bv(g) := `(π(g)v)

gives a (Λp, θp)-Bessel model for πp.
ii) Suppose πp has a (Λp, θp)-Bessel model then show that the linear functional defined

by
`(B) := B(1)

is a (Λp, θp)-Bessel functional.
This exercise shows that πp has a (Λp, θp)-Bessel model if and only if it has a (Λp, θp)-
Bessel functional.

Prasad and Takloo-Bighash [78] figured out which non-supercuspidal representations
of GSp4(Qp) have Bessel models for which Λp. This was reproved and some gaps were
filled in by Roberts and Schmidt [82]. In Table 6 we have the information compiled for
all the representations that are induced from the Borel subgroup.

In addition to the criteria of existence, another very important result is that the Bessel
model, when it exists, is unique.

For the archimedean case, suppose π∞ is the lowest weight representation of GSp4(R)
corresponding to a scalar valued weight k Siegel modular form. There are two options
for L∞ – either L∞ = C (the non-split case) or L∞ = R ⊕ R (the split case). In [74]
Pitale and Schmidt worked out the criteria for existence and uniqueness of Bessel models
in this situation. We have the following answer.
i) In the split case, π∞ never has a Bessel model for any character Λ∞.
ii) In the non-split case, any character Λ∞ of C× is given by the pair (s,m) ∈ C × Z

by the formula

Λ∞(γe2πiδ) = γse2πimδ, where γ, δ ∈ R, γ > 0.

Then π∞ has a (Λ∞, θ∞)-Bessel model if and only if m = 0. When a Bessel model
exists, it is unique.
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Table 6. The Bessel models of the irreducible, admissible representa-
tions of GSp4(Qp) that can be obtained via induction from the Borel
subgroup. The symbol N stands for the norm map from L× ∼= T (Qp) to
Q×p .

representation (Λ, θ)-Bessel functional exists exactly for . . .

L = Qp ⊕Qp L/Qp a field extension

I χ1 × χ2 o σ (irreducible) all Λ all Λ

II a χStGL(2) o σ all Λ Λ 6= (χσ) ◦N

b χ1GL(2) o σ Λ = (χσ) ◦N Λ = (χσ) ◦N

III a χo σStGSp(2) all Λ all Λ

b χo σ1GSp(2) Λ(diag(a, b, b, a)) = —
χ(a)σ(ab) or χ(b)σ(ab)

IV a σStGSp(4) all Λ Λ 6= σ ◦N

b L(ν2, ν−1σStGSp(2)) Λ = σ ◦N Λ = σ ◦N

c L(ν3/2StGL(2), ν
−3/2σ) Λ(diag(a, b, b, a)) = —

ν(ab−1)σ(ab) or ν(a−1b)σ(ab)

d σ1GSp(4) — —

V a δ([ξ, νξ], ν−1/2σ) all Λ Λ 6= σ ◦N, Λ 6= (ξσ) ◦N

b L(ν1/2ξStGL(2), ν
−1/2σ) Λ = σ ◦N Λ = σ ◦N, Λ 6= (ξσ) ◦N

c L(ν1/2ξStGL(2), ξν
−1/2σ) Λ = (ξσ) ◦N Λ 6= σ ◦N, Λ = (ξσ) ◦N

d L(νξ, ξ o ν−1/2σ) — Λ = σ ◦N, Λ = (ξσ) ◦N

VI a τ(S, ν−1/2σ) all Λ Λ 6= σ ◦N

b τ(T, ν−1/2σ) — Λ = σ ◦N

c L(ν1/2StGL(2), ν
−1/2σ) Λ = σ ◦N —

d L(ν, 1F× o ν−1/2σ) Λ = σ ◦N —

8.4. Explicit formulas for distinguished vectors in local Bessel models. Let us
for the moment go back to the global Bessel model. Given φ ∈ πF , we have the global
Bessel function Bφ given by (36).

Exercise 8.8. Show that, if we evaluate Bφ at h = (1, · · · , hp, · · · , 1, · · · ), then it is a
function on GSp4(Qp) satisfying (38).

The above exercise states that if a global (S,Λ, ψ)-Bessel model exists for π, then a
local (S,Λp, ψp)-Bessel model exists for πp. In fact, there is a canonical isomorphism
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between the global (S,Λ, ψ)-Bessel model and the restricted tensor product of the local
(S,Λp, ψp)-Bessel models. If (Bp)p is a collection of local Bessel functions Bp such that
Bp|Kp = 1 for almost all p, then this isomorphism is such that ⊗pBp corresponds to the
global function

B((hp)p) =
∏
p≤∞

Bp(hp).

Let π = πF be the representation corresponding to a Hecke eigenform F ∈ Sk(Γ2). Then,
for every p <∞, the representation πp is a unramified.

Exercise 8.9. Take φ = ΦF . Let BΦF =
∏
pBp. Then show that, for p <∞, the vector

Bp is the spherical vector in πp, i.e., Bp is right invariant under Kp.

Recall that we had the global integral

Z(s, f, φ) =

∫
R(A)\G(A)

Wf (ηh, s)Bφ(h)dh.

Now we can conclude that Z(s, f, φ) is Eulerian.

Z(s, f, φ) =
∏
p≤∞

Zp(s),

where

Zp(s) :=

∫
R(Qp)\G(Qp)

Wp(ηh, s)Bp(h)dh.

Here, we have also used the uniqueness of Whittaker models for GL2 to write Wf as a
product of local functions Wp. Also, in the archimedean case, we replace Qp by R above.

Since we got an Euler product for the integral, we now hope that each of the local
integrals computes to a local factor of a L-function. The only way to find that out is
to do an explicit computation. To do these computations, we need explicit formulas for
the Wp and Bp. We can obtain the formulas for Wp from the formulas for vectors in the
Whittaker models for GL2. Let us discuss the case for Bp.

Let Bp be the spherical vector in the (Λp, θp)-Bessel model of πp. We have the following
double coset decomposition for GSp4(Qp) (see Eqn 3.4.2 of [30]).

GSp4(Qp) =
⊔

l∈Z,m≥0

R(Qp)hp(l,m)Kp, hp(l,m) := diag(pl+2m, pl+m, 1, pm).

Exercise 8.10. Let Bp be a spherical vector in the (Λp, θp)-Bessel model of πp.
i) Show that Bp is completely determined by its values on hp(l,m) for l ∈ Z,m ≥ 0.
ii) Use the fact that a, b ∈ Zp, c ∈ Z×p , and that ψp has conductor Zp to show that

Bp(hp(l,m)) = 0 if l < 0.

Sugano [101] obtained explicit formulas for Bp. Let us state them here. Let πp be the
spherical constituent of χ1 × χ2 o σ. Set

γ1 = χ1(p)χ2(p)σ(p), γ2 = χ1(p)σ(p), γ3 = σ(p), γ4 = χ2(p)σ(p).
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Set

εp =


0 if

(Lp
p

)
= −1;

Λp($Lp) if
(Lp
p

)
= 0;

Λp($Lp) + Λp(p$
−1
Lp

) if
(Lp
p

)
= 1.

Define the generating function

Cp(x, y) :=
∑
l≥0

∑
m≥0

Bp(hp(l,m))xmyl.

Theorem 8.11 (Sugano [101]). With notations as above, we have

Cp(x, y) =
Hp(x, y)

Pp(x)Qp(y)
.

Here

Pp(x) = (1− γ1γ2p
−2x)(1− γ1γ4p

−2x)(1− γ2γ3p
−2x)(1− γ3γ4p

−2x)

Qp(y) =
4∏
i=1

(1− γip−3/2y)

Hp(x, y) = (1−A2A3xy
2)
(
M1(x)(1 +A2x) +A2A5A

−1
1 αx2

)
−A2xy(αM1(x)−A5M2(x))−A5Pp(x)y −A2A4Pp(x)y2

M1(x) = 1−A−1
1 (A1 +A4)−1(A1A5α+A4β −A1A

2
5 − 2A1A2A4)x+A−1

1 A2
2A4x

2

M2(x) = 1 +A−1
1 (A1A2 − β)x+A−1

1 A2(A1A2 − β)x2 +A3
2x

3

α = p−3/2
4∑
i=1

γi, β = p−3
∑

1≤i<j≤4

γiγj , A1 = p−1, A2 = p−2Λp(p)

A3 = p−3Λp(p), A4 = −p−2
(Lp
p

)
, A5 = p−2εp

Exercise 8.12. Assume that Λp = 1, and that one of the γi above is p±1/2. Then show
that, for all l,m ≥ 0, we have

Bp(hp(l,m)) =

l∑
i=0

p−iBp(hp(0, l +m− i)). (39)

We know that, if F is a Saito-Kurokawa lift then its Fourier coefficients satisfy the
recurrence relation (12). We also know that, in this case, the local representation πp
is of type IIb, which satisfies the hypothesis that one of the γi is p±1/2. The recursion
formula (39) for the Bp is a local analogue of the Maass relations (12). In [70, Theorem
7.1] Pitale-Saha-Schmidt showed that these local recurrence relations (39) do imply the
global Maass relations (12), thereby finally giving a representation theoretic explanation
for the existence of the Maass relations (12).

Exercise 8.13. Show that
Cp(0, p

−s)

Hp(0, p−s)
= L(s+ 3/2, πp, spin),

Cp(p
−s, 0)

(1− p−s−2)Hp(p−s, 0)
= L(s+ 2, πp, std),
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Cp(p
−s, p−s)

(1− p−s−2)Hp(p−s, p−s)
= L(s+ 3/2, πp, spin)L(s+ 2, πp, std).

With the values of Bp in hand, we can compute the local integral Zp.

Theorem 8.14 (Pitale, Saha, Schmidt [69, Theorem 2.2.1]). The local zeta integral
Zp(s) is given by

Zp(s) =
L(3s+ 1

2 , π̃p × τ̃p)
L(6s+ 1,Λ0|Q×p )L(3s+ 1, τp ×AI(Λp)× Λ0|Q×p )

Y (s), (40)

where

Y (s) =



1 if τp = β1 × β2, β1, β2 unramified,
L(6s+ 1,Λ0|Q×p ) if τp = β1 × β2, β1 unram., β2 ram.,(

L
p

)
= ±1,OR τ = β1 × β2, β1 unram.,

β2 ram.,
(
L
p

)
= 0 and β2χLp/Qp ramified,

OR τ = ΩStGL(2), Ω unramified,
L(6s+ 1,Λ0|Q×p )

1− Λp($Lp)(ωπpβ2)−1(p)p−3s−1
if τp = β1 × β2, β1 unram., β2 ram.,(Lp
p

)
= 0, and β2χLp/Qp unramified,

L(6s+ 1,Λ0|Q×p ) if τp = β1 × β2, β1, β2 ramified,
×L(3s+ 1, τp ×AI(Λp)× Λ0|Q×p ) OR τp = ΩStGL(2), Ω ramified,

OR τp supercuspidal.

In (40), π̃p and τ̃p denote the contragredient of πp and τp, respectively. The symbol
AI(Λp) stands for the GL2(Qp) representation attached to the character Λp of L×p via
automorphic induction, and χLp/Qp stands for the quadratic character of Q×p associated
with the extension Lp/Qp. Λ0 is a character of L×\A×L associated to Λ and ωτ . The
function L(3s+ 1, τp ×AI(Λp)× Λ0|Q×p ) is a standard L-factor for GL2 ×GL2 ×GL1.

In the archimedean case, the weight k vector in the Bessel model of π∞ is given by
the following formula. For h∞ ∈ GSp4(R)+, we have (see Eqn 4.3.4 of [30])

B∞(h∞) = µ(h∞)kdet(J(h∞, I))
−k
e−2πiTr(S h∞〈I〉)R(F,L,Λ).

We get the global integral representation theorem.

Theorem 8.15 (Pitale, Saha, Schmidt [69, Theorem 2.3.2]). We have

Z(s, f, φ) =
L(3s+ 1

2 , π̃ × τ̃)

L(6s+ 1,Λ0|A×)L(3s+ 1, τ ×AI(Λ)× Λ0|A×)
·Bφ(1)

∏
p≤∞

Yp(s), (41)

where, for p <∞, the Yp(s) is given in Theorem 8.14, and we have

Y∞(s) = πR(F,L,Λ)(4π)−3s−3k/2+3/2(
√
d)−6s−kΓ(3s+ 3k/2− 3/2)

6s+ k − 1
.
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9. Lecture 9: Analytic and arithmetic properties of GSp4 ×GL2

L-functions

In this lecture, we will start from the integral representation for L(s, πF × τ) obtained
in the previous lecture. We will use this integral representation to obtain analytic and
arithmetic properties of the L-functions. We will also present several applications.

9.1. Functional equation and analytic continuation. Let us recall from the pre-
vious lecture that F ∈ Sk(Γ2) is a Hecke eigenform, and πF is the irreducible cuspidal
automorphic representation of GSp4(A) corresponding to F . Let τ be an irreducible cus-
pidal automorphic representation of GL2(A). In Theorem 8.15, we obtained an integral
representation for L(s, πF × τ) in terms of the zeta integral Z(s, f, φ) defined in (34)
using an Eisenstein series E(g, s; f) on GU(2, 2)(A) and a cusp form φ ∈ πF .

The Eisenstein series E(g, s; f) has a functional equation and a meromorphic contin-
uation to C (see Eqn 1.3.3 of [30]). Via the integral Z(s, f, φ), these properties can now
be transferred to the L-function.

Theorem 9.1 (Pitale, Saha, Schmidt [69, Theorem 2.4.3]). Let τ be such that τp is
unramified for p|d. We have

L(s, πF × τ) = ε(s, πF × τ)L(1− s, π̃F × τ̃).

Recall that d is defined in the previous lecture with L = Q(
√
d). To get the analytic

continuation, we have to first get another integration formula which involves taking
a degenerate Eisenstein series on GU(3, 3), restricting it to the subgroup GU(2, 2) ×
GU(1, 1), and then integrating against a cusp form on GSp4 and GL2. This once again
computes to L(s, πF × τ) up to certain known factors. The advantage of this new
integral representation is that we have much more precise information regarding the
nature and location of the poles of the degenerate Eisenstein series. Actually, getting
to the conclusion that the L-function does not have any poles requires the application
of the regularized Siegel-Weil formula due to Ichino [41]. This leads to the following
theorem.

Theorem 9.2 (Pitale, Saha, Schmidt [69, Theorem 4.1.1]). Let F ∈ Sk(Γ2) be a Hecke
eigenform, which is not a Saito-Kurokawa lift. Let τ be an irreducible cuspidal automor-
phic representation of GL2(A) such that τp is unramified for p|d. Then L(s, πF × τ) is
an entire function.

9.2. Transfer to GL4. We can write down explicitly the local parameters of πp for all
p ≤ ∞. These are maps from the local Weil group to GSp4(C). Since πF has trivial
central character, the image is in Sp4(C). The natural inclusion of Sp4(C) in GL4(C)
gives us local parameters for GL4. Since local Langlands correspondence is known for
GL4, we obtain local irreducible admissible representations Πp of GL4(Qp) for every
p ≤ ∞. Define

Π4 := ⊗pΠp.

This is an irreducible admissible representation of GL4(A) with the property that

L(s,Π4 × τ) = L(s, πF × τ)

for any irreducible cuspidal automorphic representation of GLi(A) for i = 1, 2.
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Theorem 9.3 (Pitale, Saha, Schmidt [69, Theorem 5.1.2]). Let πF be a cuspidal au-
tomorphic representation of GSp4(A) as above, associated to a Siegel Hecke eigenform
F ∈ Sk(Γ2). We assume that F is not of Saito-Kurokawa type. Then the admissi-
ble representation Π4 of GL4(A) defined above is cuspidal automorphic. Hence Π4 is a
strong functorial lifting of πF . This representation is symplectic, i.e., the exterior square
L-function L(s,Π4,Λ

2) has a pole at s = 1.

The exterior square L-function is discussed in details below. Since, in Theorems 9.1
and 9.2, we have some restriction on the representations τ that we are allowed to twist
with, the converse theorem only gives us a weak functorial lift. This means that we obtain
Π′ = ⊗pΠ′p, an automorphic representation of GL4(A), such that Πp ' Π′p for all p - d.
To get the stronger fact that indeed Π4 is automorphic, or that Π′p ' Πp even for p|d, we
use the fact that F is full level, and we use the rather strong theorem of Weissauer [106]
of the validity of the generalized Ramanujan conjecture for non-Saito-Kurokawa lifts.

The argument for cuspidality is rather easy and will be left for the next exercise.

Exercise 9.4. Suppose that Π4 is not cuspidal. Then it is known that Π4 is a constituent
of a globally induced representation from a proper parabolic subgroup of GL4.
i) Show that the inducing data for the globally induced representation mentioned above

has to be unramified for all finite primes.
ii) Show that L(s,Π4) will factor into product of global L-functions, and write down the

4 possible factorizations depending on the proper parabolic subgroups.
iii) Note that ζ(s) has a pole, and L(s, τ × τ̃) has a pole for any cuspidal representation

of GL2(A). Use this in conjunction with Theorem 9.2, and the fact that F is not a
Saito-Kurokawa lift, to get a contradiction.

Hence, Π4 is cuspidal.

Arthur [5] has proven Langlands functorial transfer from several classical groups to
GLn using the trace formula. Since the representation πF has trivial central character, it
is in fact a representation for PGSp4(A). We have an accidental isomorphism PGSp4 '
SO5. Arthur’s results can be applied to odd orthogonal groups and hence, the transfer
from Theorem 9.3 can be deduced from the trace formula result.

9.3. Other analytic applications. We will list some more analytic results that can be
deduced out of the transfer of πF to GL4.

Globally generic representation in the same L-packet: Since the representation Π4 is
symplectic, the work on backwards lifting by Ginzburg, Rallis and Soudry [37] gives
the existence of a globally generic cuspidal automorphic representation πg = ⊗pπgp of
GSp4(A) such that πgp ' πp for all finite primes p, and such that πg∞ is the generic dis-
crete series representation of PGSp4(R) lying in the same L-packet as π∞. Any globally
generic, cuspidal automorphic representation σ ∼= ⊗σp of GSp4(A) such that σp ∼= πp for
almost all p coincides with πg.

Langlands transfer of πF to GL5: Let Π ∼= ⊗Πp be an irreducible cuspidal repre-
sentation of GLn(A) such that Πp is unramified for every p < ∞. Let α1,p, · · · , αn,p
be the Satake p-parameters of Πp. The exterior square L-function L(s,Π,Λ2) and the
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symmetric square L-function L(s,Π,Sym2) are defined by the following Euler products.

L(s,Π,Λ2) =
∏
p

∏
1≤i<j≤n

(1− αi,pαj,pp−s)−1

L(s,Π,Sym2) =
∏
p

∏
1≤i≤j≤n

(1− αi,pαj,pp−s)−1

Exercise 9.5. In this exercise, we will compute the symmetric square and exterior square
L-functions of genus 1 and 2 Siegel modular forms.

(1) Let f ∈ Sk(Γ1) and let τf ∼= ⊗τp be the irreducible cuspidal automorphic repre-
sentation of GL2(A) corresponding to f . For every p <∞, it is known that τp is
unramified and the Satake p-parameters are given by αp, ᾱp for some αp ∈ C with
|αp| = 1. Show that L(s, τf ,Λ

2) = ζ(s). Also, find a formula for L(s, τf , Sym2).
(2) Let Π4 be the irreducible cuspidal automorphic representation of GL4(A) obtained

from the Langlands transfer of πF ∼= ⊗πp. The Satake p-parameters for πp are
given by b0, b0b1, b0b1, b0b1b2 as defined in Section 6.4. Using b20b1b2 = 1, show
that L(s,Π4,Λ

2) = L(s, πF , std)ζ(s).

Kim [45] has shown that, given a representation Π of GL4(A), there is an automorphic
representation of GL6(A), whose L-function is the exterior square L-function L(s,Π,Λ2).
Also, such representations are obtained as Ind(τ1 ⊗ · · · ⊗ τk), where τi is a cuspidal
automorphic representation of GLni(A). In our case, we have the relation L(s,Π4,Λ

2) =
L(s, πF , std)ζ(s). Using the fact that L(s, πF , std) does not have a pole at Re(s) = 1,
we can show that there exists a cuspidal, automorphic representation Π5 of GL5(A) such
that

L(s, πF , std) = L(s,Π5)

(equality of completed Euler products). The representation Π5 is a strong functorial lift-
ing of πF to GL5 with respect to the morphism ρ5 : Sp4(C) → GL5(C) of dual groups.
Moreover, Π5 is orthogonal, i.e., the symmetric square L-function L(s,Π5,Sym2) has a
pole at s = 1.

Analytic properties of L-functions associated to πF : Let ρn be the n-dimensional
irreducible representation of Sp4(C) for values of n in the set {1, 4, 5, 10, 14, 16}. In
the notation of Fulton and Harris [29, Section 16.2], we have ρ4 = Γ1,0, ρ5 = Γ0,1,
ρ10 = Γ2,0, ρ14 = Γ0,2 and ρ16 = Γ1,1. Note that ρ4 is the spin representation, ρ5

is the standard representation, and ρ10 is the adjoint representation of Sp4(C) on its
Lie algebra. We have the following relations between these various representations –
Λ2ρ4 = ρ1 + ρ5,Λ

2ρ5 = Sym2ρ4 = ρ10, Sym2ρ5 = ρ1 + ρ14, ρ4 ⊗ ρ5 = ρ4 + ρ16. Since Π4

and Π5 are cuspidal automorphic representations of GL4(A) and GL5(A), we know a lot
of analytic properties for the Sym2,Λ2 and the tensor product L-functions for Π4 and
Π5. This allows us to conclude the following (see Theorem 5.2.1 of [69]).

The Euler products defining the finite part of the L-functions Lf (s, πF , ρn), for n ∈
{4, 5, 10, 14, 16}, are absolutely convergent for Re(s) > 1. They have meromorphic con-
tinuation to the entire complex plane, have no zeros or poles on Re(s) ≥ 1, and the
completed L-functions satisfy the functional equation

L(s, πF , ρn) = ε(s, πF , ρn)L(1− s, πF , ρn).
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Furthermore, for n ∈ {4, 5, 10}, the functions L(s, πF , ρn) are entire and bounded in ver-
tical strips.

Analytic properties of Rankin-Selberg L-functions: Let r be a positive integer, and τ a
cuspidal, automorphic representation of GLr(A). Let σr be the standard representation
of the dual group GLr(C). Then we can consider the Rankin-Selberg Euler products
L(s, πF × τ, ρn ⊗ σr), where ρn is one of the irreducible representations of Sp4(C) con-
sidered above. For n = 4 or n = 5, since Π4 and Π5 are functorial liftings of πF , we
have

L(s, πF × τ, ρn × σr) = L(s,Πn × τ),

where the L-function on the right is a standard Rankin-Selberg L-function for GLn×GLr.
From the well-known properties of these L-functions, we have the following result (see
Theorem 5.2.2 of [69]).

The Euler products defining the GSp4 × GLr L-functions L(s, πF × τ, ρn ⊗ σr) are
absolutely convergent for Re(s) > 1. They have meromorphic continuation to the entire
complex plane, and the completed L-functions satisfy the functional equation

L(s, πF × τ, ρn ⊗ σr) = ε(s, πF × τ, ρn ⊗ σr)L(1− s, π̃F × τ̃ , ρn ⊗ σr).

These L-functions are entire, bounded in vertical strips, and non-vanishing on Re(s) ≥ 1,
except in the cases depending on the relation of τ with Π4 or Π5.

Analytic properties of GSp4 × GSp4 L-functions: Let F and F ′ be Siegel cusp forms
with respect to Sp4(Z). Assume that F and F ′ are Hecke eigenforms, that they are
not Saito-Kurokawa lifts, and that π, resp. π′, are the associated cuspidal, automorphic
representations of GSp4(A). Let n ∈ {4, 5} and n′ ∈ {4, 5}. We have

L(s, π × π′, ρn ⊗ ρn′) = L(s,Πn ×Π′n′).

Hence, the Euler products defining the GSp4×GSp4 L-functions L(s, π×π′, ρn⊗ρn′) are
absolutely convergent for Re(s) > 1. They have meromorphic continuation to the entire
complex plane, and the completed L-functions satisfy the expected functional equation.
These functions are entire, bounded in vertical strips, and non-vanishing on Re(s) ≥ 1,
except if n = n′ and F = F ′ (see Theorem 5.2.3 of [69]).

Non-negativity at s = 1/2 for L-functions: Lapid [56] has proved the non-negativity
of the central value L(1/2, π × π′) for cuspidal automorphic representations π of GLn
and π′ of GLn′ satisfying certain hypothesis. Let F, F ′ be as above. Let χ be a Hecke
character of A× (possibly trivial) such that χ2 = 1, τ2 be a unitary, cuspidal, automorphic
representation of GL2(A) with trivial central character, and τ3 be a unitary, self-dual,
cuspidal, automorphic representation of GL3(A). Then the central values

L(1/2, π ⊗ χ, ρ4), L(1/2, π ⊗ τ2, ρ5 ⊗ σ2), L(1/2, π ⊗ τ3, ρ4 ⊗ σ3), L(1/2, π × π′, ρ4 ⊗ ρ5),

are all non-negative (see Theorem 5.2.4 of [69]).

9.4. Arithmetic applications of the integral representation of L(s, πF × τ). The
final application of the integral representation of L(s, πF×τ) concerns algebraicity results
for its special values. Let us first discuss the critical points for the L-function.
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Critical points: Suppose we have an L-function given by

L(s) =
∏
p≤∞

Lp(s),

and suppose that L(s) satisfies a functional equation with respect to s 7→ k − s. Then
the critical points are the set of integers m for which both L∞(s) and L∞(k− s) do not
have a pole at s = m. Let us consider the example of the Riemann zeta function. In
this case, L∞(s) = π−s/2Γ(s/2). We know that the gamma function has a pole exactly
at all non-positive integers. Hence, we can conclude that, for an integer m, if s = m is
not a pole for both L∞(s) and L∞(1 − s), then m is either an even positive integer or
an odd negative integer.

Exercise 9.6. Suppose Ψ ∈ S`(Γ1) has Fourier coefficients {a(n)}. Then the completed
L-function L(s,Ψ) := (2π)−sΓ(s)

∑
n>0

a(n)
ns satisfies the functional equation L(s,Ψ) =

(−1)`/2L(`− s,Ψ). Show that the critical points in this case are all integers m satisfying
0 < m < `.

Assume that Ψ ∈ Sk(Γ0(N)), with k,N ∈ N, k even, is a Hecke eigenform. Let τ = τΨ

be the cuspidal automorphic representation of GL2(A) corresponding to Ψ. Recall that
we have a Hecke eigenform F ∈ Sk(Γ2). In this case

L∞(s, πF × τΨ) = 24(2π)−(4s+3k−4)Γ(s+
k

2
)Γ(s+

k

2
− 1)2Γ(s+

3k

2
).

Exercise 9.7. Show that the critical points in this case are all integers in the interval
[−k

2 + 2, k2 − 1].

To obtain algebraicity results for the special values of L(s, πF × τΨ) we realize the
integral Z(s, f, φ) as a Petersson inner product of two Siegel modular forms of degree
2. We will choose φ = φF , which is clearly associated to the Siegel modular form
F . The Eisenstein series E(g, s; f) can be used to define the following function E on
H := {Z ∈M2(C) : i( tZ̄ − Z) is positive definite} by

E(Z, s) = µ(g)−k det(J(g, i12))k E
(
g,
s

3
+
l

6
− 1

2
; f
)
, (42)

where g ∈ GU(2, 2)+(R) is such that g〈i12〉 = Z. The series that defines E(Z, s) is
absolutely convergent for Re(s) > 3− k/2 (see [30, Pg 210]). Let us assume that k > 6.
Now we can set s = 0, and obtain a holomorphic Eisenstein series E(Z, 0) on H. Its
restriction to H2, the Siegel upper half space, is a modular form of weight k with respect
to Γ2. By [38], we know that the Fourier coefficients of E(Z, 0) are algebraic. Using
methods similar to the ones used in Exercise 6.6, we obtain

Z(
k

6
− 1

2
, f, Φ̄F ) = 〈E(·, 0), F 〉.

For any subring A ⊂ C denote by Mk(Γ2, A) the A-submodule of Mk(Γ2) consisting of
modular forms all of whose Fourier coefficients are contained in A. For a Hecke eigenform
F ∈ Sk(Γ2), let Q(F ) be the subfield of C generated by all the Hecke eigenvalues of F .
From [35, p. 460], we see that Q(F ) is a totally real number field. It is known that Sk(Γ2)
has an orthogonal basis of Hecke eigenforms {Fj} such that each Fj ∈ Sk(Γ2,Q(Fj)).



67

Moreover, if F is a Hecke eigenform such that F ∈ Sk(Γ2,Q(F )), then we can take
F1 = F . For details on this, see Section 4.3 of [30].

Assume that F ∈ Sk(Γ2,Q(F )), and consider the basis of Sk(Γ2) containing F as
above. Expanding the restriction of E(Z, 0) to H2 in terms of this basis, we get for
Z ∈ H2,

E(Z, 0) = cFF (Z) +
∑
j>1

cFjFj(Z).

The choice of the basis implies that the coefficient cF is algebraic. Hence, we get

cF =
〈E(Z, 0), F 〉
〈F, F 〉

∈ Q̄.

The zeta integral also has contributions from other L-functions of smaller degree and the
algebraicity of their special values is known by results of Shimura. Using this, we get

L(k2 − 1, πF × τ̃Ψ)

π5k−8〈F, F 〉〈Ψ,Ψ〉
∈ Q̄.

Recall from Exercise 9.7 that k/2 − 1 is the rightmost critical point. Let us mention
the various people, and their results related to algebraicity of special L-values in this
context.
i) Furusawa [30] got the above result for F ∈ Sk(Γ2) and Ψ ∈ Sk(Γ1) and the rightmost

critical point.
ii) Böcherer and Heim [12] got the special value result for F ∈ Sk(Γ2) and Ψ ∈ Sl(Γ1)

such that k, l are even and k/2 < l/2 < k − 1. They also got the result for all
critical points which are integers in the set [l, 2k− 3]. They did not use the integral
representation presented above but had a classical version.

iii) Pitale, Saha and Schmidt (in various combinations in [68], [69], [75], [85] and [86])
got the special value result for F ∈ Sk(B(M)), where B(M) is the Borel congruence
subgroup of square free level M , and Ψ ∈ Sk(Γ0(N), χ′), for any integer N and
nebentypus character χ′. They got the result for the critical values which are integers
in [2, k/2 − 1]. This used theory of differential operators and nearly holomorphic
Siegel modular forms.

iv) Morimoto [63] and Furusawa-Morimoto [31] have obtained special value results in the
most general setting. They allow π to be any cuspidal automorphic representation
of GSp4(A) with π∞ being in the holomorphic discrete series. The representation
τ corresponds to Ψ ∈ Sk(Γ0(N), χ′), where the weight k matches the parameter for
π∞.
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10. Lecture 10: Integral representation of the standard L-function

In this lecture, we want to discuss an integral representation for the standard L-
function of degree n holomorphic Siegel cusp forms twisted by characters. The goal is to
assume as little as possible about the Siegel modular forms. We will allow vector-valued
modular forms with respect to any congruence subgroup. Rallis, Piatetski-Shapiro, and
also Böcherer, have obtained the integral representation in special cases. We will modify
their methods to suit our level of generality. We will illustrate an application of the
integral representation to algebraicity of special values of the L-function in the genus 2
case. We will apply this arithmetic result to the special case of the Siegel modular forms,
constructed by Ramakrishnan and Shahidi [80], whose spin L-function is equal to the
symmetric cube L-function of elliptic cusp forms. This will give us algebraicity of the
symmetric fourth power L-function of an elliptic cusp form twisted by characters. The
main reference for this lecture is [72].

Since we have to work with symplectic groups of different sizes, let us add a subscript
and denote by G2n the group GSp2n. Let P2n be the Siegel parabolic subgroup of G2n,
consisting of matrices whose lower left n × n-block is zero. Let δP2n be the modulus
character of P2n(A). It is given by

δP2n(

[
A X
v tA−1

]
) = |v−

n(n+1)
2 det(A)n+1|, where A ∈ GLn(A), v ∈ GL1(A),

and | · | denotes the global absolute value, normalized in the standard way.

Exercise 10.1. Let H2a,2b := {(g, g′) ∈ G2a×G2b : µa(g) = µb(g
′)}. Show that the map

H2a,2b 3 (

[
A1 B1

C1 D1

]
,

[
A2 B2

C2 D2

]
) 7−→

[
A1 −B1

A2 B2
−C1 D1

C2 D2

]
∈ GSp2a+2b

is an embedding of H2a,2b to G2a+2b.

We will also let H2a,2b denote its image in G2a+2b. Let F be a number field. Let χ be
a character of F×\A×. We define a character on P4n(A), also denoted by χ, by χ(p) =

χ(d(p)). Here, d(p) = v−n det(A) for p =

[
A
v tA−1

]
n′ with v ∈ GL1(A), A ∈ GL2n(A)

and n′ ∈ N4n(A), the unipotent radical of P4n(A). For a complex number s, let

I(χ, s) = Ind
G4n(A)
P4n(A) (χδsP4n

).

Thus, f( · , s) ∈ I(χ, s) is a smooth C-valued function on G4n(A) satisfying

f(pg, s) = χ(p)δP4n(p)s+
1
2 f(g, s)

for all p ∈ P4n(A) and g ∈ G4n(A). Consider the Eisenstein series on G4n(A) which, for
Re(s) > 1

2 , is given by the absolutely convergent series

E(g, s, f) =
∑

γ∈P4n(F )\G4n(F )

f(γg, s), (43)

and defined by meromorphic continuation outside this region. Let π be a cuspidal auto-
morphic representation of G2n(A). Let Vπ be the space of cuspidal automorphic forms
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realizing π. For any automorphic form φ in Vπ, and any s ∈ C, define a function Z(s; f, φ)
on G2n(F )\G2n(A) by

Z(s; f, φ)(g) =

∫
Sp2n(F )\ g·Sp2n(A)

E((h, g), s, f)φ(h) dh. (44)

10.1. The basic identity. We want to unwind the integral Z(s; f, φ) by substituting
the definition of the Eisenstein series. By Proposition 2.4 of [97], we have the double
coset decomposition

G4n(F ) =
n⊔
r=0

P4n(F )QrH2n,2n(F ).

Here

Qr =

 1n 0 0 0

0 I′n−r 0 Ĩr

0 0 1n Ĩr
Ĩr −Ĩr 0 I′n−r

 ,
where the n× n matrix Ĩr is given by Ĩr =

[
0n−r 0

0 1r

]
and I ′n−r = 1n − Ĩr =

[
1n−r 0

0 0

]
.

Exercise 10.2. For 0 ≤ r ≤ n, suppose we have the disjoint single coset decomposition

P4n(F )QrH2n,2n(F ) =
⊔
i

P4n(F )Qrγ
(r)
i .

Show that

Z(s; f, φ) =

n∑
r=0

Zr(s; f, φ),

where
Zr(s; f, φ)(g) :=

∫
Sp2n(F )\ g·Sp2n(A)

∑
i

f(Qrγ
(r)
i (h, g), s)φ(h) dh.

If r < n, then we can do an inner unipotent integral. Lemma 2.2 of [72] states that
the section f is invariant under the unipotent. This gives us an integral of the cusp
form φ over an unipotent subgroup. The cuspidality of φ then gives us that Zr = 0 for
0 ≤ r < n. For r = n, we have

P4n(F )QnH2n,2n(F ) =
⊔

x∈Sp2n(F )

P4n(F )Qn(x, 1).

Hence,

Zn(s; f, φ)(g) =

∫
Sp2n(F )\ g·Sp2n(A)

∑
x∈Sp2n(F )

f(Qn · (xh, g), s)φ(h) dh

=

∫
g·Sp2n(A)

f(Qn · (h, g), s)φ(h) dh

=

∫
Sp2n(A)

f(Qn · (gh, g), s)φ(gh) dh

=

∫
Sp2n(A)

f(Qn · (h, 1), s)φ(gh) dh,
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For the last equality, we again use Lemma 2.2 of [72]. This gives us

Z(s; f, φ)(g) =

∫
Sp2n(A)

f(Qn · (h, 1), s)φ(gh) dh.

Theorem 10.3 (Basic identity). Let φ ∈ Vπ be a cusp form which corresponds to a pure
tensor ⊗vφv via the isomorphism π ∼= ⊗πv. Assume that f ∈ I(χ, s) factors as ⊗fv with
fv ∈ I(χv, s). Let the function Z(s; f, φ) on G2n(F )\G2n(A) be defined as in (44). Then
Z(s; f, φ) also belongs to Vπ and corresponds to the pure tensor ⊗vZv(s; fv, φv), where

Zv(s; fv, φv) :=

∫
Sp2n(Fv)

fv(Qn · (h, 1), s)πv(h)φv dh ∈ πv.

10.2. The local integral computation. The goal is now to choose local functions fv
and φv, and compute the local integrals Zv defined above. For brevity of notation, let
us drop the subscript v. So, let F be a local field. In the non-archimedean case, denote
by o, p, $, q the ring of integers of F , the prime ideal in o, a uniformizer in o, and size
of the residue field, respectively.

The unramified computation: Assume that χ and π are unramified. Choose f ∈ I(χ, s)
to be the unramified vector. Hence f : G4n(F )→ C is given by

f(

[
A ∗
u tA−1

]
k) = χ(u−n det(A))

∣∣u−n det(A)
∣∣(2n+1)(s+1/2)

for A ∈ GL2n(F ), u ∈ F× and k ∈ G4n(o). Let v0 be a spherical vector in π. The
computation of the local integral in this case makes use of the action of the Hecke
algebra and the Satake isomorphism. Here we use methods similar to [7] and [66], with
suitable modifications to incorporate characters. We get

Z(s; f, v0) =
L((2n+ 1)s+ 1/2, π � χ, %2n+1)

L((2n+ 1)(s+ 1/2), χ)
n∏
i=1

L((2n+ 1)(2s+ 1)− 2i, χ2)

v0 (45)

for real part of s large enough. See Proposition 4.1 of [72]. Here the L-function is defined
as

L(s, π � χ, %2n+1) =
1

1− χ($)q−s

n∏
i=1

1

(1− χ($)αiq−s)(1− χ($)α−1
i q−s)

, (46)

where αi are the Satake parameters of π.
The ramified computation: For genus greater than 2, we do not have the local Lang-

lands correspondence for GSp2n. Hence, in the ramified case, we do not even know the
appropriate definition of the L-function. All we require out of the local integral in the
ramified case is that we make choices of f and v such that Z(s; f, v) is a non-zero mul-
tiple of v. With this in mind, let m be a positive integer such that χ|(1+pm)∩o× = 1, and
such that there exists a vector φ in π fixed by Γ2n(pm). Here

Γ2n(pm) = {g ∈ Sp2n(o) : g ≡ 12n mod pm}.
Let f(g, s) be the unique function on G4n(F )× C such that

(1) f(pg, s) = χ(p)δP4n(p)s+
1
2 f(g, s) for all g ∈ G4n(F ) and p ∈ P4n(F ).

(2) f(gk, s) = f(g, s) for all g ∈ G4n(F ) and k ∈ Γ4n(pm).
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(3) f(Qn, s) = 1.
(4) f(g, s) = 0 if g /∈ P4n(F )QnΓ4n(pm).

Exercise 10.4. It is shown in Lemma 4.2 of [72] that the following holds: Let m be a
positive integer. Let p ∈ P4n(F ) and h ∈ Sp2n(F ) be such that Q−1

n pQn(h, 1) ∈ Γ4n(pm).
Then h ∈ Γ2n(pm) and p ∈ P4n(F ) ∩ Γ4n(pm). Use this to show that f is well-defined.

With these choices of f and v, in Proposition 4.3 of [72], we compute

Z(s; f, v) = vol(Γ2n(pm))v. (47)

The archimedean computation: This is by far the most complicated computation. So
far we have not assumed anything about the field F or π and χ. For the archimedean
case, assume that F is totally real, and π is in the holomorphic discrete series of G2n(R).
These are parametrized by (k1, · · · , kn), where ki ∈ Z are integers all of the same parity,
and k1 ≥ k2 ≥ · · · ≥ kn > n. Set k = k1. If all the ki’s are equal, then π corresponds
to a weight k scalar valued holomorphic Siegel modular form like the one considered
throughout this book. Otherwise, we are in the case of a vector valued holomorphic
Siegel modular form. We also assume that χ = sgnk. The induced representation I(χ, s)
has a unique (up to scalar) vector fk with weight (k, · · · , k). Choose f = fk. We can
show that π also contains a unique (up to scalar) vector v0 with scalar weight (k, · · · , k).
Then Proposition 5.8 of [72] gives us

Z(s, fk, v0) = ink πn(n+1)/2Ak((2n+ 1)s− 1/2) v0 (48)

where the function Ak(z) is defined as

Ak(z) = 2−n(z−1)

( n∏
j=1

j∏
i=1

1

z + k − 1− j + 2i

)( n∏
j=1

k−kj
2
−1∏

i=0

z − (k − 1− j − 2i)

z + (k − 1− j − 2i)

)
.

Recall that we want to choose f and v such that the integral Z is non-zero. Clearly, there
are values of s for which the integral is 0 or not defined. For arithmetic applications, it
turns out that we need the non-vanishing only for certain critical points. This is checked
in the next exercise.

Exercise 10.5. For integers t such that 0 ≤ t ≤ kn − n, show that Ak(t) is a non-zero
rational number.

10.3. Global integral representation. Consider the global field F = Q and its ring
of adeles A = AQ. All the results are easily generalizable to a totally real number field.
Let π ∼= ⊗πp be a cuspidal automorphic representation of G2n(A). We assume that π∞
is in the holomorphic discrete series representation πk with k = k1e1 + . . .+ knen, where
k1 ≥ . . . ≥ kn > n, and all ki have the same parity. We set k = k1. Let χ = ⊗χp be a
character of Q×\A× such that χ∞ = sgnk. Let N =

∏
p|N p

mp be an integer such that
• For each finite prime p - N both πp and χp are unramified.
• For a prime p|N , we have χp|(1+pmpZp)∩Z×p = 1, and πp has a vector φp that is
right invariant under the principal congruence subgroup Γ2n(pmp) of Sp2n(Zp).

Let φ be a cusp form in the space of π corresponding to a pure tensor ⊗φp, where
the local vectors are chosen as follows. For p - N choose φp to be a spherical vector; for
p|N choose φp to be a vector right invariant under Γ2n(pmp); and for p =∞ choose φ∞
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to be a vector in π∞ with scalar weight k. Let f = ⊗fp ∈ I(χ, s) be composed of the
following local sections. For a finite prime p - N let fp be the spherical vector normalized
by fp(1) = 1; for p|N choose fp as in the previous subsection (with the positive integer
m of that section equal to the mp above); and for p = ∞, choose f∞ to be the scalar
weight k vector in I(χ∞, s). Define LN (s, π � χ, %2n+1) =

∏
p-N
p 6=∞

L(s, πp � χp, %2n+1),

where the local factors on the right were defined in (46). Using (45), (47) and (48) we
obtain the following theorem.

Theorem 10.6 (Pitale, Saha, Schmidt [72]). Let the notation be as above. Then the
function LN (s, π � χ, %2n+1) can be analytically continued to a meromorphic function of
s with only finitely many poles. Furthermore, for all s ∈ C and g ∈ G2n(A),

Z(s, f, φ)(g) =
LN ((2n+ 1)s+ 1/2, π � χ, %2n+1)

LN ((2n+ 1)(s+ 1/2), χ)
∏n
j=1 L

N ((2n+ 1)(2s+ 1)− 2j, χ2)

× ink πn(n+1)/2

(∏
p|N

vol(Γ2n(pmp))

)
Ak((2n+ 1)s− 1/2)φ(g). (49)

10.4. Classical reformulation. For φ ∈ Vπ define a function F : Hn → C by

F (Z) = det(J(g, I))k φ(g),

where g is any element of Sp2n(R) with g〈I〉 = Z. This F transforms like a Siegel
modular form of weight k excepting that it will not be holomorphic in the vector valued
case. Define the Eisenstein series on H2n by

Eχk,N (Z, s) := j(g, I)kE
(
g,

2s

2n+ 1
+

k

2n+ 1
− 1

2
, f
)
,

where g is any element of Sp4n(R) with g〈I〉 = Z. We know the following about the
Eisenstein series (Theorem 17.9 of [98]).

Proposition 10.7. Suppose that k ≥ 2n + 2. Then the series defining Eχk,N (Z, 0) is
absolutely convergent, and defines a holomorphic Siegel modular form of degree 2n and
weight k with respect to the principal congruence subgroup Γ4n(N) of Sp4n(R). More
generally, let 0 ≤ m ≤ k

2−n−1 be an integer. Then Eχk,N (Z,−m) is a nearly holomorphic
Siegel modular form of weight k with respect to Γ4n(N).

Restrict Eχk,N to
[
Z1

Z2

]
with Z1, Z2 ∈ Hn. As in Section 9.4, we can rewrite the

integral Z(s, f, φ) as the Petersson inner product of F and the restriction of Eχk,N . Then
Theorem 10.6 translates to

〈Eχk,N ( − , Z2,
n

2
− k − s

2
), F̄ 〉 =

LN (s, π � χ, %2n+1)

LN (s+ n, χ)
∏n
j=1 L

N (2s+ 2j − 2, χ2)
×Ak(s− 1)

×
∏
p|N

vol(Γ2n(pmp))× ink πn(n+1)/2

vol(Sp2n(Z)\Sp2n(R))
× F (Z2).
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10.5. Arithmetic results in genus 2. If the Eisenstein series Eχk,N is holomorphic,
then we know that it has algebraic Fourier coefficients. Similarly, we can find a basis
of holomorphic Siegel cusp forms of weight k and genus n with respect to a congruence
subgroup such that their Fourier coefficients are algebraic. Unfortunately, in the classical
reformulation of the integral representation of the L-function, we are taking the inner
product of two Siegel modular forms, neither of them are holomorphic. All we know is
that the modular forms are nearly holomorphic. If we knew that any nearly holomorphic
Siegel modular form is obtained from holomorphic ones by applying differential operators
which preserve the algebraicity of Fourier coefficients, then we could obtain algebraicity
of the Petersson inner product and hence the special L-values. Such a structure theorem
is only proven for genus two in [71]. Hence, we have the following theorem.

Theorem 10.8 (Pitale, Saha, Schmidt [72]). Let π be a cuspidal automorphic repre-
sentation of GSp(4,AQ) such that π∞ is isomorphic to the holomorphic discrete series
representation with highest weight (k1, k2) such that k1 ≥ k2 ≥ 3, k1 ≡ k2 (mod 2). Let
χ be any Dirichlet character satisfying χ(−1) = (−1)k2 . Let r be any integer satisfying
1 ≤ r ≤ k2 − 2, r ≡ k2 (mod 2). Furthermore, if χ2 = 1, we assume that r 6= 1. Let
τ(χ) be the Gauss sum attached to χ. Then

L(r, π � χ, %5)

(2πi)2k+3rτ(χ)3〈F, F 〉
∈ Q̄.

Previous results were those of Shimura’s [98] for k1 = k2 and w.r.t. Γ
(2)
0 (N), and of

Kozima’s [53] for k1 > k2 but only for full level and χ = 1.

Symmetric fourth L-function of GL2: Let k be an even positive integer and M
any positive integer. Let f be an elliptic cuspidal newform of weight k, level M and
trivial nebentypus that is not of dihedral type. According to Theorem A’ and Theorem
C of [80], there exists a cuspidal automorphic representation π of GSp4(A) such that

(1) π∞ is the holomorphic discrete series representation with highest weight (2k −
1, k + 1),

(2) for p -M , the local representation πp is unramified,
(3) the L-functions have the following relation.

L(s, π, spin) = L(s, sym3f).

If αp, α−1
p are the Satake p-parameters of f for p - M , then the local factor of the mth

symmetric power L-function of f is the degree m+ 1 L-function

Lp(s, symmf) =
m∏
i=0

(1− αm−2i
p p−s)−1.

Note that π corresponds to a holomorphic vector-valued Siegel cusp form F0 with weight
detk+1 symk−2. Let χ be a Dirichlet character with χ∞ = sgn.

Exercise 10.9. Show that

L(s, π � χ, %5) = L(s, χ⊗ sym4f). (50)

Here, on the right hand side, we have the L-function of GL5 given by the symmetric
fourth power of f , twisted by the character χ.
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From Theorem 10.8 and (50), we get the following theorem.

Theorem 10.10 (Pitale, Saha, Schmidt [72]). Let f , π be as above, and let F ∈ π be
such that its Fourier coefficients lie in a CM field. Let S be any finite set of places of
Q containing the infinite place, χ be a Dirichlet character with χ∞ = sgn, and r be an
integer satisfying 1 ≤ r ≤ k − 1, r odd. If r = 1, assume χ2 6= 1. Then we have

LS(r, χ⊗ sym4f)

(2πi)4k−2+3rG(χ)3〈F, F 〉
∈ Q̄. (51)

Deligne’s conjecture on critical values of motivic L-functions predicts an algebraicity
result for the critical values of L(s, χ⊗ symmf) for each positive integer m. For m = 1
this was proved by Shimura [95], for m = 2 by Sturm [100], and for m = 3 by Garrett–
Harris [36]. In the casem = 4, and f of full level, Ibukiyama and Katsurada [40] proved a
formula for L(s, sym4f) which implies algebraicity. Assuming functoriality, the expected
algebraicity result for the critical values of L(s, χ ⊗ symmf) was proved for all odd m
by Raghuram [79]. To the best of our knowledge, Theorem 10.10 represents the first
advance in the case m = 4 for general newforms f .
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Appendix A. GL2 Notes : Classical modular forms

Please refer to Chapter 1 of [17] for basics on classical modular forms.
(1) The general linear group is defined by GL2(R) := {g ∈ M2(R) : det(g) 6= 0}.

The special linear group is SL2(R) = {g ∈ GL2(R) : det(g) = 1}.
(2) Consider the subgroups of GL2(R) given by

N := {
[

1 x
1

]
: x ∈ R} and A := {

[
a
b

]
: a, b ∈ R×}.

We have the Bruhat decomposition

GL2(R) = NA tNA
[

1
−1

]
N.

(3) The complex upper half space is

H1 := {z = x+ iy ∈ C : y > 0}.
The group GL2(R)+ := {g ∈ GL2(R) : det(g) > 0} acts on H1 by the formula

g〈z〉 :=
az + b

cz + d
, z ∈ H1, g =

[
a b
c d

]
∈ GL2(R)+.

We have
Im(g〈z〉) =

Im(z)

|cz + d|2
,

and the element of volume on H1, invariant under the above action, is

ds =
dxdy

y2
.

(4) Let Γ1 := SL2(Z). An elliptic modular form of weight k (a positive integer) with
respect to Γ1 is a holomorphic function f : H1 → C that is bounded in regions
y ≥ y0 for any y0 > 0, and satisfies

f(
az + b

cz + d
) = (cz + d)kf(z) for all

[
a b
c d

]
∈ SL2(Z).

The space of such forms is denoted by Mk(Γ1).
(5) Every f ∈Mk(Γ1) has a Fourier expansion

f(z) =
∑
n≥0

A(n)e2πinz.

(6) f ∈Mk(Γ1) is called a cusp form if A(0) = 0. The space of cusp forms is denoted
by Sk(Γ1).

(7) If f, g ∈ Mk(Γ1), at least one of which is a cusp form, then we can define the
Petersson inner product

〈f, g〉 :=

∫
Γ1\H1

f(z)g(z)yk
dxdy

y2
.

A fundamental domain for Γ1\H1 is given by the set

{z = x+ iy ∈ H1 : |x| ≤ 1

2
, |z| ≥ 1}.
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(8) Eisenstein series of weight k ≥ 4 are given by

ek(z) :=
∑

[
a b
c d

]
∈Γ∞\Γ1

1

(cz + d)k
, Γ∞ := {

[
1 n

1

]
: n ∈ Z}.

Then ek(z) ∈Mk(Γ1). Note that ek = 0 for k odd.
(9) The Ramanujan delta function, given by the formula

∆(z) :=
∑
n>0

τ(n)e2πinz = q
∏
n≥1

(1− qn)24, where q = e2πiz,

is a cusp form of weight 12.
(10) Let N be any positive integer. A congruence subgroup of level N is defined by

Γ0(N) := {
[
a b
c d

]
∈ Γ1 : c ≡ 0 (mod N)}.

Modular forms and cusp forms of weight k and level N are defined just as for
Γ1, with additional conditions at the cusps, and are denoted by Mk(Γ0(N)) and
Sk(Γ0(N)).

(11) Let H be the Hecke algebra for Γ1 and, for every prime number p, let Hp be the
local Hecke algebra at the prime p. We have H = ⊗pHp. Also, Hp is generated

by the two elements Γ1

[
p
p

]
Γ1 and Γ1

[
1
p

]
Γ1.

(12) Let T (m) =
∑

det(g)=m Γ1gΓ1. Then, for (m,n) = 1, we have the relation
T (mn) = T (m)T (n). We also have the single coset decomposition

T (m) =
⊔

a,d>0,ad=m
b mod d

Γ1

[
a b
d

]
.

In particular,

Γ1

[
1
p

]
Γ1 = Γ1

[
p

1

]
t

⊔
b mod p

Γ1

[
1 b
p

]
.

(13) Let T (g) = Γ1gΓ1 = tiΓ1gi ∈ H. Then T (g) acts on Mk(Γ1) (and on Sk(Γ1)) as
follows. Let f ∈ Mk(Γ1). Then T (g)f :=

∑
i f |kgi, where the slash |k action is

given by

(f |kg)(z) := det(g)k−1(cz + d)−kf(g〈z〉), for g =

[
a b
c d

]
∈ GL2(R)+, z ∈ H1.

(14) Let {A(n)} be the Fourier coefficients of f ∈Mk(Γ1). Let {B(n)} be the Fourier
coefficients of T (m)f . Then, we have

B(n) =
∑

ad=m,a|n

(a
d

)k/2
dA(

nd

a
).

(15) The spaceMk(Γ1) has a basis of simultaneous eigenfunctions of the Hecke algebra
H. Furthermore, Sk(Γ1) has such a basis which is orthogonal with respect to the
Petersson inner product. A cusp form Sk(Γ1) is called normalized if it satisfies
A(1) = 1. The space Sk(Γ1) has a basis of normalized Hecke eigenforms.
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(16) The L-function of a modular form f ∈Mk(Γ1), with Fourier coefficients {A(n)},
is defined by

L(s, f) :=
∑
n≥1

A(n)

ns
.

We have the following properties of the L-function.
(a) The Mellin transform of f gives the completed L-function.

∞∫
0

f(iy)ys
dy

y
= (2π)−sΓ(s)L(s, f) =: Λ(s, f).

(b) The completed L-function Λ(s, f) extends to an analytic function of s if f
is a cusp form; if f is not cuspidal, then it has a simple pole at s = 0 and
s = k. It satisfies the functional equation

Λ(s, f) = (−1)k/2Λ(k − s, f).

(c) If f is a normalized Hecke eigenform then

L(s, f) =
∏

p prime

( ∞∑
r=0

A(pr)p−rs
)

=
∏

p prime

(1−A(p)p−s + pk−1+2s)−1.

(17) Every f ∈ Sk(Γ0(N)) with Fourier coefficients {A(n)} satisfies the Ramanujan
conjecture

|A(n)| ≤ Cn
k−1
2

+ε, for all ε > 0.

(18) If f is a Hecke eigenform and 1 − A(p)p−s + pk−1+2s = (1 − α0,pp
−s)(1 −

α0,pα1,pp
−s), then the Ramanujan conjecture states that |α0,p| = p(k−1)/2 and

|α1,p| = 1.
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Appendix B. The p-adic fields Qp and the ring of adeles A of Q

(1) Let p be a prime number. Define ordp : Z\{0} → N by ordp(x) = max{r ∈ N :
pr|x}. Extend it to Q\{0} by ordp(a/b) = ordp(a)− ordp(b), for a, b ∈ Z.

(2) The p-adic absolute value | |p on Q is defined by

|x|p =

{
p−ordp(x) if x 6= 0;

0 if x = 0.

The p-adic absolute value satisfies the stronger condition

|x+ y|p ≤ max(|x|p, |y|p), with equality if and only if |x|p 6= |y|p.
(3) The completion of Q with respect to the p-adic absolute value | |p is called the

field Qp of p-adic numbers. Let Zp := {α ∈ Qp : |α|p ≤ 1} be the ring of p-adic
integers. Zp is the completion of Z in Qp.

(4) Every p-adic number α ∈ Qp has a unique p-adic expansion of the form

α = α−rp
−r + α−r+1p

−r+1 + · · ·+ α−1p
−1 + α0 + α1p+ α2p

2 + · · · ,
with αn ∈ Z such that 0 ≤ αn ≤ p−1. Furthermore, α ∈ Zp if and only if αn = 0
for all n < 0. For α given by its p-adic expansion, the p-adic absolute value of α
is given by |α|p = p−n, where n is the least integer such that αn 6= 0.

(5) Zp has a unique maximal ideal pZp. We can characterize pZp = {α ∈ Zp : |α|p <
1} = {α ∈ Zp : α0 = 0}. The group of units in Zp is denoted by Z×p . Once again,
we can characterize Z×p = {α ∈ Zp : |α|p = 1} = {α ∈ Zp : α0 6= 0}. The ring Zp
is compact in Qp.

(6) We have Zp/pZp ' Z/pZ and Z×p /(1 + pZp) ' (Z/pZ)×. Also Q×p = 〈p〉 × Z×p .
(7) We will let p = ∞ denote the archimedean place. We have the ring of direct

product of all completions∏
p≤∞

Qp = R×Q2 ×Q3 ×Q5 × · · · .

The ring of adeles A is the subring of the full direct product given by

A = {a = (ap)p≤∞ ∈
∏
p≤∞

Qp : ap ∈ Zp for all but finitely many p}.

We call A the restricted direct product of theQp (with respect to the open-compact
subsets Zp for p <∞).

(8) We define the topology on A to be the one generated by the sets
∏
p≤∞ Up, where

Up are open in Qp and Up = Zp for almost all p. With this topology, A is a locally
compact topological ring.

(9) We have
A/Q ' R/Z×

∏
p<∞

Zp.

This tells us that A/Q is compact.
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Appendix C. GL2 Notes : Representation theory

Please refer to Chapters 3 and 4 of [17] for the global or local representation theory
of GL2.

(1) Strong approximation for SL2 gives us

GL2(A) = GL2(Q)GL2(R)+K(N),

where

K(N) =
∏
p<∞

Kp(p
ordp(N)), Kp(p

m) := {
[
a b
c d

]
∈ GL2(Zp) : c ∈ pmZp}.

(2) Let f ∈ Sk(Γ0(N)). Write g ∈ GL2(A) as g = γg∞k, with γ ∈ GL2(Q), g∞ ∈
GL2(R)+, k ∈ K(N). Define

Ψf (g) := (ci+ d)−kf
(ai+ b

ci+ d

)
, g∞ =

[
a b
c d

]
.

(3) Let (τf , Vτ ) be the representation of GL2(A) generated by right translates of Ψf .
The group acts on Vτ by right translation. If f is a Hecke eigenform, then τf is
irreducible, and we have the restricted tensor product τf ∼= ⊗p≤∞τp. Here, τp is
an irreducible, admissible representation of GL2(Qp) (or GL2(R)).

(4) Let p be a finite prime. There are three possibilities for an infinite-dimensional,
irreducible, admissible representation of GL2(Qp).
(a) Irreducible principal series: Suppose χ1, χ2 are two characters of Q×p such

that χ1χ
−1
2 6= | · |±1

p . The irreducible representation χ1 × χ2 is obtained by
normalized induction from the character of the Borel subgroup B(Qp) of
GL2(Qp) obtained from χ1 and χ2. The standard model for χ1 × χ2 is the
space of locally constant C-valued functions φ on GL2(Qp) satisfying

φ(

[
a b
d

]
g) = |ad−1|1/2χ1(a)χ2(d)φ(g).

(b) Twist of Steinberg representation: Suppose χ is a character of Q×p . The
representation | |1/2p χ×| |−1/2

p χ is reducible, and has a unique irreducible sub-
representation called the twist of the Steinberg representation of GL2(Qp).
It is denoted by χStGL2 .

(c) Supercuspidal representations: Any irreducible representation of GL2(Qp)
that cannot be obtained as a subrepresentation of any representation induced
from the Borel subgroup is called a supercuspidal representation. One can
construct these by induction from compact subgroups of GL2(Qp).

(5) If p =∞, the possibilities for an irreducible, admissible representation of GL2(R)
are either the discrete series Dµ(`), ` ≥ 1 or a limit of discrete series representa-
tion Dµ(0) or a principle series representation. In the discrete series case, µ ∈ C
gives the central character, and `+1 gives the lowest weight of the representation.

(6) Back to f ∈ Sk(Γ0(N)) and τf ∼= ⊗pτp. We can describe τp as follows.
(a) Let p be a prime such that p does not divide N . Then τp = χp×χ−1

p , where
the character χp is unramified, i.e. trivial on Z×p . If λp is the pth-Hecke
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eigenvalue of f , then we have

λp = p
k−1
2 (χp(p) + χ−1

p (p)).

(b) Let p be a prime such that p|N but p2 does not divideN . Then τp = χpStGL2

for an unramified character χp of Q×p . Suppose f is an eigenfunction of the
Atkin-Lehner operator with eigenvalue εp. Then χp(p) = −εp.

(c) Let p be a prime such that p2|N . Then τp could be any of the three types
of representations mentioned above.

(d) At the archimedean place, τ∞ is the discrete series representation D0(k−1).
(7) The L-function for the non-archimedean representations is as follows.

L(s, τp) =


L(s, χ1)L(s, χ2) if τp = χ1 × χ2;

L(s− 1/2, χ) if τp = χStGL2 ;

1 otherwise.

Recall that

L(s, χ) =

{
(1− χ(p)p−s)−1 if χ is unramified;

1 if χ is ramified.

(8) Newforms theory for GL2: Let (τ, V ) be an irreducible admissible infinite di-
mensional representation of GL2(Qp). For n ∈ Z, n ≥ 0, set V (n) := {v ∈ V :

τ(g)v = v, for all g ∈ Kp(p
n)}. It is known that there is a n such that V (n) 6= 0.

Suppose n0 is the least n such that V (n) 6= 0. Then dim(V (n0)) = 1. Denote
a(τ) = n0 and we call pa(τ)Zp the conductor of τ . If χ is a character of Q×p ,
then a(χ) denotes the smallest non-negative integer m such that χ is trivial on
(1 + pmZp) ∩ Z×p . Then we have the following

a(χ1 × χ2) = a(χ1) + a(χ2),

a(χStGL2) =

{
1 if a(χ) = 0;

2a(χ) if a(χ) > 0.

(9) Kirillov model: Choose a non-trivial additive character ψ of Qp. It is known that
for every irreducible admissible infinite-dimensional representation τ of GL2(Qp),
there is a unique space K(τ, ψ) of locally constant functions φ : Q×p → C with
the following property: GL2(Qp) acts on K(τ, ψ) in a way such that

([a b
d

]
φ
)
(x) = ωτ (d)ψ(bx/d)φ(ax/d),

and the resulting representation of GL2(Qp) is equivalent to τ (here ωτ is the
central character of τ). This is called the Kirillov model of τ (with respect to ψ).

(10) Newforms in Kirillov model: Let φ be a newform (unique up to scalars) in a
Kirillov model of τ , i.e. φ ∈ V (n0)

τ . Let 1U be the characteristic function of a
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subset U of Q×p . Then the formula for φ is given by

representation local new form φ(x)

χ1 × χ2, χi unramified |x|1/2p

(∑
k+l=ordp(x) χ1(pk)χ2(pl)

)
1Zp(x)

χ1 × χ2, χ1 ram., χ2 unram. |x|1/2p χ2(x)1Zp(x)

χ1 × χ2, χ1 unram., χ2 ram. |x|1/2p χ1(x)1Zp(x)
χ1 × χ2, χi ramified 1Z×p (x)

χStGL2 , χ unram. |x|pχ(x)1Zp(x)
χStGL2 , χ ram. or supercuspidal 1Z×p (x)
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Appendix D. Solutions to exercises

Lecture 1
Exercise 1.1: Since A is positive definite, one can diagonalize A over R, and show that
Mt := {x ∈ Rm : Q(x) = t} is compact. Since Mt ∩ Zm is the intersection of a compact
and a discrete set, it is finite.

Exercise 1.2: We have ΘQ = αE1 +βE2. Compare the first two coefficients of both sides
to conclude

1 = −3α− β, 8 = −24α− 24β.

Solving for α, β gives us ΘQ = −1/3E1. Hence,

rQ(n) = 8
(
σ1(n)− 4σ1(

n

4
)
)
, for all n ≥ 1.

So, we get rQ(n) ≥ 1, whenever n ≥ 1.

Exercise 1.3: For g =

[
A B
C D

]
, we have

tgJg =

[ tA tC
tB tD

][
1n

−1n

][
A B
C D

]
=

[ tA tC
tB tD

][
C D
−A −B

]
=

[ tAC − tCA tAD − tCB
tBC − tDA tBD − tDB

]
.

This immediately gives us i) ⇔ iv). Next,

tgJg = µJ ⇔ g−1 = µ−1J−1 tgJ = µ−1

[ tD − tB
− tC tA

]
.

This gives us i) ⇔ iii). Now, we have

µgg−1 = µ12n ⇔
[
A B
C D

][ tD − tB
− tC tA

]
= µ12n

⇔
[
A tD −B tC B tA−A tB
C tD −D tC D tA− C tB

]
= µ12n.

This gives us iii) ⇔ v). Arguing as before, we finally get ii) ⇔ v).

Exercise 1.4: The definition of Sp2n(R) tells us that, for g ∈ Sp2n(R), we have det(g) =

±1. It is clear that
[

1n X
1n

]
and

[
g

tg−1

]
have determinant 1. So it is enough to show

that the determinant of any element of Kn is positive (hence, equal to 1). For that, we
have

det(

[
X Y
−Y X

]
) = det(

[
1n i1n

1n

][
X Y
−Y X

][
1n −i1n

1n

]
)

= det(

[
X − iY
−Y X + iY

]
) = | det(X + iY )|2,

as required.
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Exercise 1.6: If we know that J(g, Z) is invertible, then (6) follows by definition of g〈Z〉.
Let us show non-singularity first for Z = i1n and arbitrary g. If J(g, Z) is singular, then
considering J(g, Z)tJ(g, Z), we get that C tC +D tD is also singular. But this matrix is
symmetric and positive semi-definite. Hence, there is a non-zero column vector T such
that tT (C tC+D tD)T = 0. This implies that tT (C tC)T = 0 and tT (D tD)T = 0, which
gives us tTC = tTD = 0. But this means that the rank of the matrix (C,D) is less than
n, which is impossible, since g is non-singular. To get non-singularity for a general Z,
first realize Z = g〈i1n〉 for a suitable g and then use (6) for Z = i1n. This completes
proof of part i).

To get symmetry of g〈Z〉, use (2) and (3) together with the relation
t(CZ +D)g〈Z〉(CZ +D) = Z tCAZ + tDAZ + Z tCB + tDB.

Let Z ′ := g〈Z〉. Then
t(CZ̄ +D)(Z ′ − Z̄ ′)(CZ +D)

= (Z̄ tC + tD)(AZ +B)− (Z̄ tA+ tB)(CZ +D)

= Z̄(tCA− tAC)Z + (tDA− tBC)Z + Z̄(tCB − tAD)

= µ(g)(Z − Z̄).

This proves part ii) of the theorem. Combining parts i) and ii) gives part iii).
To get part iv), we compute the Jacobian of the change of variable Z → g〈Z〉. For

Z = (zjk) = (xjk + iyjk) ∈ Hn, set Z ′ = (z′lm) = (x′lm + iy′lm) = g〈Z〉. For Z1, Z2 ∈ Hn,
since Z ′2 is symmetric, we get

Z ′2 − Z ′1 = (Z2
tC + tD)−1(Z2

tA+ tB)− (AZ1 +B)(CZ1 +D)−1

= µ(g)(Z2
tC + tD)−1(Z2 − Z1)(CZ1 +D)−1

It follows that
DZ ′ = µ(g)(Z tC + tD)−1DZ(CZ +D)−1,

where DZ = (dzjk) and DZ ′ = (dz′lm). Note that if ρ(U), with U ∈ GLn(C), is
the transformation (vjk) 7→ U(vjk)

tU of variables vjk = vkj with 1 ≤ j, k ≤ n, then
det ρ(U) = det(U)n+1. Let dZ and dZ ′ be the columns with entries dzjk(1 ≤ j, k ≤ n)
and dz′lm(1 ≤ l,m ≤ n) arranged in a fixed order. Then the above considerations imply
the relation

dZ ′ = ρ(
√
µ(g) t(CZ +D)−1)dZ.

Taking dZ = dX + idY,dZ ′ = dX ′ + idY ′, and ρ(
√
µ(g) t(CZ + D)−1) = R + iS, we

obtain
dX ′ = RdX − SdY, dY ′ = SdX +RdY.

Thus the Jacobian equals

det(

[
R −S
S R

]
) = det(

[
1n i1n

1n

][
R −S
S R

][
1n −i1n

1n

]
)

= det(

[
R+ iS
S R− iS

]
) = µ(g)n(n+1)|det(CZ +D)|−2n−2.

This gives us part iv) of the theorem. In addition, using part ii), we get part v) of the
theorem.
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Exercise 1.7: Take g =

[
−1n

1n

]
∈ GSp2n. We know that J(g, Z) is invertible from

part i) of Theorem 1.5. In this case, J(g, Z) = Z.

Exercise 1.9: All of the results are obtained by applying the automorphy conditions to
F for various elements of γ ∈ Γn. For part i) take γ = −12n. For part ii) (a), take

γ =

[
1 X

1

]
, for part (b) take γ =

[
g

tg−1

]
and for part (c) take γ =

[
−1n

1n

]
.

Exercise 1.10: Part i) is clear from the hint. For part ii), start with T which is not
positive semi-definite. Hence, there is a primitive integral column vector x such that
txTx < 0. By Gauss lemma, there is a g ∈ SLn(Z) whose first column is x. Hence, the
(1, 1) entry of the matrix tgTg is negative. This gives us part ii). Set Sm := tgmTgm with
gm as in the statement of the exercise. Choose a subsequence {mv} such that mv →∞
as v →∞, and that the Smv are distinct. This is possible since the (2, 2) entry of Sm is
t11m

2 + t12m+ t22. Then

Tr(Smv) = t11m
2
v + (linear terms in mv)→ −∞ as mv →∞.

Hence, e−2πTr(Smv ) →∞ as mv →∞. This implies that A(T ) = 0.

Lecture 2

Exercise 2.1: For γ0 =

[
A′ B′

C ′ D′

]
∈ Γn, we have

E
(n)
k (γ0〈Z〉) :=

∑
[
A B
C D

]
∈Γ0,n\Γn

det(Cγ0〈Z〉+D)−k.

Let γ =

[
A B
C D

]
. Then

det(Cγ0〈Z〉+D)−k = det(J(γ, γ0〈Z〉))−k = det(J(γγ0, Z)J(γ0, Z)−1)−k

= det(C ′Z +D′)k det(J(γγ0, Z))−k

Doing a change of variable γ → γγ−1
0 in the summation for E(n)

k (Z), we get

E
(n)
k (γ0〈Z〉) = det(C ′Z +D′)kE

(n)
k (Z),

as required.

Exercise 2.2: Suppose g =


A′ 0 B′ ∗
∗ U ∗ ∗
C ′ 0 D′ ∗
0 0 0 tU−1

 ∈ Pr and Z =

[
Z1 Z

′
tZ ′ Z2

]
∈ Hn. Then

g〈Z〉∗ =
(

(

[
A′ 0
∗ U

][
Z1 Z

′
tZ ′ Z2

]
+

[
B′ ∗
∗ ∗

]
)(

[
C ′ 0
0 0

][
Z1 Z

′
tZ ′ Z2

]
+

[
D′ ∗
0 tU−1

]
)−1
)∗

= (A′Z1 +B′)(C ′Z1 +D′)−1.
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Hence, we have

f(g〈Z〉∗) det(CZ +D)−k = det(C ′Z1 +D′)kf(Z∗) det(C ′Z1 +D′)−k = f(Z∗),

as required.

Exercise 2.4: We have

dim(Mk(Γn)) = dim(KerΦ) + dim(ImΦ) = dim(Sk(Γn)) + dim(Mk(Γn−1)).

Now use that dim(Sk(Γn)) ≤ O(kN ), and induction on n to get the result.

Exercise 2.5: Since e4 and e6 generate the graded ring M∗(Γ1), and dimM10(Γ1) = 1 we
can take M10(Γ1) = e4e6C. Since e10 − e4e6 has weight 10, we must have e10 − e4e6 =
αe4e6. Comparing the constant term on both sides, we see that α = 0. Hence, we get
e10−e4e6 = 0. Applying the Siegel operator, we get Φ(Ẽ

(2)
10 − Ẽ

(2)
4 Ẽ

(2)
6 ) = e10−e4e6 = 0.

Hence χ10 is a cusp form in M10(Γ2).

Exercise 2.8: By definition of the Fourier coefficients of the Saito-Kurokawa lift, we have
A(nm

d2
, rd , 1) = c(det(2T )/d2).

Exercise 2.9: Take A = diag(1, 1, 1, N).

Lecture 3
Exercise 3.1: Let γ ∈ Γn. Then⊔

i

Γngiγ = ΓngΓnγ = ΓngΓn =
⊔
i

Γngi.

Exercise 3.2: Note that T1 · T2 is independent of the choice of g ∈ Γng. Suppose we
replace each g′ by γ′g′ with γ′ ∈ Γn. By definition of Hn, we have for each γ′,∑

g

agΓngγ
′ = T1γ

′ = T1 =
∑
g

agΓng.

Hence,∑
g,g′

agag′Γngγ
′g′ =

∑
g′

ag′
(∑

g

agΓngγ
′)g′ = ∑

g′

ag′
(∑

g

agΓng
)
g′ =

∑
g,g′

agag′Γngg
′.

Finally, to see that T1 · T2 is indeed an element of Hn, let γ ∈ Γn.

(T1 · T2)γ =
∑
g,g′

agag′Γngg
′γ = T1 · (T2γ) = T1 · T2,

as required. This gives us the well-definedness of the product.

Exercise 3.3: By the result on symplectic divisors, we can see that, for m,m′ coprime,
we have T (mm′) = T (m)T (m′). Now, using the fundamental theorem of arithmetic, we
can get the desired result.
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Exercise 3.4: For part i), we need two facts. The first one is that, for g1, g2, we have(
F |kg1

)
|kg2 = F |k(g1g2).

This can be checked by direct computation using the cocycle properties. Secondly, for
every γ ∈ Γn, we have by definition of Hn,

ΓngΓn = tiΓngi = tiΓngiγ.

Hence,(
T (g)F

)
(γ〈Z〉) =

∑
i

(F |kgi)(γ〈Z〉) =
∑
i

(
(F |kgi)|kγ

)
(Z) det(J(γ, Z))k

=
∑
i

(
F |kgiγ

)
(Z) det(J(γ, Z))k = det(J(γ, Z))k

∑
i

(F |kgi)(Z).

For part ii), let ΓngΓn = tiΓngi. Set µ = µ(g). Taking inverses and multiplying by µ,
we get Γnµg

−1Γn = tiµg−1
i Γn. By the result on symplectic divisors, we can take g to

be a diagonal matrix. Then we can see that µg−1 = JgJ . Hence

tiµg−1
i Γn = Γnµg

−1Γn = ΓngΓn = tiΓngi.

We have

〈T (g)F,G〉 =
∑
i

〈F |kgi, G〉 =
∑
i

〈F |kgi, G|kg−1
i |kgi〉

=
∑
i

µ(gi)
n(k−n−1)〈F,G|kg−1

i 〉 = 〈F,
∑
i

µ(gi)
n(k−n−1)G|kg−1

i 〉

= 〈F,
∑
i

G|k(µg−1
i )〉 = 〈F,

∑
i

G|kgi〉 = 〈F, T (g)G〉.

To make sense of the inner product of functions that are not invariant under Γn, we
extend the Petersson inner product to

〈F ′, G′〉 =
1

[Γn : Γn(N)]

∫
Γn(N)\Hn

F ′(Z)G′(Z) det(Y )k
dX dY

det(Y )n+1

where F ′, G′ are both modular forms with respect to the congruence subgroup Γn(N)
(defined in (13)) for some integer N . In addition, we have used µ(gi) = µ for all i and
the GSp2n(R)+-invariance of the measure on Hn.

Exercise 3.7: Let us apply the slash operator to the various single coset representatives
one at a time, and calculate the contribution towards the Fourier coefficient. First
consider (

F |k
[
p12

12

])
(Z) = p2k−3F (pZ) = p2k−3

∑
tT=T>0

half integral

A(T )e2πiTr(TpZ)

= p2k−3
∑

tT=T>0
half integral

p|T

A(
1

p
T )e2πiTr(TZ).
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Hence, the contribution to the Fourier coefficient is p2k−3A(1/pT ). Next consider

∑
a,b,d∈Z/pZ

(
F |k


1 a b

1 b d
p

p

)(Z)

= p2k−3p−2k
∑

a,b,d∈Z/pZ

F (
1

p
Z +

1

p

[
a b
b d

]
)

= p−3
∑

a,b,d∈Z/pZ

( ∑
tT=T>0

half integral

A(T )e
2πiTr(T 1

p
Z)
e

2πiTr(T 1
p

[
a b
c d

]
))
.

If T =

[
n r/2
r/2 m

]
, then Tr(T

[
a b
b d

]
) = an+ rb+md. It is easy to check that

∑
a,b,d∈Z/pZ

e
2πi 1

p
(an+rb+md)

=

{
p3 if p|n, p|r, p|m;

0 otherwise.

Hence, the contribution towards the Fourier coefficient is A(pT ). Next we have

∑
a∈Z/pZ

(
F |k


1 a

p
p

1

)(Z)

= p2k−3p−k
∑

a∈Z/pZ

F (
([1

p

]
Z +

[
a

1

])[p
1

]−1

)

= pk−3
∑

a∈Z/pZ

F (

[
1
p

]
Z

[
p

1

]−1

+

[
a/p

1

]
)

= pk−3
∑

a∈Z/pZ

∑
tT=T>0

half integral

A(T )e
2πiTr(T

[
1
p

]
Z
[
p−1

1

]
)
e

2πiTr(T
[
a/p

1

]
)

Once again, if T =

[
n r/2
r/2 m

]
, then Tr(T

[
a/p

1

]
) = na/p+m. Hence

∑
a∈Z/pZ

e
2πiTr(T

[
a/p

1

]
)

=

{
p if p|n;

0 otherwise.

Note that p|n if and only if
[
p−1

1

]
T

[
1
p

]
is half integral. So, we get

∑
a∈Z/pZ

(
F |k


1 a

p
p

1

)(Z)
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= pk−2
∑

tT=T>0
T half integral[

p−1

1

]
T
[

1
p

]
half integral

A(T )e
2πiTr(

[
p−1

1

]
T
[

1
p

]
Z)

= pk−2
∑

tT=T>0
half integral

A(

[
p

1

]
T

[
1
p−1

]
)e2πiTr(TZ).

Hence, the contribution towards the Fourier coefficient is pk−2A(1
p

[
p

1

]
T

[
p

1

]
). The

last computation is similar as well, and we get the final contribution to the Fourier co-

efficient of pk−2
∑

α∈Z/pZ
A(1

p

[
1 α
p

]
T

[
1
α p

]
).

Exercise 3.9: We know that

Q(X) = (1− α0X)(1− α0α1X)(1− α0α2X)(1− α0α1α2X).

Comparing coefficient of X4 we only get α2
0α1α2 = ±p2k−3. To get the plus sign, com-

pare coefficients of X and X3.

Exercise 3.10: Follows from Theorem 3.6.

Exercise 3.12: We have

Q(X) = 1− λ(p)X + (λ(p)2 − λ(p2)− p2k−4)X2 − λ(p)p2k−3X3 + p4k−6X4

= (1− α0,pX)(1− α0,pα1,pX)(1− α0,pα2,pX)(1− α0,pα1,pα2,pX).

Now comparing the coefficients of X and X2 we get the result.

Exercise 3.13: Recall the doubling formula for the gamma function

Γ(z)Γ(z +
1

2
) = 21−2z√πΓ(2z),

and the formula Γ(z + 1) = zΓ(z). Using these we get

Λ(s, Ff ) = π1−k2−k(s− k + 1)Λ(s, f)ξ(s− k + 1)ξ(s− k + 2).

Now using the functional equations for ξ and L(s, f) and the assumption that k is even,
we get

(−1)kΛ(2k − 2− s, Ff )

= π1−k2−k(2k − 2− s− k + 1)Λ(2k − 2− s, f)

× ξ(2k − 2− s− k + 1)ξ(2k − 2− s− k + 2)

= π1−k2−k(−s+ k − 1)(−1)k−1Λ(s, f)

× ξ(1− (2k − 2− s− k + 1))ξ(1− (2k − 2− s− k + 2))

= π1−k2−k(s− k + 1)Λ(s, f)ξ(s− k + 1)ξ(s− k + 2)

= Λ(s, Ff ).
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Exercise 3.14: From the relation

L(s, Ff , spin) = ζ(s− k + 1)ζ(s− k + 2)L(s, f)

we have

{α0,p, α0,pα1,p, α0,pα2,p, α0,pα1,pα2,p} = {pk−1, pk−2, β0,p, β0,pβ1,p}.

Here, β0,p, β1,p are local Satake p- parameters of f and we have |β0,p| = pk−3/2. Using
α2

0,pα1,pα2,p = p2k−3, we deduce that {α1,p, α2,p} = {p−(k−1)β0,p, p
−(k−2)β0,p}. Note that

β2
0,pβ1,p = p2k−3 implies that

(
p−(k−1)β0,p

)−1
= p−(k−2)β0,pβ1,p and

(
p−(k−2)β0,p

)−1
=

p−(k−1)β0,pβ1,p. Putting this into the definition of the standard L-function, we get the
result.

Lecture 4
Exercise 4.4: Follow from Theorems 3.8 and 4.3.

Exercise 4.6:

i) Let γ1 =


a b

1
c d

1

 and γ2 =


1
s 1

1 −s
1

. Let Z =

[
τ z
z τ ′

]
. Then

γ1〈Z〉 =
([a

1

][
τ z
z τ ′

]
+

[
b 0
0 0

])([ c 0
0 0

][
τ z
z τ ′

]
+

[
d

1

])−1

=

[
aτ + b az
z τ ′

][
cτ + d cz

1

]−1

=

[
aτ + b az
z τ ′

][
(cτ + d)−1 −cz(cτ + d)−1

1

]
=

[
aτ+b
cτ+d

z
cτ+d

z
cτ+d τ

′ − cz2

cτ+d

]
We also have

γ2〈Z〉 =

[
1
s 1

][
τ z
z τ ′

][
1 s

1

]
=

[
τ z + sτ

z + sτ τ ′ + 2sz + s2τ

]
.

Also, det J(γ1, Z) = cτ + d and det J(γ2, Z) = 1.
ii) Writing the Fourier-Jacobi expansion of both the sides of the equation in part i) we

get
∞∑
m=1

φm(
aτ + b

cτ + d
,

z

cτ + d
)e2πimτ ′e

2πimcz2

cτ+d = (cτ + d)k
∞∑
m=1

φm(τ, z)e2πimτ ′ ,

and
∞∑
m=1

φm(τ, z + sτ)e2πimτ ′e2πim(2sz+s2τ) =
∞∑
m=1

φm(τ, z)e2πimτ ′ .

Comparing the coefficients of e2πimτ ′ on both sides, we get the problem.
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iii) We have

φm(τ, z) =
∑

n,r∈Z,n>0
4mn−r2>0

A(n, r,m)e2πinτe2πirz.

The expression
∂ν

∂zν
e2πirz|z=0 = (2πir)ν

implies

λν(τ, z) =
1

ν!

∑
n,r∈Z,n>0
4mn−r2>0

(2πir)νA(n, r,m)e2πinτzν .

iv) We have
∞∑

ν=ν0

λν(aτ+b
cτ+d , z)

(cτ + d)k+ν
=

1

(cτ + d)k

∞∑
ν=ν0

λν(
aτ + b

cτ + d
,

z

cτ + d
)

=
1

(cτ + d)k
φm(

aτ + b

cτ + d
,

z

cτ + d
)

= e
2πimcz2

cτ+d φm(τ, z)

=
( ∞∑
j=0

1

j!

(2πimcz2

cτ + d

)j) ∞∑
ν=ν0

λν(τ, z)

Now, comparing the coefficients of zν0 on both sides, we get

λν0(
aτ + b

cτ + d
, z) = (cτ + d)k+ν0λν0(τ, z),

as required.
v) Assume that A(n, r,m) = 0 whenever gcd(n, r,m) = 1. Note that this implies

φ1 = 0. Let m > 1 be such that φm 6= 0. Hence, the corresponding λν0 6= 0. For any
fixed z, we know that λν0(τ, z) ∈ Mk+ν0(Γ1) and we can see that the nth Fourier
coefficient is given by

1

ν0!

∑
r∈Z

4mn−r2>0

(2πir)ν0A(n, r,m)zν0

The hypothesis on A(n, r,m) tells us that the above nth Fourier coefficient vanishes
for all n coprime to m. From the given fact of modular forms, we can conclude that
λν0(τ, z) = 0, a contradiction.

Exercise 4.10: If {c(n)} are the Fourier coefficients of the half integral weight form g,
then the plus space condition implies that c(n) = 0 if n ≡ 1, 2 (mod 4). Here, we have
used that k is even. Now, let N be a positive integer such that c(N) 6= 0. We have

N = det(2T ), with T =

{[
a+1 1/2
1/2 1

]
if N = 4a+ 3;

[ a 1 ] if N = 4a.
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In both the above cases, the definition of the Fourier coefficient of the Saito-Kurokawa
lift gives A(T ) = c(N) 6= 0.

Lecture 5
Exercise 5.2: Let T (g) = ΓngΓn = tiΓngi and choose representatives gi of the form[
Ai Bi

Di

]
. Let the Fourier coefficients of T (g)F be given by {B(T )}. Then, one can show

that
B(T ) =

∑
i

det(Di)
−kA(DiTA

−1
i )e2πiTr(TA−1

i Bi).

Using |A(T )| �F det(T )k/2, and the fact that, for any g there are only finitely many
choices of Ai, Bi, Di, we can conclude that |B(T )| ≤ C det(T )k/2 where the constant
C depends on F and g but not T . This shows that the action of the Hecke algebra
stabilizes the modular forms satisfying |A(T )| �F det(T )k/2. Consider the subspace VF
of Mk(Γn) spanned by {T (g)F : g ∈ Gn}. We can find a basis of Hecke eigenforms for
VF , and any one of these basis elements gives a solution to the first part of the problem.
If F is not a cusp form, then not every element of the basis can be a cusp form. Such a
non-cuspidal basis element gives the second part of the problem.

Exercise 5.3: Suppose ΦnF 6= 0. By induction, we can see that

L(s, F, std) =
n−1∏
i=0

ζ(s− k + n− i)ζ(s+ k − n+ i).

The rightmost pole is at s = k, and it is not cancelled by the zeros of the other terms.
Since k > 2n, we get a contradiction to the holomorphy of L(s, F, std).

Exercise 5.4: We have 〈T (g)F,G〉 = 〈F, T (g)G〉, which shows that the Hecke eigenvalues
are real.

Exercise 5.6: We have L(s, Ff , spin) = ζ(s− k + 1)ζ(s− k + 2)L(s, f). Write L(s, f) =∏
p

(1− ω(p)p−s + p2k−3−2s)−1. Write

L(s, Ff , spin) =

∞∑
n=1

a(n)

ns
=
∏
p

∞∑
n=0

a(pn)

pns
.

For a fixed prime p, we have the formal identity in an indeterminate X
∞∑
n=0

a(pn)Xn =
1

(1− pk−1X)(1− pk−2X)(1− ω(p)X + p2k−3X2)
.

The Ramanujan estimate for genus 1 gives us the factorization 1− ω(p)X + p2k−3X2 =

(1−αpk−3/2X)(1− ᾱpk−3/2X) for a complex number α satisfying |α| = 1. Let us assume
that α 6= ᾱ in the following. The α = ±1 case needs appropriate modifications.

∞∑
n=0

a(pn)

(pk−3/2)n
Xn =

1

(1−√pX)(1− 1√
pX)(1− αX)(1− ᾱX)
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=
1

|√p− α|2
( p2

(p− 1)(1−√pX)
− 1

(p− 1)(1− 1√
pX)

+
√
p
( 1

ᾱ(ᾱ2 − 1)(1− αX)
+

1

α(α2 − 1)(1− ᾱX)

))
Expand as geometric series and compare coefficients of Xn to get

a(pn)

(pk−3/2)n
|√p− α|2 =

p2

p− 1

√
pn − 1

p− 1

1√
pn
−√p

( αn

ᾱ(1− ᾱ2)
+

ᾱn

α(1− α2)

)
=

p2

p− 1

√
pn − 1

p− 1

1√
pn
−√p

(
αn+1 + αn−1 + · · ·+ 1

αn+1

)
Using |α| = 1, we get the estimate for all n ∈ N

a(pn)

(pk−3/2)n
|√p− α|2 ≥ p2

p− 1

√
pn − 1

p− 1

1√
pn
−√p(n+ 2).

This gives us a(pn) > 0 for all n. To get to λ(n), use L(s, F, spin) = ζ(2s − 2k +
4)
∑
λ(n)n−s, to get

λ(pn)

(pk−3/2)n
=

a(pn)

(pk−3/2)n
− 1

p

a(pn−2)

(pk−3/2)n−2

for n ≥ 2 and λ(pn) = a(pn) for n = 0, 1. Hence, we have
λ(pn)

(pk−3/2)n
|√p− α|2 = (p+ 1)

√
pn −√p

(
(1− 1

p
)(αn−1 + · · ·+ 1

αn−1
) + αn+1 +

1

αn+1

)
≥ (p+ 1)

√
pn −√p(n+ 2).

This immediately implies that λ(pn) > 0 for all n ≥ 0, and hence, λ(n) > 0 for all n ∈ N.

Exercise 5.9: Substituting the Fourier expansion of F , we get∫
R2

F (iY ) detY s−3/2dY =

∫
R2

detY s−3/2
∑
T>0

A(T )e−2πTr(TY )dY

=
∑
{T}>0

A(T )

ε(T )

∑
g∈GL2(Z)

∫
R2

detY s−3/2e−2πTr(tgTgY )dY

=
∑
{T}>0

A(T )

ε(T )

∫
P2

detY s−3/2e−2πTr(TY )dY.

This completes part 1) of the problem. Next, note that

det(Y ) = y1y2, dY = y1dy1dy2dy3, Tr(TY ) = t1y1 + (y2 + y1y
2
3)t2.

This implies∫
P2

detY s−3/2e−2πTr(TY )dY

=

∫
y1>0,y2>0,y3

y
s−1/2
1 e−2πt1y1y

s−3/2
2 e−2πy2t2e−2πy23y1t2dy1dy2dy3,
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which gives us part 2) of the problem. Using the integral formulas in part 3), the integral
on the right hand side reduces to

Γ(s− 1
2)

(2πt2)(s− 1
2

)

√
2

t2

∞∫
0

ys−1
1 e−2πt1y1dy1 =

Γ(s− 1
2)

(2πt2)(s− 1
2

)

√
2

t2

Γ(s)

(2πt1)s

= 2(2π)−2sπ
1
2

Γ(s)Γ(s− 1
2)

det(T )s
.

Substituting this in part 1), we get the result of part 3).

Lecture 6
Exercise 6.1: The strong approximation for Sp2n states that

Sp2n(A) = Sp2n(Q)Sp2n(R)
∏
p<∞

Sp2n(Zp).

Given any g ∈ G(A), we can write it as

g =

[
1n
µ(g)1n

]
g′,

where g′ ∈ Sp2n(A), and µ(g) ∈ A× is the similitude of g. Now the exercise follows from
the decomposition of A× given by

A× = Q× × R×+ ×
∏
p<∞

Z×p .

Exercise 6.2: Write k′0 = ⊗p<∞k0,p, with k0,p ∈ G(Zp). We have

g∞ ⊗p<∞ 1 = g′Qg
′
∞k
′
0 =

(
g′Q ⊗p<∞ g′Q

)(
g′∞ ⊗p<∞ k0,p

)
= g′Qg

′
∞ ⊗p<∞ g′Qk0,p

Comparing the archimedean components, we get g∞ = g′Qg
′
∞. Comparing the p-adic

components, we get g′Q ∈ G(Zp) for all p < ∞. Hence, g′Q ∈ G(Z) = Γn. This gives us
part i). To show well-definedness, suppose g = γg∞k = γ′g′∞k

′. Then from part i), we
have g∞ = (γ−1γ′)g′∞ and γ−1γ′ ∈ Γn. Hence,

(F ||kg∞)(I) = (F ||k(γ−1γ′)g′∞)(I)

=
(
(F ||k(γ−1γ′)||kg′∞

)
(I)

= (F ||kg′∞)(I).

Here, we have used that F ||kγ = F for all γ ∈ Γn. This shows us that ΦF is well-defined.

Exercise 6.5: Observe that, since S is assumed to be half integral, θS(n) = 1, for all
n ∈

∏
p<∞ U(Zp). Using the strong approximation of the ring of adeles A, we see that

U(A) = U(Q)×U(R)×
∏
p<∞ U(Zp). Hence, we get the following fundamental domain

U(Q)\U(A) '
(
U(Z)\U(R)

)
×
∏
p<∞

U(Zp).
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Recall ΦF is right invariant under
∏
p<∞ U(Zp) as well. Denote by Sym2 the set of

symmetric matrices and P2 as the set of positive definite symmetric half integral matrices.
We get

ΦS
F (1) =

∫
U(Z)\U(R)

ΦF (n)θ−1
S (n) dn

=

∫
Sym2(Z)\Sym2(R)

(F ||k
[

1 X
1

]
)(I)θ−1

S (

[
1 X

1

]
)dX

=

∫
Sym2(Z)\Sym2(R)

F (I +X)e−2πiTr(SX)dX

=
∑
T∈P2

A(T )e2πiTr(TI)

∫
Sym2(Z)\Sym2(R)

e2πiTr(TX)e−2πiTr(SX)dX

= A(S)e−2πTr(S).

Exercise 6.6: We have

ΦF1(g)ΦF2(g) = F1(g〈I〉)F2(g〈I〉)µ(g)nk|det J(g, I)|−2k

= F1(Z)F 2(Z) detY k

where g ∈ G+
∞ and g〈I〉 = Z = X + iY . Define f(Z) = F1(Z)F 2(Z) detY k. Then f is

Γn-invariant and Φf (g) = ΦF1(g)ΦF2(g). Using the relation between Haar measures, we
get

〈F1, F2〉 =

∫
Γn\Hn

f(Z)d∗Z =

∫
Z(A)G(Q)\G(A)

Φf (g)dg = 〈ΦF1 ,ΦF2〉.

Exercise 6.7: Let f ∈ H(Gp,Kp). By definition of H(Gp,Kp), f is invariant on double
cosets KpgKp for g ∈ Gp. Since f has compact support, there are finitely many gi such
that supp(f) = tiKpgiKp. If f(gi) = ai ∈ C, then we have

f(g) =
∑
i

aichar(KpgiKp)(g).

Exercise 6.10: Note that

(X1 ∗X1)(x) =

∫
Tp

X1(xt)X1(t−1)dt =

∫
diag(p−1Z×p ,Z×p ,··· ,Z×p ,pZ×p ,Z×p ,··· ,Z×p )

X1(xt)dt

=

{
1 if x ∈ diag(p2Z×p ,Z×p , · · · ,Z×p , p−2Z×p ,Z×p , · · · ,Z×p )

0 otherwise.

= char(diag(p2Z×p ,Z×p , · · · ,Z×p , p−2Z×p ,Z×p , · · · ,Z×p ))(x).
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Here, we have assumed that the measure is normalized so that Z×p has volume 1. Similar
calculation will show that

char(diag(pr1Z×p , pr2Z×p , · · · , prnZ×p , pr−r1Z×p , pr−r2Z×p , · · · , pr−rnZ×p ))

= Xr
0X

r1
1 · · ·X

rn
n .

This gives us the result.

Exercise 6.12: Let f ∈ Ind
Gp
B (χ) and let g0 = z12n ∈ Z(Qp). Note that g0 ∈ T (Qp).

Then
(π(g0)f)(g) = f(gg0) = f(g0g) = |δB(g0)|1/2χ(g0)f(g).

We have g0 = diag(u1, u2, · · · , un, u−1
1 u0, u

−1
2 u0, · · · , u−1

n u0), with u0 = z2 and ui = z
for i = 1, · · · , n. Hence
|δB(g0)|1/2χ(g0) = |z−n(n+1)/2zz2 · · · zn|χ0(z2)χ1(z) · · ·χn(z) =

(
χ2

0χ1 · · ·χn
)
(z).

Hence, the center acts on the representation by the character χ2
0χ1 · · ·χn.

Exercise 6.13: Let ΓnMΓn = tiΓnMi, with

Mi =

[
Ai Bi
0 Di

]
and Di =

p
di1 ∗

. . .
0 pdin

 .
Then the classical Satake p-parameters α0,p, · · · , αn,p satisfy

λ(T (M)) = αδ0,p
∑
i

n∏
j=1

(αj,pp
−j)dij

where δ is the valuation of µ(M). Because of the two slash actions considered, we get

T (M)ΦF = µ(M)n(n+1−k)/2λ(T (M))ΦF

= pδn(n+1−k)/2αδ0,p
∑
i

n∏
j=1

(αj,pp
−j)dijΦF .

Compare this to the formula for the Satake map to get

b0 = pn(n+1)/4−nk/2α0,p and bi = αi,p for i = 1, · · · , n.

This completes proof of i). Using the relation α2
0,pα1,p · · ·αn,p = pkn−n(n+1)/2 and the

fact that the value of the central character at p is

b20b1 · · · bn = p−kn+n(n+1)/2α2
0,pα1,p · · ·αn,p = 1.

Since the central character is unramified, it is determined by its value at p and hence, is
trivial. This gives us part ii) of the problem.

The relation b0 = pn(n+1)/4−nk/2α0,p and bi = αi,p for i = 1, · · · , n gives us the follow-
ing relation between spin L-functions.

L(s, πF , spin) = L(s− n(n+ 1)/4 + nk/2, F, spin).

For n = 2, we have

Λ(1− s, πF , spin) = Λ(1− s− 3/2 + k, F, spin)
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= (−1)kΛ(2k − 2− (1− s− 3/2 + k), F, spin)

= (−1)kΛ(s− 3/2 + k, F, spin)

= (−1)kΛ(s, πF , spin).

Lecture 7
Exercise 7.1: Recall that W acts on the torus element diag(a, b, ca−1, cb−1) by exchang-
ing a and b, or replacing a with ca−1 and b with cb−1. There are 8 elements in W
corresponding to these actions on the torus. Suppose we consider a Weyl group element
w ∈W which exchanges a and b and also replaces a with ca−1. Then we have

χw(diag(a, b, ca−1, cb−1)) = χ(diag(b, ca−1, cb−1, a)) = χ1(ca−1)χ2(b)σ(c)

= χ2(b)χ−1
1 (a)(χ1σ)(c).

Hence (χ1 × χ2 o σ)w = χ2 × χ−1
1 o χ1σ. Similarly one can calculate for other elements

of W . In this way we get the following 8 isomorphic representations

χ1 × χ2 o σ ' χ2 × χ1 o σ ' χ−1
1 × χ2 o χ1σ ' χ2 × χ−1

1 o χ1σ

' χ1 × χ−1
2 o χ2σ ' χ−1

2 × χ1 o χ2σ ' χ−1
1 × χ

−1
2 o χ1χ2σ

' χ−1
2 × χ

−1
1 o χ1χ2σ.

Exercise 7.2: Recall that (π, V ) is the space of all smooth C-valued functions ψ on
GL2(Qp) satisfying

ψ(

[
a
∗ b

]
g) = |a−1b|1/2η(a)η−1(b)ψ(g).

Here, we are inducing from the lower triangular matrices and hence the roles of a and b
are reversed. The representation τ o ν1/2 consists of smooth functions f on Gp taking
values in V satisfying

f(

[
A ∗
c tA−1

]
g) = |det(A)c−1|3/2|c|1/2|det(A)|−1/2π(A)(f(g))

= |det(A)c−1|π(A)(f(g)).

Finally, the representation ν−1/2η−1×ν−1/2ηoν1/2 consists of smooth C-valued functions
F on Gp satisfying

F (


a ∗ ∗
∗ b ∗ ∗

ca−1 ∗
cb−1

 g) = |ab2||c|−3/2|a|−1/2η(a)|b|−1/2η−1(b)|c|1/2F (g)

= |a|1/2|b|3/2|c|−1η(a)η−1(b)F (g).
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Define the map L : τ o ν1/2 → ν−1/2η−1 × ν−1/2η o ν1/2 by (Lf)(g) :=
(
f(g)

)
(12). To

check that the map is well-defined, we compute the following.

(Lf)(


a ∗ ∗
∗ b ∗ ∗

ca−1 ∗
cb−1

 g) = f(


a ∗ ∗
∗ b ∗ ∗

ca−1 ∗
cb−1

 g)(12)

= |abc−1|
(
π(

[
a
∗ b

]
)(f(g))

)
(12) = |abc−1|(f(g))(

[
a
∗ b

]
)

= |abc−1||a−1b|1/2η(a)η−1(b)(f(g))(12) = |a|1/2|b|3/2|c|−1η(a)η−1(b)(Lf)(g),

as required. To check that the map L preserves the action of the group, we have

(g · Lf)(g′) = Lf(g′g) =
(
f(g′g)

)
(12) =

(
(g · f)(g′)

)
(12) =

(
L(g · f))(g′).

Clearly L is injective. One can construct a Gp-equivariant injective map L̃ : ν−1/2η−1 ×
ν−1/2η o ν1/2 → τ o ν1/2 that is the inverse of L by the following formula. Let F ∈
ν−1/2η−1 × ν−1/2η o ν1/2. For g ∈ Gp and A ∈ GL2(Qp), define(

(L̃F )(g)
)
(A) := | detA|−3/2F (

[
A

tA−1

]
g).

One can check that L̃ is well-defined and preserve the action of Gp by following similar
computations as above. Finally, one can check that L ◦ L̃ = L̃ ◦ L = Id, the identity
map.

Exercise 7.3: We have

Wv(


1 y ∗
x 1 ∗ ∗

1 −x
1

 g) = `(π(


1 y ∗
x 1 ∗ ∗

1 −x
1

 g)v) = `(π(


1 y ∗
x 1 ∗ ∗

1 −x
1

)π(g)v)

= ψ(c1x+ c2y)`(π(g)v) = ψ(c1x+ c2y)Wv(g).

Exercise 7.4: Define ` : W(π, ψc1,c2)→ C by

`(W ) := W (1).

Then, we can check that

`(π(


1 y ∗
x 1 ∗ ∗

1 −x
1

)W ) = (π(


1 y ∗
x 1 ∗ ∗

1 −x
1

)W )(1)

= W (


1 y ∗
x 1 ∗ ∗

1 −x
1

) = ψ(c1x+ c2y)W (1)

= ψ(c1x+ c2y)`(W ).
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Hence, ` is a Whittaker functional. To see that it is non-zero, take 0 6= W ∈W(π, ψc1,c2).
Then there is a g ∈ Gp such that W (g) 6= 0. This means that (π(g)W )(1) 6= 0, which
gives us `(π(g)W ) 6= 0.

Exercise 7.5: Let 0 6= ` ∈ HomN(Qp)(π, ψ1,1). Define `c1,c2 by

`c1,c2(v) := `(π(


c2

c1c2

1
c−1

1

)v).

Then 0 6= `c1,c2 ∈ HomN(Qp)(π, ψc1,c2).

Exercise 7.6: This is direct computation.

Exercise 7.7: We have

ηn


Zp pnZp Zp Zp
Zp Zp Zp p−nZp
Zp pnZp Zp Zp
pnZp pnZp pnZp Zp

 η−1
n =


−pnZp −pnZp −pnZp −Zp
Zp pnZp Zp Zp
pnZp pnZp pnZp Zp
−pnZp −p2nZp −pnZp −pnZp

 η−1
n

=


Zp pnZp Zp Zp
Zp Zp Zp p−nZp
Zp pnZp Zp Zp
pnZp pnZp pnZp Zp


Hence, ηnK(n)η−1

n ⊂ K(n). Let v ∈ Vπ such that π(k)v = v for all k ∈ K(n). Then, for
every k ∈ K(n), we have

π(k)
(
π(ηn)v

)
= π(ηn)

(
π(η−1

n kηn)v
)

= π(ηn)v,

as required.

Exercise 7.8: Let T = char(K(n)gK(n)) and let K(n)gK(n) = tigiK(n). Then the
action of T on v ∈ V (n) is given by vol(K(n))

∑
i π(gi)v. Hence, for any k ∈ K(n), we

have

π(k)
(
Tv
)

= π(k)vol(K(n))
∑
i

π(gi)v = vol(K(n))
∑
i

π(kgi)v

= vol(K(n))
∑
i

π(gi)v = Tv

since {kgi} gives another set of coset representatives for K(n)gK(n)/K(n).

Exercise 7.9: We will use the defining property of the induced model for π = χ1×χ2oσ,
namely,

f0(


a ∗ ∗
∗ b ∗ ∗

ca−1 ∗
cb−1

 k) = |ab2||c|−3/2χ1(b)χ2(a)σ(c)f0(1),
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for k ∈ Kp. In particular, we have f0(1) 6= 0. We also know that, if KpgKp = tigiKp

and T = char(KpgKp), then (Tf0)(g′) =
∑

i f0(g′gi). Since V Kp
π is one dimensional,

we know that Tf0 = λ(g)f0. To find λ we evaluate Tf0 at 1 (using the non-vanishing
of f0(1)). Using the single coset decomposition given in the lecture notes, we get for
g = diag(p, p, 1, 1)

λ = p3|pp||p|−3/2χ1(p)χ2(p)σ(p) + p|p||p|−3/2χ2(p)σ(p)

+ |p|−3/2σ(p) + p2|p2||p|−3/2χ1(p)σ(p)

= p3/2(χ1(p)χ2(p)σ(p) + χ2(p)σ(p) + σ(p) + χ1(p)σ(p))

= p3/2σ(p)(1 + χ1(p))(1 + χ2(p)).

Note that we have |p| = 1/p. Using the single coset decomposition for g = diag(p, p2, p, 1)
given in the lecture notes we get

µ = p4|pp4||p2|−3/2χ2
1(p)χ2(p)σ2(p) + p3|p2p2||p2|−3/2χ1(p)χ2

2(p)σ2(p)

+ p|p2||p2|−3/2χ1(p)σ2(p) + |p||p2|−3/2χ2(p)σ2(p)

+ (p− 1)|pp2||p2|−3/2χ1(p)χ2(p)σ2(p)

+ p(p− 1)|pp2||p2|−3/2χ1(p)χ2(p)σ2(p)

= p2(χ1(p) + χ−1
1 (p) + χ2(p) + χ−1

2 (p) + 1− p−2).

We have used χ1χ2σ
2 = 1 here.

Exercise 7.11: This is direct computation.

Lecture 8
Exercise 8.3: We see that ξ2

S = d
412. Hence, F (ξ) is a quadratic extension of Q. Once

again, the relation ξ2
S = d

412 tells us that the map is an isomorphism from F (ξ) to

L = Q(
√
d). The details can easily be checked. Let g =

[
u v
w z

]
∈ GL2(Q). Then

tgSg = det(g)S can be rewritten as tgS = det(g)Sg−1. This gives us[
u w
v z

][
a b/2
b/2 c

]
=

[
a b/2
b/2 c

][
z −v
−w u

]
.

Comparing the components of the matrices on both sides, we get

ua+ bw/2 = az − bw/2, ub/2 + wc = ub/2− av, bv/2 + zc = −bv/2 + cu.

Hence, we get wc = −av and (u− z)c = bv. If we set wc = −av = −acy and u+ z = 2x,
then we get

g =

[
x+ by/2 yc
−ya x− by/2

]
,

which is an invertible element of F (ξ). Hence, we get T = F (ξ)×.
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Exercise 8.4: Let t =

[
g

det(g) tg−1

]
and u =

[
1 X

1

]
. Then

t−1ut =

[
1 det(g)g−1X tg−1

1

]
.

Hence, we have

θ(t−1ut) = ψ(Tr(S det(g)g−1X tg−1)) = ψ(Tr(det(g) tg−1Sg−1X))

= ψ(Tr(SX)) = θ(u).

Here, we have used the definition of T . Hence, we have

(Λ⊗ θ)(ut) = (Λ⊗ θ)(tt−1ut) = Λ(t)θ(t−1ut) = Λ(t)θ(u) = (Λ⊗ θ)(tu).

Exercise 8.5: This follows from a straightforward change of variable in the integral defin-
ing Bφ.

Exercise 8.7: This follows exactly as in the case of the Whittaker model discussed in the
previous lecture.

Exercise 8.8: Follows from the definitions.

Exercise 8.9: Since ΦF is right invariant under K0 =
∏
pKp, we can see that BΦF is also

right invariant under K0 =
∏
pKp. Since Bp is the restriction of BΦF to Gp, we see that

Bp is right invariant under Kp.

Exercise 8.10: We have

GSp4(Qp) =
⊔

l∈Z,m≥0

R(Qp)hp(l,m)Kp.

Write any g ∈ Gp as g = rhp(l,m)k with r ∈ R(Qp) and k ∈ Kp. Then we have

Bp(g) = Bp(rhp(l,m)k) = (Λ⊗ θ)(r)Bp(hp(l,m)).

This shows that Bp is completely determined by its values on hp(l,m) for l ∈ Z,m ≥ 0.

Next, take X =

[
x y
y z

]
∈M2(Zp). We have

Bp(hp(l,m)) = Bp(hp(l,m)

[
1 X

1

]
) = Bp(hp(l,m)

[
1 X

1

]
hp(l,m)−1hp(l,m))

= Bp(


1 p2m+lx pm+ly

1 pm+ly plz
1

1

hp(l,m))

= ψp(Tr(S

[
p2m+lx pm+ly
pm+ly plz

]
))Bp(hp(l,m))

= ψp(p
2m+lax+ pm+lby + plcz)Bp(hp(l,m)).
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Now, suppose l < 0. Since c ∈ Z×p and conductor of ψp is Zp, we can find a z ∈ Zp such
that ψp(plcz) 6= 1. Take such a z and set x = y = 0. Then we get

Bp(hp(l,m)) = ψp(p
lcz)Bp(hp(l,m)),

which implies that Bp(hp(l,m)) = 0.

Exercise 8.12: Let us drop the subscript p. The above recurrence relation is equivalent
to the following identity between generating series,∑

l,m≥0

B(h(l,m))xmyl =
∑
l,m≥0

l∑
i=0

p−iB(h(0, l +m− i))xmyl. (52)

By Sugano’s formula, the left hand side equals

LHS =
H(x, y)

P (x)Q(y)
,

where H,P,Q are defined as in Theorem 8.11. For the right hand side of (52), we
calculate

RHS =
∞∑
m=0

∞∑
l=0

l∑
i=0

p−iB(h(0, l +m− i))xmyl

=
∞∑
m=0

∞∑
i=0

∞∑
l=i

p−iB(h(0, l +m− i))xmyl

=
∞∑
m=0

∞∑
i=0

∞∑
l=0

p−iB(h(0, l +m))xmyl+i

=
1

1− p−1y

∞∑
m=0

∞∑
l=0

B(h(0, l +m))xmyl

=
1

1− p−1y

∞∑
j=0

∑
l+m=j

B(h(0, j))xmyl

=
1

1− p−1y

∞∑
j=0

B(h(0, j))
xj+1 − yj+1

x− y

=
1

(1− p−1y)(x− y)

(
x

∞∑
j=0

B(h(0, j))xj − y
∞∑
j=0

B(h(0, j))yj
)

=
1

(1− p−1y)(x− y)

(
x
H(x, 0)

P (x)Q(0)
− y H(y, 0)

P (y)Q(0)

)
=

1

(1− p−1y)(x− y)

(
x
H(x, 0)

P (x)
− yH(y, 0)

P (y)

)
.

Hence, (52) is equivalent to

(1− p−1y)(x− y)H(x, y)P (y)−Q(y)
(
xP (y)H(x, 0)− yP (x)H(y, 0)

)
= 0. (53)
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If one of the Satake parameters is p±1/2, then one can verify that (53) is satisfied.

Exercise 8.13: Follows from Theorem 8.11, and the definitions of γi and the local L-
functions.

Lecture 9
Exercise 9.4: Since πF is unramified at all finite primes, so is Π4. Since Π4 is assumed to
be a constituent of a globally induced representation from a proper parabolic subgroup
of GL4, the inducing data has to be unramified at all finite primes as well. The 4
possibilities of proper parabolics of GL4 give us the following 4 possible factorizations of
the L-function L(s,Π4).

L(s, χ1)L(s, χ2)L(s, σ), L(s, σ1)L(s, σ2), L(s, χ)L(s, τ)

L(s, χ1)L(s, χ2)L(s, χ3)L(s, χ4)

Here, the χ′s are characters of A×, σ′s are cuspidal representations of GL2(A) and τ
is a cuspidal representation of GL3(A). Note that these representations are unramified
at all finite primes. In particular, the characters are all trivial. Hence, whenever we
have a L-factor corresponding to a character, it contributes a pole at s = 1, which is
not cancelled by any zeros of the remaining terms. Note that L(s,Π4) is entire since F
is not a Saito-Kurokawa lift. So, the only remaining possibility is L(s, σ1)L(s, σ2). For
this case, consider the L-function L(s,Π4 × σ̃1) = L(s, σ1 × σ̃1)L(s, σ2 × σ̃1). Since σ̃1

is unramified everywhere, it satisfies the hypothesis that it is unramified for p|d. Hence,
L(s,Π4 × σ̃1) is entire. But we know that L(s, σ1 × σ̃1) has a pole at s = 1 which is not
cancelled by a zero of the other term. Hence, Π4 is cuspidal.

Exercise 9.5: For part i), we have

L(s, τf ,Λ
2) =

∏
p

(1− αpᾱpp−s)−1 =
∏
p

(1− p−s)−1 = ζ(s)

and

L(s, τf ,Sym2) =
∏
p

(
(1− α2

pp
−s)(1− p−s)(1− ᾱ2

pp
−s)
)−1

.

For part ii), L(s,Π4,Λ
2)

=
∏
p

(
(1− b20b1p−s)(1− b20b2p−s)(1− b20b1b2p−s)

× (1− b20b1b2p−s)(1− b20b21b2p−s)(1− b20b1b22p−s)
)−1

=
∏
p

(
(1− b−1

2 p−s)(1− b−1
1 p−s)(1− p−s)(1− p−s)(1− b1p−s)(1− b2p−s)

)−1

=
∏
p

(
(1− b−1

2 p−s)(1− b−1
1 p−s)(1− p−s)(1− b1p−s)(1− b2p−s)

)−1
×
∏
p

(1− p−s)−1

=L(s, πF , std)ζ(s),
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as required. Here, we have used b20b1b2 = 1.

Exercise 9.6: We have to consider Γ(s) and Γ(`− s). From the first one, we see that we
have a pole for all non-positive integers. And from the second one we get poles for all
integers greater than or equal to `. The only remaining ones are integers m satisfying
0 < m < `.

Exercise 9.7: The gamma factors involved in this case are Γ(s + k
2 ),Γ(s + k

2 − 1) and
Γ(s+ 3k

2 ). Hence, we want to find integers m such that none of the 3 gamma functions
above have a pole at s = m. In addition, Γ(1− s+ k

2 ),Γ(1− s+ k
2 − 1) and Γ(1− s+ 3k

2 )

do not have a pole at s = m. We can see that Γ(s+ k
2 )Γ(s+ k

2 − 1)Γ(s+ 3k
2 ) has poles

exactly at integers m ≤ −k/2+1. Similarly, Γ(1−s+ k
2 )Γ(−s+ k

2 )Γ(1−s+ 3k
2 ) has poles

exactly at integers m ≥ k/2. Hence the set of critical points is the set of all integers in
the interval [−k

2 + 2, k2 − 1].

Lecture 10

Exercise 10.1: By direct computation.

Exercise 10.2: Substitute the definition of the Eisenstein series in the integral, and use
the relevant double and single coset decompositions to get

Z(s; f, φ)(g) =

∫
Sp2n(F )\ g·Sp2n(A)

E((h, g), s, f)φ(h) dh

=

∫
Sp2n(F )\ g·Sp2n(A)

∑
γ∈P4n(F )\G4n(F )

f(γ(h, g), s)φ(h) dh

=

∫
Sp2n(F )\ g·Sp2n(A)

n∑
r=0

∑
i

f(Qrγ
(r)
i (h, g), s)φ(h) dh

=
n∑
r=0

Zr(s; f, φ).

Exercise 10.4: Suppose p1Qnγ1 = p2Qnγ2 with p1, p2 ∈ P4n(F ) and γ1, γ2 ∈ Γ4n(pm).
Then Q−1

n p−1
2 p1Qn ∈ Γ4n(pm). Hence, we have p−1

2 p1 ∈ Γ4n(pm). Now, well-definedness
of f follows from the right-Γ4n(pm) invariance of f , and the fact that both χ and δP4n

are invariant under Γ4n(pm).

Exercise 10.5: The leftmost zero in the numerator is z = k − 1 − j − 2i for j = n and
i = (k − kn)/2 − 1, i.e., z = kn − n + 1. Hence, if t ≤ kn − n then we do not have a
zero. Also, for t ≥ 0, the denominators are all positive integers. Hence, we get the result.
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Exercise 10.9: For a prime p - M , let the Satake p-parameters of π be given by
α0,p, α1,p, α2,p. The L-function condition implies that

{α0,p, α0,pα1,p, α0,pα2,p, α0,pα1,pα2,p} = {α3
p, αp, α

−1
p , α−3

p }.

Using α2
0,pα1,pα2,p = 1, we see that

{α1,p, α
−1
1,p, α2,p, α

−1
2,p} = {α2

p, α
−2
p , α4

p, α
−4
p }.

This gives us the result.
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